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Introduction

0.1 About this book

This first volume is a one semester course in basic analysis. With the second volume, it is a
year-long course. The book started its life as my lecture notes for teaching Math 444 at the
University of Illinois at Urbana-Champaign (UIUC) in the fall semester of 2009. I added the
metric space chapter for Math 521 at the University of Wisconsin-Madison (UW). Volume
IT was added to teach Math 4143/4153 at Oklahoma State University (OSU). A prerequisite
for these courses is usually a basic proof course, using, for example, [H], [F], or [DW].

It should be possible to use the book for both a basic course for students who do not
necessarily wish to go to graduate school (such as UIUC 444), and also as a more advanced
one-semester course that also covers topics such as metric spaces (such as UW 521). Here
are suggestions for a semester course. A slower course such as UIUC 444:

§0.3,81.1-§1.4,§2.1-§2.5,§3.1-8§3.4, §4.1-8§4.2, §5.1-85.3, §6.1-§6.3
A more rigorous course covering metric spaces that runs quite a bit faster (e.g.,, UW 521):
§0.3,81.1-§1.4,§2.1-§2.5, §3.1-§3.4, §4.1-84.2, §5.1-85.3, §6.1-§6.2, §7.1-§7.6

It should also be possible to run a faster course without metric spaces covering all sections
of chapters 0 through 6. The approximate number of lectures given in the section notes
through Chapter 6 are a very rough estimate and were designed for the slower course. The
tirst few chapters of the book can be used in an introductory proofs course, as is done, for
example, at Iowa State University Math 201, where this book is used in conjunction with
Hammack’s Book of Proof [H].

With volume II, one can run a year-long course that covers multivariable topics. In this
scenario, it may make sense to cover most of the first volume in the first semester while
leaving metric spaces for the beginning of the second semester.

The structure of the beginning of volume I somewhat follows the standard syllabus of
UIUC Math 444 and, therefore, has some similarities with Bartle and Sherbert, Introduction
to Real Analysis [BS], which is the standard book at UIUC. A major difference is that we
define the Riemann integral using Darboux sums and not tagged partitions. The Darboux
approach is far more appropriate for a course of this level.

Our approach allows us to fit a course such as UIUC 444 within a semester and still
spend some time on the interchange of limits and end with Picard’s theorem on the
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existence and uniqueness of solutions of ordinary differential equations. This theorem
is a wonderful example that uses many results proved in the book. For more advanced
students, material may be covered faster so that we arrive at metric spaces and prove
Picard’s theorem using the fixed point theorem as is usual.

Other excellent books exist. My favorite is Rudin’s excellent Principles of Mathematical
Analysis [R2] or, as it is commonly and lovingly called, baby Rudin (to distinguish it from
his other great analysis textbook, big Rudin). I took a lot of inspiration and ideas from
Rudin. However, Rudin is a bit more advanced and ambitious than this present course.
For those who wish to continue mathematics, Rudin is a fine investment. An inexpensive
and somewhat simpler alternative to Rudin is Rosenlicht’s Introduction to Analysis [R1].
There is also the freely downloadable Introduction to Real Analysis by William Trench [T].

A note about the style of some of the proofs: Many proofs traditionally done by
contradiction, I prefer to do by a direct proof or by contrapositive. While the book does
include proofs by contradiction, I only do so when the contrapositive statement seemed
too awkward or when contradiction follows rather quickly. Contradiction is more likely to
get beginning students into trouble, as we are talking about objects that do not exist.

I try to avoid unnecessary formalism where it is unhelpful. Furthermore, the proofs
and the language get slightly less formal as we progress through the book, as more and
more details are left out to avoid clutter.

As a general rule, I use := instead of = to define an object rather than to simply show
equality. I use this symbol rather more liberally than is usual for emphasis. I use it even
when the context is “local,” that is, I may simply define a function f(x) := x2 for a single
exercise or example.

Finally, I would like to acknowledge Jana Mafikova, Glen Pugh, Paul Vojta, Frank
Beatrous, Sonmez $Sahutoglu, Jim Brandt, Kenji Kozai, Arthur Busch, Anton Petrunin, Mark
Meilstrup, Harold P. Boas, Atilla Yilmaz, Thomas Mahoney, Scott Armstrong, and Paul
Sacks, Matthias Weber, Manuele Santoprete, Robert Niemeyer, Amanullah Nabavi, for
teaching with the book and giving me lots of useful feedback. Frank Beatrous wrote the
University of Pittsburgh version extensions, which served as inspiration for many more
recent additions. I would also like to thank Dan Stoneham, Jeremy Sutter, Eliya Gwetta,
Daniel Pimentel-Alarcén, Steve Hoerning, Yi Zhang, Nicole Caviris, Kristopher Lee, Baoyue
Bi, Hannah Lund, Trevor Mannella, Mitchel Meyer, Gregory Beauregard, Chase Meadors,
Andreas Giannopoulos, Nick Nelsen, Ru Wang, Trevor Fancher, Brandon Tague, Wang
KP, Wai Yan Pong, Sam Merat, Judah Nouriyelian, Arnold Cross, Jesse Wallace, Adnan
Hashem Mohamed, Nikita Borisov, Bob Strain, Salven V. DeMartino, Xuechi Wang, an
anonymous reader or two, and in general all the students in my classes for suggestions and
finding errors and typos.
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0.2 About analysis

Analysis is the branch of mathematics that deals with inequalities and limits. The present
course deals with the most basic concepts in analysis. The goal of the course is to acquaint
the reader with rigorous proofs in analysis and also to set a firm foundation for calculus of
one variable (and several variables if volume II is also considered).

Calculus has prepared you, the student, for using mathematics without telling you
why what you learned is true. To use, or teach, mathematics effectively, you cannot simply
know what is true, you must know why it is true. This course shows you why calculus is
true. It is here to give you a good understanding of the concept of a limit, the derivative,
and the integral.

Let us use an analogy. An auto mechanic who has learned to change the oil, fix broken
headlights, and charge the battery, but who does not understand how the engine works,
will only be able to do those simple tasks. He will be unable to work independently to
diagnose and fix problems. A high school teacher who does not understand the definition
of the Riemann integral or the derivative may not be able to properly answer all the students’
questions. To this day I remember several nonsensical statements I heard from my calculus
teacher in high school, who simply did not understand the concept of the limit, although
he could “do” the problems in the textbook.

We start with a discussion of the real number system, most importantly its completeness
property, which is the basis for all that follows. We then discuss the simplest form of a limit,
the limit of a sequence. Afterwards, we study functions of one variable, continuity, and the
derivative. Next, we define the Riemann integral and prove the fundamental theorem of
calculus. We discuss sequences of functions and the interchange of limits. Finally, we give
an introduction to metric spaces.

Let us give the most important difference between analysis and algebra. In algebra, we
prove equalities directly; we prove that an object, perhaps a number, is equal to another
object. In analysis, we usually prove inequalities, and we prove those inequalities by
estimating. To illustrate the point, consider the following statement.

Let x be a real number. If x < € is true for all real numbers € > 0, then x < 0.

This statement is the general idea of what we do in analysis. Suppose we really wish to
prove the equality x = 0. In analysis, we prove two inequalities: x < 0 and x > 0. To prove
the inequality x < 0, we prove x < € for all positive €. To prove the inequality x > 0, we
prove x > —e for all positive €.

The term real analysis is a little bit of a misnomer. I prefer to use simply analysis. The
other type of analysis, complex analysis, really builds up on the present material, rather than
being distinct. Furthermore, a more advanced course on real analysis would talk about
complex numbers often. I suspect the nomenclature is historical baggage.

Let us get on with the show. ..
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0.3 Basic set theory

Note: 1-3 lectures (some material can be skipped, covered lightly, or left as reading)

Before we start talking about analysis, we need to fix some language. Modern* analysis
uses the language of sets and, therefore, that is where we start. We talk about sets in a
rather informal way, using the so-called “naive set theory.” Do not worry, that is what the
majority of mathematicians use, and it is hard to get into trouble. The reader has hopefully
seen the very basics of set theory and proof writing before, and this section should be a
quick refresher.

0.3.1 Sets

Definition 0.3.1. A set is a collection of objects called elements or members. A set with no
objects is called the empty set and is denoted by 0 (or sometimes by {}).

Think of a set as a club with a certain membership. For example, the students who play
chess are members of the chess club. The same student can be a member of many different
clubs. However, do not take the analogy too far. A set is only defined by the members that
form the set; two sets that have the same members are the same set.

Most of the time, we will consider sets of numbers. For example, the set

S :={0,1,2}

is the set containing the three elements 0, 1, and 2. By “:=”, we mean we are defining what
S is, rather than just showing equality. We write

l1es

to denote that the number 1 belongs to the set S. That is, 1 is a member of S. At times we
want to say that two elements are in a set S, so we write “1,2 € S” as a shorthand for “1 € S
and2e€ S.”

Similarly, we write

7¢S

to denote that the number 7 is not in S. That is, 7 is not a member of S.

The elements of all sets under consideration come from some set we call the universe.
For simplicity, we often consider the universe to be the set that contains only the elements
we are interested in. The universe is generally understood from context and is not explicitly
mentioned. In this course, our universe will often be the set of real numbers.

Although the elements of a set are often numbers, other objects, such as other sets, can
be elements of a set. A set may also contain some of the same elements as another set. For
example,

T :={0,2}
contains the numbers 0 and 2. In this case, all elements of T also belong to S. We write
T C S. See Figure 1 for a diagram.

*The term “modern” refers to the late 19th century up to the present.
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Figure 1: A diagram of the example sets S and its subset T.

Definition 0.3.2.

(i) A set Aisasubset of asetBif x € Aimplies x € B, and we write A C B. That s, all
members of A are also members of B. At times we write B O A to mean the same
thing.

(ii) Two sets A and B are equal if A C Band B ¢ A. We write A = B. Thatis, A and B
contain exactly the same elements. If it is not true that A and B are equal, then we
write A # B.

(iii) A set A is a proper subset of Bif A C Band A # B. We write A C B.

For the example S and T defined above, T C S,butT # S. So T is a proper subset of S.
If A = B, then A and B are simply two names for the same exact set.
To define new sets, one often uses the set building notation,

{x €A: P(x)}.

This notation refers to a subset of the set A containing all elements of A that satisfy the
property P(x). Using S = {0, 1,2} as above, {x € S : x # 2} is the set {0, 1}. The notation is
sometimes abbreviated as {x : P(x)}, that is, A is not mentioned when understood from
context. Furthermore, x € A is sometimes replaced with a formula to make the notation
easier to read.

Example 0.3.3: The following are sets including the standard notations.
(i) The set of natural numbers, N :={1,2,3,...}.
(ii) The set of integers, Z = {0,-1,1,-2,2,...}.
(iii) The set of rational numbers, Q := {% cm,n € Zandn # O}.
(iv) The set of even natural numbers, {2m : m € N}.
(v) The set of real numbers, R.

Note thatN c Z c Q c R.

We create new sets out of old ones by applying some natural operations.
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Definition 0.3.4.

(i) A union of two sets A and B is defined as

AUB:={x:x€ Aorx € B}.

(ii) An intersection of two sets A and B is defined as

ANB:={x:xe€ Aand x € B}.

(iii) A complement of B relative to A (or set-theoretic difference of A and B) is defined as
A\B:={x:xe Aand x ¢ B}.
(iv) We say complement of B and write B instead of A \ B if the set A is either the entire

universe or if it is the obvious set containing B, and is understood from context.
(v) We say sets A and B are disjoint it AN B = 0.
The notation B may be a little vague at this point. If the set B is a subset of the real

numbers R, then B¢ means R \ B. If B is naturally a subset of the natural numbers, then B¢
is N'\ B. If ambiguity can arise, we use the set difference notation A \ B.

AUB ANB

A\B B¢

Figure 2: Venn diagrams of set operations, the result of the operation is shaded.

We illustrate the operations on the Venn diagrams in Figure 2. Let us now establish one
of the most basic theorems about sets and logic.
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Theorem 0.3.5 (DeMorgan). Let A, B, C be sets. Then
(BUC) =B°NC¢, (BNC) =B°UCS,
or, more generally,
A\N(BUC)=(A\B)Nn(A\C), A\(BNC)=(A\B)U(A\C).

Proof. The first statement is proved by the second statement if we assume the set A is our
“universe.”

Let us prove A\ (BUC) = (A\ B)N(A\ C). Remember the definition of equality of sets.
First, we must show thatif x € A\ (BUC), thenx € (A\ B)N(A\ C). Second, we must also
show thatif x e (A\B)N(A\C),thenx € A\ (BUC). Soletusassumex € A\ (BUQC).
Then x is in A, but not in B nor C. Hence x is in A and not in B, thatis, x € A \ B. Similarly,
x €A\ C. Thusx € (A\ B)N(A\ C). On the other hand, suppose x € (A\ B)N (A \ C).
In particular, x € (A\ B),so x € Aand x ¢ B. Also,as x € (A\ C), then x ¢ C. Hence
xe A\ (BUCQ).

The proof of the other equality is left as an exercise. O

The result above we called a Theorem, while most results we call a Proposition, and a few
we call a Lemma (a result leading to another result) or Corollary (a quick consequence of the
preceding result). Do not read too much into the naming. Some of it is traditional, some
of it is stylistic choice. It is not necessarily true that a Theorem is always “more important”
than a Proposition or a Lemma.

We will also need to intersect or union several sets at once. If there are only finitely
many, then we simply apply the union or intersection operation several times. However,
suppose we have an infinite collection of sets (a set of sets) {A1, A2, A3, ...}. We define

UA” ={x:x €A, forsomen € N},
n=1

mAn ={x:x€ A, forall n € N}.
n=1

We can also have sets indexed by two natural numbers. For example, we can have the
set of sets {A11,A12,A21,A13,A22,A31,...}. Then we write

(e (e oo (e
U A= U Ann
n=1m=1 n=1 \m=1

And similarly with intersections.
It is not hard to see that we can take the unions in any order. However, switching the
order of unions and intersections is not generally permitted without proof. For instance,

Oﬁ{keN:mk<n}:O®=(b.
n=1m=1

n=1
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However,

ﬁ@{keN:mk<n}:ﬁN:N.
m=1

m=1n=1

Sometimes, the index set is not the set of natural numbers. In such a case, we require a
more general notation. Suppose I is some set and for each A € I, there is a set Ay. Then we
define

UAA ={x:x € A) forsome A € [}, ﬂA)\ ={x:xeA)forall A € I}.
A€l A€l

0.3.2 Induction

When a statement includes an arbitrary natural number, a common proof method is the
principle of induction. We start with the set of natural numbers N = {1,2,3, ...}, and we
give them their natural ordering, thatis, 1 <2 <3 <4 < ---. By S € N having a least
element, we mean that there exists an x € S, such that for every y € S, we have x < y.

The natural numbers N ordered in the natural way possess the so-called well ordering
property. We take this property as an axiom; we simply assume it is true.

Well ordering property of N. Every nonempty subset of N has a least (smallest) element.

The principle of induction is the following theorem, which is in a sense* equivalent to the
well ordering property of the natural numbers.

Theorem 0.3.6 (Principle of induction). Let P(n) be a statement depending on a natural
number n. Suppose that

(1) (basis statement) P(1) is true.
(ii) (induction step) If P(n) is true, then P(n + 1) is true.
Then P(n) is true for all n € N.

Proof. Let S be the set of natural numbers n for which P(n) is not true. Suppose for
contradiction that S is nonempty. Then S has a least element by the well ordering property.
Call m € S the least element of S. We know 1 ¢ S by hypothesis. Som > 1,and m —1isa
natural number as well. Since m is the least element of S, we know that P(m — 1) is true.
But the induction step says that P(m — 1 + 1) = P(m) is true, contradicting the statement
that m € S. Therefore, S is empty and P(n) is true for all n € N. O

Sometimes it is convenient to start at a different number than 1, all that changes is
the labeling. The assumption that P(n) is true in “if P(n) is true, then P(n + 1) is true” is
usually called the induction hypothesis.

*To be completely rigorous, this equivalence is only true if we also assume as an axiom that n — 1 exists for
all natural numbers bigger than 1, which we do. In this book, we are assuming all the usual arithmetic holds.
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Example 0.3.7: Let us prove that foralln € N,
21 <yl (recalln!=1-2-3---n).

Let P(n) be the statement that 2"~! < n!is true. Plug in n = 1 to see that P(1) is true.
Suppose P(n) is true. That is, suppose 2"~! < n! holds. Multiply both sides by 2 to
obtain
2" < 2(n!).

As2 < (n+1)whenn € N, we have 2(n!) < (n + 1)(n!) = (n + 1)!. That s,
2" < 2(n) < (n+1)!,

and hence P(n + 1) is true. By the principle of induction, P(n) is true for all n € N. In other
words, 27! < n!is true for all n € N.

Example 0.3.8: We claim that forall c # 1,
1-— Cn+1
1-c¢

l+c+c?+-+c" =

Proof: It is easy to check that the equation holds with n = 1. Suppose it is true for n.
Then

n+1 n+1

=(l+c+c?+---+c"+c

1_Cn+l

=~ +c
-c

B 1_Cn+l+(1_c)cn+1

B 1-c

1_Cn+2

1-c¢

T+c+c?+--+c"+c¢

n+1

Sometimes, it is easier to use in the inductive step that P(k) is true forallk =1,2,...,n,
not just for k = n. This principle is called strong induction and is equivalent to the normal
induction above. The proof of that equivalence is left as an exercise.

Theorem 0.3.9 (Principle of strong induction). Let P(n) be a statement depending on a natural
number n. Suppose that

(1) (basis statement) P(1) is true.
(ii) (induction step) If P(k) is true forall k = 1,2, ...,n, then P(n + 1) is true.
Then P(n) is true for all n € N.

0.3.3 Functions

Informally, a set-theoretic function f taking a set A to a set B is a mapping that to each
x € A assigns a unique y € B. We write f: A — B. An example function f: S — T taking
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S :={0,1,2} to T := {0, 2} can be defined by assigning f(0) := 2, f(1) := 2, and f(2) = 0.
That is, a function f: A — B is a black box, into which we stick an element of A and the
function spits out an element of B. Sometimes f is called a mapping or a map, and we say f
maps A to B.

Often, functions are defined by some sort of formula; however, you should really think
of a function as just a very large table of values. The subtle issue here is that a single
function can have several formulas, all giving the same function. Also, for many functions,
there is no formula that expresses its values.

To define a function rigorously, let us first define the Cartesian product.

Definition 0.3.10. Let A and B be sets. The Cartesian product is the set of tuples defined as
AXB = {(x,y):x €A yeE B}.

For instance, {a,b} x {c,d} = {(a, c),(a,d),(b,c), (b, d)}. A more complicated example
is the set [0, 1] X [0, 1]: a subset of the plane bounded by a square with vertices (0, 0), (0, 1),
(1,0), and (1,1). When A and B are the same set, we often use a superscript 2 to denote
such a product. For example, [0,1]> = [0, 1] x [0, 1] or R? = R X R (the Cartesian plane).

Definition 0.3.11. A function f: A — B is a subset f of A X B such that for each x € A,
there exists a unique y € B for which (x, y) € f. We write f(x) = y. Sometimes the set f is
called the graph of the function rather than the function itself.

The set A is called the domain of f (and sometimes confusingly denoted D(f)). The set

R(f) := {y € B : there exists an x € A such that f(x) = y}

is called the range of f. The set B is called the codomain of f.

It is possible that the range R(f) is a proper subset of the codomain B, while the domain
of f is always equal to A. We generally assume that the domain of f is nonempty.

Example 0.3.12: From calculus, you are most familiar with functions taking real numbers
to real numbers. However, you saw some other types of functions as well. The derivative is
a function that maps the set of differentiable functions to the set of all functions. Another
example is the Laplace transform, which also takes functions to functions. Yet another
example is the function that takes a continuous function g defined on the interval [0, 1]

and returns the number /01 g(x)dx.

Definition 0.3.13. Consider a function f: A — B. Define the image (or direct image) of a
subset C C A as

f(C):={f(x)e B:x e C}.
Define the inverse image of a subset D C B as

fUD) = {xeA: f(x)e D}.

In particular, R(f) = f(A), the range is the direct image of the domain A.
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10 f o, [UL234)={bcad}
f({1,2,4}) = {b,d}
2@ @b f({1})=1{b}

f({a,b,c}) ={1,3,4}

o ®c
3 \ f—l({a}):@
4 @ @/

fH{pY) = {1, 4}

Figure 3: Example of direct and inverse images for the function f: {1,2,3,4} — {a,b,c,d}

defined by f(1) = b, f(2) = d, f(3) =, f(4) = b.

Example 0.3.14: Define the function f: R — R by f(x) = sin(nx). Then f£([0,1/2]) = [0, 1],
FH{0}) = Z, etc.

Proposition 0.3.15. Consider f: A — B. Let C, D be subsets of B. Then

fi(€uD)=fHC)uf D),
fienD)=fHO)NfHD),
fHE) = ()"

Read the last line of the propositionas f~}(B\ C) = A\ f~1(C).

Proof. We start with the union. If x € f ~1(C U D), then x is taken to C or D, that is,
f(x) € Cor f(x) € D. Thus f~Y{(CUD) c f~1(C)U f~}(D). Conversely, if x € f~(C), then
x € f~}(C U D). Similarly for x € f~}(D). Hence f~}(CUD) > f~}C)U f~}(D), and we
have equality.

The rest of the proof is left as an exercise. O

For direct images, the best we can do is the following weaker result.

Proposition 0.3.16. Consider f: A — B. Let C, D be subsets of A. Then

f(CUD)=f(C)V f(D),
f(€nD)c f(C)nf(D).

The proof is left as an exercise.

Definition 0.3.17. Let f: A — B be a function. The function f is said to be injective or
one-to-one if f(x1) = f(x2) implies x1 = x2. In other words, f is injective if for all y € B, the
set f"1({y}) is empty or consists of a single element. We call such an f an injection.

If f(A) = B, then we say f is surjective or onto. In other words, f is surjective if the range
and the codomain of f are equal. We call such an f a surjection.

If f is both surjective and injective, then we say f is bijective or that f is a bijection.
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When f: A — B is a bijection, then the inverse image of a single element, f~}({y}), is
always a unique element of A. We then consider f~! as a function f~!: B — A and we
write simply f~!(y). In this case, we call f~! the inverse function of f. For instance, for the
bijection f: R — R defined by f(x) := x3, we have f~(x) = Vx.

Definition 0.3.18. Consider f: A — B and g: B — C. The composition of the functions f
and g is the function g o f: A — C defined as

(g0 f)x) = g(f(x)).

For example, if f: R — R is f(x) := x® and ¢: R — R is g(y) = sin(y), then
(g o f)(x) = sin(x3). It is left to the reader as an easy exercise to show that composition
of one-to-one maps is one-to-one and composition of onto maps is onto. Therefore, the
composition of bijections is a bijection.

0.3.4 Relations and equivalence classes

We often compare two objects in some way. For instance, we say 1 < 2 for natural numbers,
1/2 = 2/4 for rational numbers, or {a, c} C {a, b, c} for sets. The ‘<’,"=’, and ‘C” are examples
of relations.

Definition 0.3.19. Given a set A, a binary relation on A is a subset R C A X A, which consists
of those pairs where the relation is said to hold. Instead of (a, b) € R, we write a R b.

Example 0.3.20: Take A = {1,2,3}.

Consider the relation ‘<’. The corresponding set of pairs is {(1, 2),(1,3),(2, 3)}. So
1 < 2 holds as (1, 2) is in the corresponding set of pairs, but 3 < 1 does not hold as (3, 1) is
not in the set.

Similarly, the relation ‘=" is defined by the set of pairs {(1, 1),(2,2), (3, 3)}.

Any subset of A X A is arelation. If we define the relation t via {(1, 2),(2,1),(2,3),(3, 1)},
then1t2and 311 are true, but 1 1 3 is not.

Definition 0.3.21. A relation & on a set A is said to be
(i) Reflexiveif a R a foralla € A.
(ii) Symmetric if a R b implies b R a.
(iii) Transitiveif a R b and b R c implies a R c.

If R is reflexive, symmetric, and transitive, then it is said to be an equivalence relation.

Example 0.3.22: Let A := {1,2,3}. The relation ‘<’ is transitive but neither reflexive nor
symmetric. The relation ‘<’ defined by {(1, 1),(1,2),(1,3),(2,2),(2,3),(3, 3)} is reflexive
and transitive, but not symmetric. Finally, a relation ‘x” defined by {(1, 1),(1,2),(2,1),
2,2),(3, 3)} is an equivalence relation.

Equivalence relations are useful as they divide a set into sets of “equivalent” elements.
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Definition 0.3.23. Let A be a set and & an equivalence relation. An equivalence class of
a € A, often denoted by [a], is the set {x € A : a R x}.

For example, given the relation “x” above, there are two equivalence classes, [1] = [2] =
{1,2} and [3] = {3}.

Reflexivity guarantees that a € [2]. Symmetry guarantees that if b € [a], then a € [b].
Finally, transitivity guarantees that if b € [a] and ¢ € [b], then ¢ € [a]. In particular, we
have the following proposition, whose proof is an exercise.

Proposition 0.3.24. If R is an equivalence relation on a set A, then every a € A is in exactly one
equivalence class. Moreover, a R b if and only if [a] = [b].

Example 0.3.25: The set of rational numbers can be defined as equivalence classes of a pair
of an integer and a natural number, that is, elements of Z X N. The relation is defined by
(a,b) ~ (c,d) whenever ad = bc. It is left as an exercise to prove that ‘~’ is an equivalence
relation. Usually, the equivalence class [(a, b)] is written as 4/b.

0.3.5 Cardinality

A subtle but fundamental issue in set theory and one that generates a considerable amount
of confusion among beginning students is that of cardinality, or “size” of sets. Indeed, in
this section, we will see the first really unexpected theorem.

Definition 0.3.26. Let A and B be sets. We say A and B have the same cardinality when
there exists a bijection f: A — B. We denote by |A| the equivalence class of all sets with
the same cardinality as A, and we simply call |A| the cardinality of A.

For example, {1,2,3} has the same cardinality as {a,b,c} by defining a bijection
f():=a, f(2) == b, f(3) := c. Clearly, the bijection is not unique.

The existence of a bijection really is an equivalence relation. The identity function,
f(x) = x, is a bijection showing reflexivity. If f is a bijection, then so is f~!, showing
symmetry. If f: A — Band g: B — C are bijections, then g o f is a bijection of A and C,
showing transitivity. A set A has the same cardinality as the empty set if and only if A
itself is the empty set: If B is nonempty, then no function f: B — 0 can exist. In particular,
there is no bijection of B and 0.

Definition 0.3.27. If A has the same cardinality as {1,2,3, ..., n} for some n € N, we write
|A| == n. If A is empty, we write |A| := 0. In either case, we say that A is finite. We say A is
infinite or “of infinite cardinality” if A is not finite.

That the notation |A| = n is justified, we leave as an exercise. That is, for each nonempty
finite set A, there exists a unique natural number 1 such that there exists a bijection from A
to{1,2,3,...,n}.

We can order sets by size.
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Definition 0.3.28. We write
|A| < |B|

if there exists an injection from A to B. We write |A| = |B| if A and B have the same
cardinality. We write |A| < |B| if |A| < |B|, but A and B do not have the same cardinality.

We state without proof that A and B have the same cardinality if and only if |A| < |B]
and |B| < |A|. This is the so-called Cantor-Bernstein—-Schroder theorem. Furthermore, if A
and B are any two sets, we can always write |A| < |B| or | B| < |A|. The issues surrounding
this last statement are very subtle. As we do not require either of these two statements, we
omit proofs.

The truly interesting cases of cardinality are infinite sets. We will distinguish two types
of infinite cardinality.

Definition 0.3.29. If |A| = |N|, then we say A is countably infinite. If A is finite or countably
infinite, then we say A is countable. If A is not countable, then A is said to be uncountable.

The cardinality of N is usually denoted as N (read as aleph-naught)*.

Example 0.3.30: The set of even natural numbers has the same cardinality as N. Proof: Let
E C N be the set of even natural numbers. Given k € E, write k = 2n for some n € N. Then
f(n) = 2n defines a bijection f: N — E.

In fact, we mention without proof the following characterization of infinite sets: A set is
infinite if and only if it is in one-to-one correspondence with a proper subset of itself.

Example 0.3.31: N X N is a countably infinite set. Proof: Arrange the elements of N X N as
follows (1,1),(1,2),(2,1),(1,3),(2,2),(3,1), .... That is, first write down all the elements
whose two entries sum to k, then write down all the elements whose entries sum to k + 1,
and so on. Define a bijection with N by letting 1 go to (1, 1), 2 go to (1,2), and so on. See
Figure 4.

Example 0.3.32: The set of rational numbers is countable. Proof: (informal) For positive
rational numbers, follow the same procedure as in the previous example, writing 1/1, 1/2,
2/1, etc. However, leave out fractions (such as 2/2) that have already appeared. The list
would continue: 1/3, 3/1, 1/4, 2/3, etc. For all rational numbers, include 0 and the negative
numbers: 0, 1/1, -1/1,1/2, -1/2, etc.

For completeness, we mention the following statements from the exercises. If A C B
and B is countable, then A is countable. The contrapositive of the statement is that if A
is uncountable, then B is uncountable. As a consequence, if |A| < |N|, then A is finite.
Similarly, if B is finite and A C B, then A is finite.

*For the fans of the TV show Futurama, there is a movie theater in one episode called an Ny-plex.
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(1,) > (1,2)  (1,3) (1,4

L7

(2,2)

(2,1

3,1) 3,2

/ .

(4,1)

Figure 4: Showing N X N is countable.

We give the first truly striking result about cardinality. To do so, we need a notation for
the set of all subsets of a set.

Definition 0.3.33. The power set of a set A, denoted by P(A), is the set of all subsets of A.

For example, if A := {1,2}, then P(A) = {(Z), {1},1{2}, {1,2}}. In particular, |A| = 2 and
|9 (A)| = 4 = 22. In general, for a finite set A of cardinality 7, the cardinality of P(A) is
2". This fact is left as an exercise. Hence, for a finite set A, the cardinality of %(A) is
strictly larger than the cardinality of A. What is an unexpected and striking fact is that this
statement is also true for infinite sets.

Theorem 0.3.34 (Cantor®). Let A be a set. Then |A| < |P(A)|. In particular, there exists no
surjection from A onto P(A).

Proof. An injection f: A — P(A) exists: For x € A, let f(x) := {x}. Thus, |A| < |P(A)].
To finish the proof, we must show that no function g: A — %(A) is a surjection.
Suppose g: A — P(A) is a function. So for x € A, g(x) is a subset of A. Define the set

B = {xeA:erg(x)}.

We claim that B is not in the range of ¢ and hence g is not a surjection. Suppose for
contradiction that there exists an xo such that g(xo) = B. Either xo € Bor xo ¢ B. If xg € B,
then xo ¢ g(xo) = B, which is a contradiction. If xo ¢ B, then x¢ € g(xo) = B, which is again
a contradiction. Thus such an xg does not exist. Therefore, B is not in the range of g, and g
is not a surjection. As ¢ was an arbitrary function, no surjection exists. |

One particular consequence of this theorem is that there do exist uncountable sets,
as P(N) must be uncountable. A related fact is that the set of real numbers (which we
study in the next chapter) is uncountable. The existence of uncountable sets may seem
unintuitive, and the theorem caused quite a controversy at the time it was announced. The
theorem not only says that uncountable sets exist, but that there, in fact, exist progressively
larger and larger infinite sets N, 2(N), 2(P(N)), P(P(P(N))), etc.

*Named after the German mathematician Georg Ferdinand Ludwig Philipp Cantor (1845-1918).


https://en.wikipedia.org/wiki/Georg_Cantor
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0.3.6 Exercises

Exercise 0.3.1: Show A\(BNC)=(A\B)u A\ C).

Exercise 0.3.2: Prove that the principle of strong induction is equivalent to the standard induction.
Exercise 0.3.3: Finish the proof of Proposition 0.3.15.

Exercise 0.3.4:
a) Prove Proposition 0.3.16.
b) Find an example for which the equality of sets in f(C N D) c f(C) N f(D) fails. That is, find an f, A,
B, C, and D such that f(C N D) is a proper subset of f(C) N f(D).

Exercise 0.3.5 (Tricky): Prove that if A is nonempty and finite, then there exists a unique n € N such that
there exists a bijection between A and {1,2,3,...,n}. In other words, the notation |A| = n is justified.
Hint: Show that if n > m, then there is no injection from {1,2,3,...,n} to{1,2,3,...,m}.
Exercise 0.3.6: Prove:

a) AN(BUC)=(ANB)U(ANC).

b) AUBNC)=(AUB)N(AUC).
Exercise 0.3.7: Let AAB denote the symmetric difference, that is, the set of all elements that belong to
either A or B, but not to both A and B.

a) Draw a Venn diagram for AAB.

b) Show AAB = (A \ B)U (B\ A).

¢) Show AAB = (AUB)\ (AN B).
Exercise 0.3.8: Foreachn € N, let A, .= {(n + 1)k : k € N}.

a) Find A1 N As.

b) Find U, An.

c¢) Find (,_, An.

Exercise 0.3.9: Determine 9(S) (the power set) for each of the following:

a) S=0,
b) S={1},
c) S={1,2},

d) S=1{1,2,3,4}.

Exercise 0.3.10: Let f: A — Band g: B — C be functions.
a) Prove that if g o f is injective, then f is injective.
b) Prove that if g o f is surjective, then g is surjective.

c) Find an explicit example where g o f is bijective, but neither f nor g is bijective.
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Exercise 0.3.11: Prove by induction that n < 2" forall n € N.
Exercise 0.3.12: Show that for a finite set A of cardinality n, the cardinality of P(A) is 2"

Exercise 0.3.13: Prove 75 + 5= + -+ + ﬁ = g foralln € N.

2
Exercise 0.3.14: Prove 13 +23 + ... + 13 = (@) foralln € N.

Exercise 0.3.15: Prove that n® + 5n is divisible by 6 for all n € N.

Exercise 0.3.16: Find the smallest n € N such that 2(n + 5)2 < n3 and call it ng. Show that 2(n + 5)2 <nd
forall n > ny.

Exercise 0.3.17: Find all n € N such that n> < 2".
Exercise 0.3.18: Prove the well ordering property of N using the principle of induction.

Exercise 0.3.19: Give an example of a countably infinite collection of finite sets A1, Aa, . . ., whose union is
not a finite set.

Exercise 0.3.20: Give an example of a countably infinite collection of infinite sets A1, Az, ..., with Aj N Ak
being infinite for all j and k, such that ﬂ]f'il Aj is nonempty and finite.

Exercise 0.3.21: Suppose A C B and B is finite. Prove that A is finite. That is, if A is nonempty, construct a
bijection of Ato {1,2,...,n}.

Exercise 0.3.22: Prove Proposition 0.3.24. That is, prove that if R is an equivalence relation on a set A, then
every a € A is in exactly one equivalence class. Then prove that a R b if and only if [a] = [b].

Exercise 0.3.23: Prove that the relation ‘~" in Example 0.3.25 is an equivalence relation.

Exercise 0.3.24:

a) Suppose A C B and B is countably infinite. By constructing a bijection, show that A is countable (that
is, A is empty, finite, or countably infinite).

b) Use part a) to show that if |A| < |N|, then A is finite.

Exercise 0.3.25 (Challenging): Suppose |N| < |S|, or in other words, S contains a countably infinite subset.
Show that there exists a countably infinite subset A C S and a bijection between S \ A and S.

Exercise 0.3.26: Prove the infinite versions of DeMorgan's laws. Suppose A is a set and B} is a collection of

sets for A € I. Prove
AU =arsn, — av[)e)=Uarso.

Ael Ael A€l Ael

Exercise 0.3.27: Suppose f: A — B is a function and for A € I, we have a collection of subsets Cy C A and

D, c B. Prove
f‘l(U DA) =Jrow, f‘l(ﬂ DA) =)o,

Ael Ael Ael Ael

f(U CA) = J s, f(ﬂ CA) c ().

Ael Ael Ael Ael

and
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Chapter 1

Real Numbers

1.1 Basic properties

Note: 1.5 lectures

In analysis, the main object we work with is the set of real numbers. As this set is
so fundamental, often much time is spent formally constructing the set of real numbers.
However, we take an easier approach, and we will assume that a set with the correct
properties exists. The three key properties of the real numbers is that it is an ordered set, it
is complete with respect to this order, and it is a field compatible with this order. We start
with order.

Definition 1.1.1. An ordered set is a set S together with a relation < such that
(i) (trichotomy) For all x,y € S, exactly one of x <y, x = y, or y < x holds.
(ii) (transitivity) If x,y,z € S aresuch thatx < yand y < z, then x < z.

We write x < y if x < y or x = y. We define > and > in the obvious way.

The set of rational numbers Q is an ordered set: We say x < y ifand only if y — xisa
positive rational number, that is, if y — x = »/q where p, g € N. Similarly, N and Z are also
ordered sets.

There are other ordered sets than sets of numbers. For example, the set of countries can
be ordered by landmass, so India > Lichtenstein. A typical ordered set that you have used
since primary school is the dictionary. It is the ordered set of words where the order is the
so-called lexicographic ordering. Such ordered sets often appear, for example, in computer
science. In this book, we will mostly be interested in ordered sets of numbers.

Definition 1.1.2. Let E C S, where S is an ordered set.

(i) If there exists a b € S such that x < b for all x € E, then we say E is bounded above and
b is an upper bound of E.

(ii) If there exists a b € S such that x > b for all x € E, then we say E is bounded below and
b is a lower bound of E.
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(iii) If there exists an upper bound bg of E such that by < b for all upper bounds b of E,
then by is called the least upper bound or the supremum of E. See Figure 1.1. We write

sup E := by.

(iv) Similarly, if there exists a lower bound by of E such that by > b for all lower bounds b
of E, then by is called the greatest lower bound or the infimum of E. We write

inf E = bo.
When a set E is both bounded above and bounded below, we say simply that E is bounded.

The notation sup E and inf E is justified as the supremum (or infimum) is unique (if it
exists): If b and b’ are suprema of E, then b < b” and b’ < b, because both b and b’ are the
least upper bounds, so b = b’.

upper bounds of E

smaller<— _—J bigger

least upper bound of E

Figure 1.1: A set E bounded above and the least upper bound of E.

A simple example: Let S := {a,b,c,d,e} be ordered asa < b < ¢ <d < ¢, and let
E = {a,c}. Then c, d, and e are upper bounds of E, and c is the least upper bound or
supremum of E.

A supremum or infimum for E (even if it exists) need not be in E. The set E :=
{x € Q : x < 1} has a least upper bound of 1, but 1 is not in the set E itself. The set
G = {x € Q : x < 1} also has an upper bound of 1, and in this case 1 € G. The set
P = {x € Q: x > 0} has no upper bound (why?) and therefore cannot have a least upper
bound. The set P does have a greatest lower bound: 0.

Definition 1.1.3. An ordered set S has the least-upper-bound property if every nonempty
subset E C S that is bounded above has a least upper bound, that is, sup E exists in S.

The least-upper-bound property is sometimes called the completeness property or the
Dedekind completeness property*. The real numbers have this property.

Example 1.1.4: The set Q of rational numbers does not have the least-upper-bound
property. The subset {x € Q : x? < 2} does not have a supremum in Q. We will see later

*Named after the German mathematician Julius Wilhelm Richard Dedekind (1831-1916).


https://en.wikipedia.org/wiki/Richard_Dedekind
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(Example 1.2.3) that the supremum is V2, which is not rational*. Suppose x € Q such that
x? = 2. Write x = "/ in lowest terms. So (m/n)2 = 2 or m? = 2n%. Hence, m? is divisible by
2, and so m is divisible by 2. Write m = 2k and so (2k)* = 2n2. Divide by 2 and note that
2k? = n?, and hence 7 is divisible by 2. But that is a contradiction as /x is in lowest terms.

That Q does not have the least-upper-bound property is one of the most important
reasons we work with R in analysis. The set Q is just fine for algebraists. But us analysts
require the least-upper-bound property to do any work. We also require our real numbers
to have many algebraic properties. In particular, we require that they be a field.

Definition 1.1.5. A set F is called a field if it has two operations defined on it, addition x + y

and multiplication xy, and if it satisfies the following axioms:

(Al) Ifxe Fandy € F,thenx +y € F.

(A2) (commutativity of addition) x + y =y + x forall x,y € F.

(A3) (associativity of addition) (x +y) +z=x+(y +z) forallx,y,z € F.

(A4) There exists an element 0 € F such that0+ x = x forall x € F.

(A5) For every element x € F, there exists an element —x € F such that x + (-x) = 0.

(M1) If xe Fand y € F, then xy € F.

(M2) (commutativity of multiplication) xy = yx for all x,y € F.

(M3) (associativity of multiplication) (xy)z = x(yz) forall x,y,z € F.

(M4) There exists an element 1 € F (and 1 # 0) such that 1x = x forall x € F.

(M5) For every x € F such that x # 0 there exists an element 1/x € F such that x(1/x) = 1.
(D) (distributive law) x(y + z) = xy + xz forall x,y,z € F.

Example 1.1.6: The set Q of rational numbers is a field. On the other hand Z is not a field,

as it does not contain multiplicative inverses. For example, there is no x € Z such that
2x =1, so (M5) is not satisfied. You can check that (M5) is the only property that fails'.

We will assume the basic facts about fields that are easily proved from the axioms. For
example, Ox = 0 is easily proved by noting that xx = (0 + x)x = Ox + xx, using (A4), (D),
and (M2). Then using (A5) on xx, along with (A2), (A3), and (A4), we obtain 0 = Ox.
Definition 1.1.7. A field F is said to be an ordered field if F is also an ordered set such that

(i) Forx,y,z€ F,x <yimpliesx +z <y + z.
(ii) Forx,y € F,x > 0and y > 0 implies xy > 0.

If x > 0, we say x is positive. If x < 0, we say x is negative. We also say x is nonnegative if
x > 0, and x is nonpositive if x < 0.

*This is true for all other roots of 2, and interestingly, the fact that /2 is never rational for k > 1 implies
no piano can ever be perfectly tuned in all keys. See, for example: https: //youtu.be/1HqmOdYKUx4.
tAn algebraist would say that Z is an ordered ring, or perhaps a commutative ordered ring.


https://youtu.be/1Hqm0dYKUx4
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The rational numbers Q with the standard ordering is an ordered field. We leave the
details to the interested reader.

Proposition 1.1.8. Let F be an ordered field and x,y,z,w € F. Then
(1) If x > 0O, then —x < 0 (and vice versa).
(i) If x >0and y < z, then xy < xz.
(iii) If x < 0and y < z, then xy > xz.
(iv) Ifx # 0, then x> > 0.
(v) If0<x <y, then0 < 1/y < 1/x.
(i) If0 < x <y, then x> < y2.
(vii) Ifx <yandz < w, then x + z < y + w.

Note that (iv) implies, in particular, that 1 > 0.

Proof. Let us prove (i). The inequality x > 0 implies by item (i) of the definition of ordered
fields that x + (=x) > 0 + (—x). Apply the algebraic properties of fields to obtain 0 > —x.
The “vice versa” follows by a similar calculation.

For (ii), note that y < z implies 0 < z — y by item (i) of the definition of ordered fields.
Apply item (ii) of the definition of ordered fields to obtain 0 < x(z — y). By algebraic
properties, 0 < xz — xy. Again by item (i) of the definition, xy < xz.

Part (iii) is left as an exercise.

To prove part (iv), first suppose x > 0. By item (ii) of the definition of ordered fields,
x% > 0 (use y = x). If x < 0, we use part (iii) of this proposition, where we plugin y = x
and z = 0.

To prove part (v), notice that 1/x cannot be equal to zero (why?). Suppose 1/x < 0, then
~1/x > 0 by (i). Apply part (ii) of the definition (as x > 0) to obtain x(-1/x) > 0 or -1 > 0,
which contradicts 1 > 0 by using part (i) again. Hence !/x > 0. Similarly, !/y > 0. Thus
(1/x)(1/y) > 0 by definition of ordered field, and by part (ii),

(1/x)1/y)x < (V) (Yy)y.

By algebraic properties, 1/y < 1/x.
Parts (vi) and (vii) are left as exercises. O

The product of two positive numbers (elements of an ordered field) is positive (follows
by setting y = 0 in (ii)). However, it is not true that if the product is positive, then each of
the two factors must be positive. For instance, (-1)(-1) =1 > 0.

Proposition 1.1.9. Let x, y € F, where F is an ordered field. If xy > 0, then either both x and y
are positive, or both are negative.

Proof. We show the contrapositive: If either one of x or y is zero, or if x and y have opposite
signs, then xy is not positive. If x or y is zero, then xy is zero and hence not positive.
Hence assume that x and y are nonzero and have opposite signs. Without loss of generality,
suppose x > 0 and y < 0. Multiply y < 0 by x to get xy < Ox = 0. O
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Example 1.1.10: The reader may have heard about the complex numbers, usually denoted by
C. That is, C is the set of numbers of the form x + iy, where x and y are real numbers, and
i is the imaginary number, a number such that i> = —1. The reader may remember from
algebra that C is also a field; however, it is not an ordered field. While one can make C into
an ordered set in some way, it is not possible to put an order on C that would make it an
ordered field: In every ordered field, =1 < 0 and x2 > 0 for all nonzero x, butin C, i? = —1.

Finally, an ordered field that has the least-upper-bound property has the corresponding
property for greatest lower bounds.
Proposition 1.1.11. Let F be an ordered field with the least-upper-bound property. Let A C F be
a nonempty set that is bounded below. Then inf A exists.

Proof. Let B := {—x : x € A}. Let b € F be a lower bound for A: If x € A, then x > b and
hence —x < —b. So —b is an upper bound for B. Since F has the least-upper-bound property,
c = sup Bexists,and ¢ < -b. Asy < cforally € B,then—c < x forallx € A. So—cisa
lower bound for A. As —c > b, the greatest lower bound of A exists and equals —c. m|

1.1.1 Exercises

Exercise 1.1.1: Prove part (iii) of Proposition 1.1.8. That is, let F be an ordered field and x,y,z € F. Prove
Ifx <0and y < z, then xy > xz.

Exercise 1.1.2: Let S be an ordered set. Let A C S be a nonempty finite subset. Then A is bounded.
Furthermore, inf A exists and is in A and sup A exists and is in A. Hint: Use induction.

Exercise 1.1.3: Prove part (vi) of Proposition 1.1.8. That is, let x,y € F, where F is an ordered field, such
that 0 < x < y. Show that x> < y>.

Exercise 1.1.4: Let S be an ordered set. Let B C S be bounded (above and below). Let A C B be a nonempty
subset. Suppose all the infs and sups exist. Show that

inf B <inf A < sup A < sup B.

Exercise 1.1.5: Let S be an ordered set. Let A C S and suppose b is an upper bound for A. Suppose b € A.
Show that b = sup A.

Exercise 1.1.6: Let S be an ordered set. Let A C S be nonempty and bounded above. Suppose sup A exists
and sup A ¢ A. Show that A contains a countably infinite subset.

Exercise 1.1.7: Find a nonstandard ordering of the set of natural numbers N such that there exists a nonempty
proper subset A C N and such that sup A exists in N, but sup A ¢ A. To keep things straight, it might be a
good idea to use a different notation for the nonstandard ordering such as n < m.

Exercise 1.1.8: Let F := {0,1,2}.

a) Prove that there is exactly one way to define addition and multiplication so that F is a field if 0 and 1 have
their usual meaning of (A4) and (M4).

b) Show that F cannot be an ordered field.
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Exercise 1.1.9: Let S be an ordered set and A is a nonempty subset such that sup A exists. Suppose there
isa B C A such that whenever x € A thereis a y € B such that x < y. Show that sup B exists and
sup B = sup A.

Exercise 1.1.10: Let D be the ordered set of all possible words (not just English words, all strings of letters of
arbitrary length) using the Latin alphabet using only lowercase letters. The order is the lexicographic order as
in a dictionary (e.g. aa < aaa < dog < door). Let A be the subset of D containing the words whose first
letter is ‘a’ (e.g. a € A, abed € A). Show that A has a supremum and find what it is.

Exercise 1.1.11: Let F be an ordered field and x,y,z,w € F.

a) Prove part (vii) of Proposition 1.1.8. That is, if x < yand z < w, then x +z < y + w.

b) Prove thatif x <y and z < w, then x +z < y + w.
Exercise 1.1.12: Prove that any ordered field must contain a countably infinite set.

Exercise 1.1.13: Let N = N U {00}, where the elements of N are ordered in the usual way amongst
themselves, and k < oo for every k € N. Show Ny is an ordered set and that every subset E C No has a
supremum in No, (make sure to also handle the case of an empty set).

Exercise 1.1.14: Let S = {ay : k € N} U{by : k € N}, ordered such that ax < bj for every k and j, ax < a,
whenever k < m, and by, > b, whenever k < m.

a) Show that S is an ordered set.

b) Show that every subset of S is bounded (both above and below).

c) Find a bounded subset of S that has no least upper bound.
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1.2 The set of real numbers

Note: 2 lectures, the extended real numbers are optional

1.2.1 The set of real numbers

We finally get to the real number system. To simplify matters, instead of constructing the
real number set from the rational numbers, we simply state their existence as a theorem
without proof. Notice that Q is an ordered field.

Theorem 1.2.1. There exists a unique* ordered field R with the least-upper-bound property such
that Q C R.

Note also that N € Q. We saw that 1 > 0. By induction (exercise), we can prove that
n > 0 for all n € N. Similarly, we verify simple statements about rational numbers. For
example, we proved that if n > 0, then 1/n > 0. Then m < k implies "/n < k/n.

Analysis consists of proving inequalities, and the following proposition, or one of its
many variations, is how an analyst proves a nonstrict inequality.

Proposition 1.2.2. If x € R is such that x < € for all € € R where € > 0, then x < 0.
Proof. If x > 0, then 0 < x/2 < x (Why?). Take € = ¥/2 to get a contradiction. Thus x < 0. O

For nonnegative x, equality results: If x > 0 is such that x < € forall € > 0, then x = 0. A
common version uses the absolute value (see §1.3): If |x| < € forall € > 0, then x = 0. To
prove x > 0, an analyst might prove that x > —¢ for all € > 0. From now on, when we say
x > 0 or € > 0, we automatically mean that x € R and € € R.

The idea behind the proposition above is that any time we have two real numbers a < b,
there is another real number c such that a < ¢ < b. Infinitely many such c exist. One of
them is, for example, ¢ = % (why?). We will use this fact in the next example.

The most useful property of R for analysts is not just that it is an ordered field, but that
it has the least-upper-bound property. Essentially, we want Q, but we also want to take
suprema (and infima) willy-nilly. So what we do is take Q and throw in enough numbers
to obtain R.

We mentioned already that R contains elements that are not in Q because of the
least-upper-bound property. Let us prove it. We saw there is no rational square root of
two. The set {x € Q : x? < 2} implies the existence of the real number V2, although this
fact requires a bit of work. See also Exercise 1.2.14.

Example 1.2.3: Claim: There exists a unique positive r € R such that 1> = 2. We denote r by V2.

*Uniqueness is up to isomorphism, but we wish to avoid excessive use of algebra. For us, it is simply
enough to assume that a set of real numbers exists. See Rudin [R2] for the construction and more details.
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Proof. Take the set A := {x € R : x2 < 2}. We first show that A is bounded above and
nonempty. The inequality x > 2 implies x> > 4 (see Exercise 1.1.3). So if x? < 2, then x < 2.
So A is bounded above. As 1 € A, the set A is nonempty. The supremum, therefore, exists.

Let r := sup A. We will show that r? = 2 by showing that > > 2 and r? < 2. This is the
way analysts show equality, by showing two inequalities. We already know that r > 1 > 0.

In the following, it may seem we are pulling certain expressions out of a hat. When
writing a proof such as this, we would, of course, come up with the expressions only after
playing around with what we wish to prove. The order in which we write the proof is not
necessarily the order in Which we come up with the proof.

Let us first show that 2 > 2. Take a positive number s such that s> < 2. We wish to find

anh>05uchthat(s+h) <2 As2-5%>0, Wehave25+1 > (. Choose an h € R such
that0 < h < 2

25+1'

(s +h)*—s2=h(2s +h)
<h(2s+1) (sinceh <1)

<2-52

(since h < 2s+1)
Therefore, (s + h)2 <2 Hences+h € A,butash >0,wehaves+h >s. Sos <r =sup A.
As s was an arbitrary positive number such that s? < 2, it follows that 72 > 2.

Now take a positive number s such that s2 > 2. We wish to find an h > 0 such that
(s—h) > 2ands—hlsst111p051tlve As s? —2 > 0, we have =2 2 250 Leth:=¢ "2

checks —h =s — 2;2 £ +1> 0. Estimate,

, and

s2—(s—h)*>=2sh—h?
< 2sh (since h? > 0 as h # 0)

=s2-2 (since h = 522—;2)
By subtracting s? from both sides and multiplying by —1, we find (s — #)* > 2. Therefore,
s—h¢A.
Moreover, if x > s — h, then x2 > (s —h)> > 2 (asx > 0and s — i > 0) and so x ¢ A.
Thus, s — h is an upper bound for A. However, s — h < s, or in other words, s > r = sup A.
Hence, 12 < 2.

Together, ¥ > 2 and r? < 2 imply 2 = 2. The existence part is finished. We still need to
handle uniqueness. Suppose s € R such that s> =2 and s > 0. Thus, s? = r2. However, if
0 < s <, then s2 < r2. Similarly, 0 < r < s implies 7> < s2. Hence, s = 7. O

The number V2 ¢ Q. The set R\ Q is called the set of irrational numbers. We just proved
that R \ Q is nonempty. Not only is it nonempty, as we will see, it is very large indeed.

Using the same technique as above, we can show that a positive real number x!/" exists
for all n € N and all x > 0. That is, for each x > 0, there exists a unique positive real
number 7 such that 7" = x. The proof is left as an exercise.
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1.2.2 Archimedean property

As we have seen, there are plenty of real numbers in any interval. But there are also
infinitely many rational numbers in any interval. The following is one of the fundamental
facts about the real numbers. The two parts of the next theorem are actually equivalent,
even though it may not seem like that at first sight.

Theorem 1.2.4.
(1) (Archimedean property)* If x,y € R and x > 0, then there exists an n € N such that

nx >y.

(i1) (Qisdensein R) If x,y € Rand x <y, then there exists an r € Q such that x <r < y.

Proof. Let us prove (i). Divide through by x. Then (i) says that for every real number
t := ¥/x, we can find n € N such that n > t. In other words, (i) says that N c R is not
bounded above. Suppose for contradiction that N is bounded above. Let b := sup N. The
number b — 1 cannot possibly be an upper bound for N as it is strictly less than b (the
least upper bound). Thus there exists an m € N such that m > b — 1. Add one to obtain
m + 1 > b, contradicting b being an upper bound.

.

S|
=

|

x y
Figure 1.2: Idea of the proof of the density of Q: Find n such that y — x > 1/, then take the
least m such that m/n > x.

Let us tackle (ii). See Figure 1.2 for a picture of the idea behind the proof. First assume
x > 0. Note that y — x > 0. By (i), there exists an n € N such that

ny—-x)>1 or y—x>1/n.

Again by (i) the set A := {k € N : k > nx} is nonempty. By the well ordering property of N,
A has a least element m, and as m € A, then m > nx. Divide through by n to get x < /n.
As m is the least elementof A, m —1¢ A. If m > 1, thenm —1€ N,butm -1 ¢ A and so
m—-—1<nx.lfm=1,thenm —1=0,and m — 1 < nx still holds as x > 0. In other words,

m-—1<nx or m<nx+1.

On the other hand, from n(y — x) > 1 we obtain ny > 1+ nx. Hence ny > 1+ nx > m, and
therefore y > m/n. Putting everything together, we obtain x < "/u < y. So take r = m/n.

*Named after the Ancient Greek mathematician Archimedes of Syracuse (c. 287 BC —c. 212 BC). This
property is Axiom V from Archimedes’ “On the Sphere and Cylinder” 225 BC.


https://en.wikipedia.org/wiki/Archimedes
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Now assume x < 0. If y > 0, then just take r = 0. If y < 0, then 0 < -y < —x, and we
find a rational g such that —y < g < —x. Then take r = —g. m|

Let us state and prove a simple but useful corollary of the Archimedean property.
Corollary 1.2.5. inf{1/n : n € N} = 0. See Figure 1.3.
Proof. Let A := {1/n : n € N}. Obviously, A is not empty. Furthermore, 1/» > O foralln € N,
so 0 is a lower bound and b := inf A exists. As 0 is a lower bound, then b > 0. Take an

arbitrary a > 0. By the Archimedean property, there exists an n such that na > 1, that is,
a > 1/n € A. Therefore, a cannot be a lower bound for A. Hence b = 0. O

Q= ——
=
ol ——
Nl—=
[

Figure 1.3: The set {1/n : n € N} and its infimum 0.

1.2.3 Using supremum and infimum

Suprema and infima are compatible with algebraic operations. Foraset A C Rand x € R
define

x+A={x+yeR:yeA},
xA:={xyeR:yeA}.

For example, if A = {1,2,3},then5+ A = {6,7,8} and 3A = {3,6,9}.
Proposition 1.2.6. Let A C R be nonempty.
(i) If x € Rand A is bounded above, then sup(x + A) = x +sup A.

(i) If x € Rand A is bounded below, then inf(x + A) = x + inf A.

(iii) If x > 0 and A is bounded above, then sup(xA) = x(sup A).

(iv) If x > 0 and A is bounded below, then inf(xA) = x(inf A).

(v) If x < 0and A is bounded below, then sup(xA) = x(inf A).

(vi) If x < 0and A is bounded above, then inf(xA) = x(sup A).

Do note that multiplying a set by a negative number switches supremum for an infimum
and vice versa. Also, as the proposition implies that supremum (resp. infimum) of x + A or
xA exists, it also implies that x + A or xA is nonempty and bounded above (resp. below).

Proof. Let us only prove the first statement. The rest are left as exercises.
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Suppose b is an upper bound for A. Thatis, y < b forally € A. Thenx +y < x + b for
all y € A, and so x + b is an upper bound for x + A. In particular, if b = sup A, then

sup(x + A) < x +b = x +sup A.

The opposite inequality is similar: If ¢ is an upper bound for x + A, then x + y < c for
ally e Aandsoy < c—xforall y € A. So ¢ — x is an upper bound for A. If c = sup(x + A),
then

sup A<c—x=sup(x+A)—x.

The result follows. a

Sometimes we need to apply supremum or infimum twice. Here is an example.

Proposition 1.2.7. Let A, B C R be nonempty sets such that x < y whenever x € A and y € B.
Then A is bounded above, B is bounded below, and sup A < inf B.

Proof. Any x € A is a lower bound for B. Therefore, x < inf B for all x € A, so inf B is an
upper bound for A. Hence, sup A < inf B. O

We must be careful about strict inequalities and taking suprema and infima. Note
that x < y whenever x € A and y € B still only implies sup A < inf B, and not a strict
inequality. For example, take A := {0} and B := {1/n : n € N}. Then 0 < 1/n for all n € N.
However, sup A = 0 and inf B = 0. This important subtle point comes up often.

The proof of the following often used fact is left to the reader. A similar result holds for
infima.
Proposition 1.2.8. If S C R is nonempty and bounded above, then for every € > 0 there exists an
x € S such that (sup S) —e€ <x < sup S.

To make using suprema and infima even easier, we may want to write sup A and inf A
without worrying about A being bounded and nonempty. We make the following natural
definitions.

Definition 1.2.9. Let A C R be a set.
(i) If A is empty, then sup A = —oo.
(ii) If A is not bounded above, then sup A := co.
(iii) If A is empty, then inf A := oo.
(iv) If A is not bounded below, then inf A = —co.
For convenience, co and —oo are sometimes treated as if they were numbers, except we

do not allow arbitrary arithmetic with them. We make R* := R U {—00, o0} into an ordered
set by letting

—c0o<o and —oco<x and x <o forall x € R.
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The set R* is called the set of extended real numbers. 1t is possible to define some arithmetic
on R*. Most operations are extended in an obvious way, but we must leave co — oo, 0 - (+00),
and == undefined. We refrain from using this arithmetic, it leads to easy mistakes as
R* is not a field. Now we can take suprema and infima without fear of emptiness or
unboundedness. In this book, we mostly avoid using R* outside of exercises and leave
such generalizations to the interested reader.

1.2.4 Maxima and minima

By Exercise 1.1.2, a finite set of numbers always has a supremum and an infimum and
they are both contained in the set itself. In this case, we usually do not use the words
supremum or infimum. When a set A of real numbers is bounded above and sup A € A,
we can use the word maximum and the notation max A to denote the supremum. Similarly
for infimum: When A is bounded below and inf A € A, we can use the word minimum and
the notation min A. For example,

max{1,2.4, 7,100} = 100,
min{1,2.4, 7,100} = 1.

While writing sup and inf may be technically correct in this situation, max and min are
generally used to emphasize that the supremum or infimum is in the set itself, especially
when the set is finite.

1.2.5 Exercises

) 1
Exercise 1.2.1: Prove that if t > 0 (t € R), then there exists an n € N such that — < t.
n

Exercise 1.2.2: Prove that if t > 0 (t € R), then there exists an n € N such thatn —1 <t <n.
Exercise 1.2.3: Finish the proof of Proposition 1.2.6.

Exercise 1.2.4: Let x,y € R. Suppose x> + y> = 0. Prove that x = 0 and y = 0.

Exercise 1.2.5: Show that V3 is irrational.

Exercise 1.2.6: Let n € N. Show that \/n is either an integer or it is irrational.

Exercise 1.2.7: Prove the arithmetic-geometric mean inequality. For two positive real numbers x,y,

xX+y

VEY < —=

Furthermore, equality occurs if and only if x = y.

Exercise 1.2.8: Show that for every pair of real numbers x and y such that x <y, there exists an irrational

number s such that x < s < y. Hint: Apply the density of Q to X and L

V2o V2
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Exercise 1.2.9: Let A and B be two nonempty bounded sets of real numbers. Let C := {a+b:a € A,b € B}.
Show that C is a bounded set and that

sup C =sup A +sup B and inf C =inf A +inf B.

Exercise 1.2.10: Let A and B be two nonempty bounded sets of nonnegative real numbers. Define the set
C:={ab:a € A,b e B}. Show that C is a bounded set and that

sup C = (sup A)(sup B) and inf C = (inf A)(inf B).

Exercise 1.2.11 (Hard): Given x > 0 and n € N, show that there exists a unique positive real number r
such that x = r". Usually, r is denoted by x/".

Exercise 1.2.12 (Easy): Prove Proposition 1.2.8.

Exercise 1.2.13: Prove the so-called Bernoulli’s inequality*: If 1 + x > 0, then for all n € N, we have
(I+x)">1+nx.

Exercise 1.2.14: Provesup{x € Q: x> <2} =sup{x € R: x? < 2}.

Exercise 1.2.15:
a) Prove that given y € R, we have sup{x € Q: x <y} = y.

b) Let A C Q be a set that is bounded above such that whenever x € Aand t € Qwitht < x, then t € A.
Further suppose sup A ¢ A. Show that there exists a y € R such that A = {x € Q : x < y}. A set such
as A is called a Dedekind cut.

c) Show that there is a bijection between R and Dedekind cuts.

Note: Dedekind used sets as in part b) in his construction of the real numbers.

Exercise 1.2.16: Prove that if A C Z is a nonempty subset bounded below, then there exists a least element
in A. Now describe why this statement would simplify the proof of Theorem 1.2.4 part (ii) so that you do not
have to assume x > 0.

Exercise 1.2.17: Let us suppose we know x'/" exists for every x > 0 and every n € N (see Exercise 1.2.11

above). For integers p and q > 0 where p/q is in lowest terms, define xP/1 := (x!/ 7y,

a) Show that the power is well-defined even if the fraction is not in lowest terms: If p/q = m/k where m and
k > 0 are integers, then (19 = (x1/k)",

b) Let x and y be two positive numbers and r a rational number. Assuming r > 0, show x < y if and only
if x < y". Then suppose r < 0 and show: x < y if and only if x" > y".

c) Suppose x > 1 and r,s are rational where v < s. Show x" < x°. If0 < x < land r < s, show that
x" > x®. Hint: Write r and s with the same denominator.

d) (Challenging)® For an irrational z € R\ Q and x > 1 define x* = sup{x" :r < z,r € Q}, for x = 1

define 1 = 1, and for 0 < x < 1define x* := inf{x" : r < z,r € Q}. Prove the two assertions of part b)
for all real z.

*Named after the Swiss mathematician Jacob Bernoulli (1655-1705).

In §5.4 we will define the exponential and the logarithm and define x* := exp(z In x). We will then have
sufficient machinery to make proofs of these assertions far easier. At this point, however, we do not yet have
these tools.


https://en.wikipedia.org/wiki/Jacob_Bernoulli
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1.3 Absolute value and bounded functions

Note: 0.5—1 lecture

A concept we will encounter over and over is the concept of absolute value. You want to
think of the absolute value as the “size” of a real number. Here is the formal definition:

X if x >0,
|x| = .
—x ifx <0.

Let us give the main features of the absolute value as a proposition.

Proposition 1.3.1.
(i) |x| = 0, moreover, |x| = 0 if and only if x = 0.
(i) |—x| = |x| forall x € R.
(iif) |xy| = |x| |y|for all x,y € R.
(iv) |x|2 = x2 forall x € R.
(v) |x| < yifandonlyif -y < x < y.

(vi) —|x|] < x < |x| forall x € R.

Proof. (i): First suppose x > 0. Then |x| = x > 0. Also, |x| = x = 0if and only if x = 0. On
the other hand, if x < 0, then |x| = —x > 0, and | x| is never zero.

(ii): If x > 0, then —x < 0 and so |-x| = —(—x) = x = |x|. Similarly when x < 0, or x = 0.

(iii): If x or y is zero, then the result is immediate. When x and y are both positive,
then |x| |y| = xy. As xy is also positive, xy = |xy|. If x and y are both negative, then
xy = (—x)(—y) is still positive and |xy| = xy. Also, |x| |y| = (—x)(-y) =xy. If x > 0and
y <0, then |x| |y| = x(-y) = —(xy). Now xy is negative and |xy| = —(xy). Similarly when
x <0andy > 0.

(iv): Immediate if x > 0. If x < 0, then |x|* = (-x)* = x2.

(v): Suppose [x| < y. If x > 0, then x < y. It follows that y > 0, leading to —y < 0 < x.
So -y < x < y holds. If x < 0, then |x| < y means —x < y. Negating both sides we get
x> —y. Againy > 0andsoy > 0 > x. Hence, -y < x < y.

On the other hand, suppose —y < x < y is true. If x > 0, then x < y is equivalent to
|x| < y. If x <0, then —y < x implies (—x) < y, which is equivalent to |x| < y.

(vi): Apply (v) with y = |x|. O

A property used frequently enough to give it a name is the so-called triangle inequality.

Proposition 1.3.2 (Triangle Inequality). |x + y| < |x| + |y| forall x,y € R.
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Proof. Proposition 1.3.1 gives —|x| < x < |x| and —|y| < y < |y|. Add these two inequalities
to obtain
—(lxl +1yl) < x+y < |x| + |yl

Apply Proposition 1.3.1 again to find |x + y| < [x| +|y|. O
There are other often applied versions of the triangle inequality.
Corollary 1.3.3. Let x,y € R.
(i) (reverse triangle inequality) |(|x| — |y|)| < |x — y|.
(i) |x - y| < x|+ |y|
Proof. Let us plug in x = a — b and y = b into the standard triangle inequality to obtain

la| =la—-b+0b| <|a-b|+]|b],

or |a| —|b| < |a —Db|. Switching the roles of a and b we find |b| — |a| < |b —a| = |a - b|.
Applying Proposition 1.3.1, we obtain the reverse triangle inequality.

The second item in the corollary is obtained from the standard triangle inequality by
just replacing y with —y, and noting |—y| = |y| m|

Corollary 1.3.4. Let x1,x2,...,x, € R. Then
|x1 + 22+ -+ x| < o] + 20 + - 2]

Proof. We proceed by induction. The conclusion holds trivially for n = 1, and for n = 2 itis
the standard triangle inequality. Suppose the corollary holds for n. Take n + 1 numbers
X1,X2,...,Xu+1 and first use the standard triangle inequality, then the induction hypothesis

[x1+x0 4+ +x, +xp41] S |x1+x24+ -+ x| +|x541]
< foaf + xo + -+ [xn| + [xp4a] m

Let us see an example of the use of the triangle inequality.

Example 1.3.5: Find a number M such that |x> —=9x + 1| < M forall -1 < x < 5.
Using the triangle inequality, write

|x% = 9x + 1| < [x?| +|9x| +|1] = |x|*> + 9| + 1.

The expression |x|? + 9| x| + 1 is largest when | x| is largest (why?). In the interval provided,
|x| is largest when x = 5 and so |x| = 5. One possibility for M is

M=52+9(5)+1="71.

There are, of course, other M that work. The bound of 71 is much higher than it need be,
but we didn’t ask for the best possible M, just one that works.

The last example leads us to the concept of bounded functions.



38 CHAPTER 1. REAL NUMBERS

Definition 1.3.6. Suppose f: D — R is a function. We say f is bounded if there exists a
number M such that |f(x)| < Mforallx € D.

In the example, we proved x? — 9x + 1 is bounded when considered as a function on
D = {x : =1 < x < 5}. On the other hand, if we consider the same polynomial as a function
on the whole real line R, then it is not bounded.

Figure 1.4: Example of a bounded function, a bound M, and its supremum and infimum.

For a function f: D — R, we write (see Figure 1.4 for an example)
sup f(x) = sup f(D) and inf f(x) :=inf f(D).
x€eD x€D

We also sometimes replace the “x € D” with an expression. For example if, as before,
f(x) = x2 —-9x + 1, for =1 < x < 5, a little bit of calculus shows

sup f(x) = sup (x*-9x+1) =11, inf f(x) = inf (x> —9x +1) = ~77/a.

xeD —1<x<5 xeD -1<x<5

Proposition 1.3.7. If f: D — Rand g: D — R (D nonempty) are bounded* functions and
f(x)< g(x) forallx €D,

then

sup f(x) < sup g(x) and inf f(x) < inf g(x). (1.1)
xeD xeD xeD xeD

Be careful with the variables. The x on the left side of the inequality in (1.1) is different
from the x on the right. You should really think of, say, the first inequality as

sup f(x) < sup g(y).

x€D yeD
Let us prove this inequality. If b is an upper bound for g(D), then f(x) < g(x) < b for all
x € D, and hence b is also an upper bound for f(D), or f(x) < b for all x € D. Take the
least upper bound of g(D) to get that for all x € D

f(x) < sup g(y).
yeD

*The boundedness hypothesis is for simplicity, it can be dropped if we allow for the extended real
numbers.
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Therefore, sup, ., g(v) is an upper bound for f(D) and thus greater than or equal to the
least upper bound of f(D).

sup f(x) < sup g(v).
x€D yeD

The second inequality (the statement about the inf) is left as an exercise (Exercise 1.3.4).

A common mistake is to conclude

sup f(x) < inf g(y). (1.2)
xeD yeD

The inequality (1.2) is not true given the hypothesis of the proposition above. For this
stronger inequality we need the stronger hypothesis

f(x) < g(y) forallx e Dand y € D.

The proof as well as a counterexample is left as an exercise (Exercise 1.3.5).

1.3.1 Exercises
Exercise 1.3.1: Show that |x - y| <eifandonlyifx —e <y <x+e.

x+y—|x—y|

bl ) minga, yy = 22

Exercise 1.3.2: Show: a) max{x, y} =
Exercise 1.3.3: Find a number M such that |x®> — x* + 8x| < M for all -2 < x < 10.

Exercise 1.3.4: Finish the proof of Proposition 1.3.7. That is, prove that given a set D, and two bounded
functions f: D — Rand g: D — R such that f(x) < g(x) for all x € D, then

inf f(x) < inf g(2)

Exercise 1.3.5: Let f: D — Rand g: D — R be functions (D nonempty).
a) Suppose f(x) < g(y) forall x € D and y € D. Show that

sup f(x) < inf g(x).
xeD xeD

b) Find a specific D, f, and g, such that f(x) < g(x) forall x € D, but

sup f(x) > inf g(x).
xeD xeD

Exercise 1.3.6: Prove Proposition 1.3.7 without the assumption that the functions are bounded. Hint: You
need to use the extended real numbers.

Exercise 1.3.7: Let D be a nonempty set. Suppose f: D — Rand g: D — R are bounded functions.
a) Show

sup(f(x) + g(x)) < sup f(x) + sup g(x) and inf (f(x) + g(x)) > inf f(x) + inf g(x).
xeD xeD xeD xeD xeD xeD

b) Find an example (or examples) where we obtain strict inequalities.
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Exercise 1.3.8: Suppose D is nonempty, f: D — Rand g: D — R are bounded functions, and a € R.
a) Show that af: D — R defined by (af)(x) = af(x) is a bounded function.

b) Show that f + g: D — R defined by (f + g)(x) := f(x) + g(x) is a bounded function.

Exercise 1.3.9: Let f: D — Rand g: D — R be functions with D nonempty, a € R, and recall what
f + g and af means from the previous exercise.

a) Prove that if f + g and g are bounded, then f is bounded.

b) Find an example where f and g are both unbounded, but f + g is bounded.

c) Prove that if f is bounded but g is unbounded, then f + g is unbounded.

d) Find an example where f is unbounded but af is bounded.



1.4. INTERVALS AND THE SIZE OF R 41

1.4 Intervals and the size of R

Note: 0.5-1 lecture (proof of uncountability of R can be optional)

You surely saw the notation for intervals before, but let us give a formal definition here.
For a,b € R such that a < b, we define

[a,b] ={xeR:a<x<b},
(a,b) ={xeR:a<x<b},
(a,b] ={xeR:a<x<b},
[a,b) ={xeR:a<x<b}.

The interval [a, b] is called a closed interval and (a, b) is called an open interval. The intervals
of the form (a,b] and [a, b) are called half-open intervals.

The intervals above are bounded intervals, since both a and b are real numbers. We define
unbounded intervals,

[a,0) ={xeR:a < x},
(a,00) ={xeR:a < x},
(—oo,b] ={x e R:x < b},
(—o0,b) ={xeR:x <b}.

For completeness, we define (-0, 00) := R. The intervals [a, ), (—o0,b], and R are
sometimes called unbounded closed intervals, and (a, o), (—o0, b), and R are sometimes called
unbounded open intervals.

The proof of the following proposition is left as an exercise. In short, an interval is a set
with at least two points that contains all points between any two points.*

Proposition 1.4.1. A set I C R is an interval if and only if I contains at least 2 points and for all
a,c€landb € Rsuchthata <b < ¢, we have b € 1.

We have already seen that every open interval (a, b) (where a < b of course) must be
nonempty. For example, it contains the number “2. An unexpected fact is that from a
set-theoretic perspective, all intervals have the same “size,” that is, they all have the same
cardinality. For instance, the map f(x) := 2x takes the interval [0, 1] bijectively to the
interval [0, 2].

Maybe more interestingly, the function f(x) := tan(x) is a bijective map from (—7/2, 7/2)
to R. Hence the bounded interval (—7/2,7/2) has the same cardinality as R. It is not
completely straightforward to construct a bijective map from [0, 1] to (0, 1), but it is
possible.

And do not worry, there does exist a way to measure the “size” of subsets of real
numbers that “sees” the difference between [0, 1] and [0, 2]. However, its proper definition
requires much more machinery than we have right now.

*Sometimes single point sets and the empty set are also called intervals, but in this book, intervals have
at least 2 points. That is, we only defined the bounded intervals if a < b.
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Let us say more about the cardinality of intervals and hence about the cardinality of R.
We have seen that there exist irrational numbers, that is R \ @Q, is nonempty. The question
is: How many irrational numbers are there? It turns out there are a lot more irrational
numbers than rational numbers. We have seen that Q is countable, and we will show
that R is uncountable. In fact, the cardinality of R is the same as the cardinality of %(N),
although we will not prove this claim here.

Theorem 1.4.2 (Cantor). R is uncountable.

We give a version of Cantor’s original proof from 1874 as this proof requires the least
setup. Normally this proof is stated as a contradiction, but a proof by contrapositive is
easier to understand.

Proof. Let X C R be a countably infinite subset such that for every pair of real numbers
a < b, thereisan x € X such thata < x < b. Were R countable, we could take X = R. We
will show that X is necessarily a proper subset, and so X cannot equal R, and R must be
uncountable.

As X is countably infinite, there is a bijection from N to X. We write X as a sequence of
real numbers x1, x2, x3, . . ., such that each number in X is given by x, for some n € N.

We inductively construct two sequences of real numbers a1, a2, a3, ... and by, by, b3, . . ..
Let a; := x1 and by = x1 + 1. Note that a1 < b1 and x; ¢ (a1, b1). For some k > 1, suppose
ai,ay,...,ax-1 and by, by, ..., bx_1 have been defined, suppose a1 < a; < -+ < ax_1 <
by-1 < --- < by < by, and suppose for each j = 1,2,...,k — 1, we have xy ¢ (aj, b;) for
0=1,2,...,].

(i) Define ay := x,, where n is the smallest n € N such that x,, € (ax_1, bx_1). Such an x,,
exists by our assumption on X, and n > k by the assumption on (ay—1, bx—1).

(ii) Next, define by to be some real number in (ay, by_1).

Notice that ay_1 < ay < by < bx_1. Also notice that (ax, bx) does not contain x; and hence
does not contain x; forj =1,2,..., k. The two sequences are now defined.

Claim: a, < by, for all n and m in N. Proof: Let us first assume n < m. Then
Ay < Aps1 < -+ < Ap-1 < Ay < by,. Similarly for n > m. The claim follows.

Let A :={a, : n € N} and B := {b, : n € N}. By Proposition 1.2.7 and the claim above,

sup A < inf B.

Define y := sup A. The number y cannot be a member of A: If y = a,, for some n, then
Y < ay+1, which is impossible. Similarly, y cannot be a member of B. Therefore, a,, < y for
alln €e Nand y < b, for all n € N. In other words, for every n € N, we have y € (a,,b,).
By the construction of the sequence, x,, ¢ (a,,b,), and so y # x,,. As this was true for all
n € N, we have that y ¢ X.

We have constructed a real number y that is not in X, and thus X is a proper subset of
R. The sequence x1, x7, . . . cannot contain all elements of R and thus R is uncountable. O
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1.4.1 Exercises

Exercise 1.4.1: For a < b, construct an explicit bijection from (a, b] to (0, 1].
Exercise 1.4.2: Suppose f: [0,1] — (0, 1) is a bijection. Using f, construct a bijection from [-1,1] to R.

Exercise 1.4.3: Prove Proposition 1.4.1. That is, suppose I C R is a subset with at least 2 elements such that
ifa<b<canda,c€l,thenb € I. Prove that I is one of the nine types of intervals explicitly given in this
section. Furthermore, prove that the intervals given in this section all satisfy this property.

Exercise 1.4.4 (Hard): Construct an explicit bijection from (0, 1] to (0, 1). Hint: One approach is as follows:
First map (1/2,1] to (0, 1/2], then map (1/4,1/2] to (1/2,3/4], etc. Write down the map explicitly, that is, write
down an algorithm that tells you exactly what number goes where. Then prove that the map is a bijection.

Exercise 1.4.5 (Hard): Construct an explicit bijection from [0,1] to (0, 1).

Exercise 1.4.6:
a) Show that every closed interval [a, b] is the intersection of countably many open intervals.
b) Show that every open interval (a, b) is a countable union of closed intervals.
c) Show that an intersection of a possibly infinite family of bounded closed intervals, (1 [aa, ba], is either

A€l
empty, a single point, or a bounded closed interval.

Exercise 1.4.7: Suppose S is a set of disjoint open intervals in R. That is, if (a,b) € S and (c, d) € S, then
either (a,b) = (c,d) or (a,b) N (c,d) = 0. Prove S is a countable set.

Exercise 1.4.8: Prove that the cardinality of [0, 1] is the same as the cardinality of (0, 1) by showing that
[[0,1]] <1(0,1)] and |(0,1)| < |[0,1]]. See Definition 0.3.28. This proof requires the Cantor—Bernstein—
Schroder theorem, which we stated without proof. Note that this proof does not give you an explicit
bijection.

Exercise 1.4.9 (Challenging): A number x is algebraic if x is a root of a polynomial with integer coefficients,
in other words, ayx™ + ay_1x" 1+ + a;x + ag = 0 where ag, a1, . .., a4, € Z.
a) Show that there are only countably many algebraic numbers.

b) Show that there exist non-algebraic (transcendental) numbers (follow in the footsteps of Cantor, use the
uncountability of R).

Hint: Feel free to use the fact that a polynomial of degree n has at most n real roots.

Exercise 1.4.10 (Challenging): Let F be the set of all functions f: R — R. Prove |R| < |F| using Cantor’s
Theorem 0.3.34.*

*“Interestingly, if C is the set of continuous functions, then |R| = |C|.
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1.5 Decimal representation of the reals

Note: 1 lecture (optional)

We often think of real numbers as their decimal representation. By a (decimal) digit,
we mean an integer between 0 and 9. For a positive integer n, we find the digits
dk,dk-1,...,d2,d1,do for some K (each d; an integer between 0 and 9) such that

n = dg10X + dg_ 1105 + -+ + d,10% + d110 + do.

We often assume di # 0 (avoiding leading zeros). To represent 1, we write the sequence of
digits: n =dgdg_q1---drdydy.

Similarly, we represent some rational numbers. That is, for certain numbers x, we can
find a negative integer —M, a positive integer K, and digits dx, dx-1, ..., d1,do,d-1,...,d-m,
such that

x = d10K + dg 1105+ o 4 5107 + d110 + do + d1107 + 51072 + - - + d_p107M,

We write x = dxdg_1---didy.d_1d_o---d_p.

Not every real number has such a representation, even the simple rational number 1/3
does not. The irrational number V2 does not have such a representation either. To get a
representation for all real numbers, we must allow infinitely many digits.

Let us consider only real numbers in the interval (0, 1]. If we find a representation
for these, adding integers to them obtains a representation for all real numbers. Take an
infinite sequence of decimal digits:

0.didads. . ..

That is, we have a digit d; for every j € N. We renumbered the digits to avoid the negative
signs. We call the number

dq ds ds d,
= e —
"T10 0 102 108 10"

the truncation of x to n decimal digits. We say this sequence of digits represents a real

number x if
di dy d3 dy
x=sup|l—+—+—+---+ =sup D,.
ven \10 7107 T 107 107) "

Proposition 1.5.1.

(i) Every infinite sequence of digits 0.d1dads . . . represents a unique real number x € [0,1],
and

D, <x<D,+ foralln € N.

10"
(i) For every x € (0, 1] there exists an infinite sequence of digits 0.d1dad3 . . . that represents x.
There exists a unique representation such that

D, <x<D,+ foralln € N.

10"
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Proof. We start with the first item. Take an arbitrary infinite sequence of digits 0.d1dd3 . . ..
Use the geometric sum formula to write

S 10 102 10° 10"~ 10 102 10° 10"

- i(1 + 110+ (1/10)* + -+ + (Y10)" )

D

10
_ 9 (1-(ho)") _ "
_E( T )_1—(1/10) <1.

In particular, D, < 1 for all n. A sum of nonnegative numbers is nonnegative so D,, > 0,
and hence
0O<sup D, <1
neN
Therefore, 0.d1d>ds . .. represents a unique number x = sup, . D» € [0,1]. Asx isa
supremum, then D, < x. Take m € N. If m < n, then D,, — D, < 0. If m > n, then
computing as above

_ dn+1 dn+2 dn+3 dm 1 m—n 1
D,,— D, = 10n+1 + 10n+2 + 10”+3 + -+ w—m < W(l — (1/10) ) < 10"

Take the supremum over m to find

1

X—DnSW.

We move on to the second item. Take any x € (0, 1]. First let us tackle the existence.
For convenience, let Dy := 0. Then, Dy < x < Dy + 107°. Suppose we defined the digits
di,d>,...,dy,and that Dy < x < Dy +107%, fork =0,1,2,...,1n. We need to define d,,1.

By the Archimedean property of the real numbers, find an integer j such that x — D, <
j10~"*1) Take the least such j and obtain

(j - 110"V < x — D, < j107"**D, (1.3)

Letdy+1 :=j—1. AsD, < x,thend,,1 = j—1 > 0. On the other hand, since x - D,, < 107",
we have that j is at most 10, and therefore d,+1 < 9. So d,,+1 is a decimal digit. Since
D,.1 =D, + dn+110_(”+1) add D,, to the inequality (1.3) above:

Dyy1 =Dy + (j = 1107 < x < D, + j10~+D
=D, +(j —1)10""*V 4 10=0*D = D, ., + 10~"*D,
Andso D, ;1 <x <Dy + 10~"*D holds. We inductively defined an infinite sequence of
digits 0.d1dads . . ..

Consider D, < x < D, +107™". As D, < x for all n, then sup{D,, : n € N} < x. The
second inequality for D, implies

x —sup{D,, :meN}<x-D, <10™".
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As the inequality holds for all # and 107" can be made arbitrarily small (see Exercise 1.5.8),
we have x < sup{D,, : m € N}. Therefore, sup{D,, : m € N} = x.

What is left to show is the uniqueness. Suppose 0.e1ez¢3 . . . is another representation of
x. Let E,, be the n-digit truncation of 0.e1eze3 . . ., and suppose E, < x < E,, + 107" for all
n € N. Suppose for some K € N, ¢, = d,, foralln < K, so Dg_1 = Eg—1. Then

Ex = Dx-1 +ex107% < x < Ex +107% = D1 + ex107% + 107X,
Subtracting Dx_1 and multiplying by 10X we get
ex < (x — DK_1)10K <ex+1.

Similarly,
dg < (x — DK_1)10K <dg+1.

Hence, both ex and dx are the largest integer j such that j < (x — Dx_1)10%, and therefore
ex = dk. That is, the representation is unique. O

The representation is not unique if we do not require D,, < x for all n. For example, for
the number 1/2, the method in the proof obtains the representation

0.49999....

However, 1/2 also has the representation 0.50000. . ..

The only numbers that have nonunique representations are ones that end in an infinite
sequence of 0s or an infinite sequence of 9s, because the only representation for which
D, = x is one where all digits past the nth digit are zero. In this case, there are exactly two
representations of x (see the exercises).

Let us give another proof of the uncountability of the reals using decimal representations.
This is Cantor’s second proof, which is probably better known. This proof may seem
shorter, but it is because we already did the hard part above and we are left with a slick
trick to prove that R is uncountable. This trick is called Cantor diagonalization and finds use
in other proofs as well.

Theorem 1.5.2 (Cantor). The set (0, 1] is uncountable.

Proof. Let X := {x1,x2,x3, ...} be any countable subset of real numbers in (0, 1]. We will
construct a real number not in X. Let

xp = 0.d0d0dL ..

be the unique representation from the proposition, that is, d;? is the jth digit of the nth
number. Let
1 ifd) #1,
ey = _
2 iftd! =1.
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Let E, be the n-digit truncation of y = 0.e1eze3 . . .. Because all the digits are nonzero we
get E;, < Ey 1 < y. Therefore,
E,<y<E,+10™"

for all n, and the representation is the unique one for y from the proposition. For every
n, the nth digit of y is different from the nth digit of x,,, so y # x,,. Therefore y ¢ X, and
as X was an arbitrary countable subset, (0, 1] must be uncountable. See Figure 1.5 for an

example. O
x;1= 0. 3 2 1 0
x2= 0 7 [9] 4 1 3
x3= 0. 3 0 3 4 Number not in the list:
x4= 0. 8 9 2 6 y =0.21211...
xs= 0. 1 6 0 2

Figure 1.5: Example of Cantor diagonalization, the diagonal digits d]; marked.

Using decimal digits we can also find lots of numbers that are not rational. The following
proposition is true for every rational number, but we give it only for x € (0, 1] for simplicity.

Proposition 1.5.3. If x € (0, 1] is a rational number and x = 0.d1dad3 . . ., then the decimal digits
eventually start repeating. That is, there are positive integers N and P, such that for all n > N,
dn = dn+P-

Proof. Suppose x = r/q for positive integers p and g. Suppose also that x is a number with
a unique representation, as otherwise we have seen above that both its representations are
repeating, see also Exercise 1.5.3. This also means that x # 1sop < g.

To compute the first digit, we take 10p and divide by g. Let d; be the quotient, and the
remainder rq is some integer between 0 and g — 1. That is, d is the largest integer such that
d1g < 10p and then r1 = 10p — d1g9. As p < g, then d1 < 10, so d; is a digit. Furthermore,

dq E_ﬂ 7‘1<ﬁ 1

= — 4+ — + —.
1 g 10 10g — 10 10

The first inequality is strict since x has a unique representation. That is, d; really is the first
digit. What is left is 1/(109). This is the same as computing the first digit of 1/q. To compute
d, divide 1071 by g, and so on. After computing n —1 digits, we have r/q = D,,_1 +-1/(10""¢).
To get the nth digit, divide 10r,,1 by g to get quotient d,,, remainder r,,, and the inequalities

Q.

n o n-

=—+ — 4+ —.
10- g 10 104 ~ 10 ' 10
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Dividing by 10"~ and adding D,_1 we find

By uniqueness, we really have the nth digit d,, from the construction.

The new digit depends only the remainder from the previous step. There are at most q
possible remainders. Hence, the process must start repeating itself after at most g steps,
and so P is at most 4. O

The converse of the proposition is also true and is left as an exercise.

Example 1.5.4: The number
x = 0.101001000100001000001 . ..

is irrational. That is, the digits are n zeros, then a one, then n + 1 zeros, then a one, and so
on and so forth. The fact that x is irrational follows from the proposition; the digits never
start repeating. For every P, if we go far enough, we find a 1 followed by at least P + 1
Zeros.

1.5.1 Exercises

Exercise 1.5.1 (Easy): What is the decimal representation of 1 guaranteed by Proposition 1.5.17 Make sure
to show that it does satisfy the condition.

Exercise 1.5.2: Prove the converse of Proposition 1.5.3, that is, if the digits in the decimal representation of x
are eventually repeating, then x must be rational.

Exercise 1.5.3: Show that real numbers x € (0, 1) with nonunique decimal representation are exactly the
rational numbers that can be written as 15z for some integers m and n. In this case show that there exist
exactly two representations of x.

Exercise 1.5.4: Let b > 2 be an integer. Define a representation of a real number in [0, 1] in terms of base b
rather than base 10 and prove Proposition 1.5.1 for base b.

Exercise 1.5.5: Using the previous exercise with b = 2 (binary), show that cardinality of R is the same as the
cardinality of P(N), obtaining yet another (though related) proof that R is uncountable. Hint: Construct two
injections, one from [0, 1] to P(N) and one from P(N) to [0,1]. Hint 2: Given a set A C N, let the nth
binary digit of x be 1 if n € A.

Exercise 1.5.6 (Challenging): Explicitly construct an injection from [0, 1] x [0, 1] to [0, 1] (think about
why this is so surprising*). Then describe the set of numbers in [0, 1] not in the image of your injection
(unless, of course, you managed to construct a bijection). Hint: Consider even and odd digits of the decimal
expansion.

*With quite a bit more work (or by applying the Cantor—Bernstein-Schroder theorem) one can prove that
there is a bijection. When he proved this result, Cantor apparently wrote “I see it but I don’t believe it.”
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Exercise 1.5.7: Prove that if x = p/q € (0, 1] is a rational number, q > 1, then the period P of repeating
digits in the decimal representation of x is in fact less than or equal to q — 1.

Exercise 1.5.8: Prove that if b € N and b > 2, then for every € > 0, there is an n € N such that b™" < e.
Hint: One possibility is to first prove that b™ > n for all n € N by induction.

Exercise 1.5.9: Explicitly construct an injection f: R — R\ Q using Proposition 1.5.3.
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Chapter 2

Sequences and Series

2.1 Sequences and limits

Note: 2.5 lectures

Analysis is essentially about taking limits. The most basic type of a limit is a limit of a
sequence of real numbers. We have already seen sequences used informally. Let us give
the formal definition.

Definition 2.1.1. A sequence (of real numbers) is a function x: N — R. Instead of x(n), we
usually denote the nth element in the sequence by x,,. To denote a sequence we write*

{xntusy-

A sequence {x,} >, is bounded if the underlying function is bounded. That is, if there
exists a B € R such that
|x,| < B forall n € N.

In other words, the sequence {xn}"f:l is bounded whenever the set {x, : n € N} is bounded.
We similarly define the words bounded below and bounded above.

When we need to give a concrete sequence, we often give each term as a formula in
terms of n. For example, {1/n}7" | stands for the sequence 1, 1/2,1/3,1/4,1/5, .. .. The sequence
{1/n} >, is abounded sequence (B = 1 suffices). On the other hand, the sequence {n}’’_,
stands for 1,2, 3,4, ..., and this sequence is not bounded (why?).

While the notation for a sequence is similar' to that of a set, the notions are distinct. For
example, the sequence {(—1)"}:):1 is the sequence -1,1,-1,1,-1,1, ..., whereas the set of
values, the range of the sequence, is just the set {—1,1}. We write this set as {(—1)" :n €N }

Another example of a sequence is the so-called constant sequence. That is a sequence
{c}> ,=c,c,c,c,...consisting of a single constant ¢ € R repeating indefinitely.

*It is common to use {x,} or {x,}, for brevity.
t[BS] use (xn);_; to denote a sequence instead of {x,}7"_,, which is what [R2] uses. Both are common.
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Definition 2.1.2. A sequence {x,}_; is said to converge to a number x € R if for every
€ > 0, there exists an M € N such that |x, — x| < € for all n > M. The number x is called a
limit of the sequence. If the limit x is unique, we write*

lim x, = x.
n—0oo
A sequence that converges is said to be convergent. Otherwise, we say the sequence
diverges or that it is divergent.

Shortly, in Proposition 2.1.6 we will show that the limit x is always unique if it exists.
It makes sense to talk about the limit of a sequence and we only need to show that the
sequence converges to one number. For the next couple of examples, let us pretend we
have already proved that limits are unique.

Intuitively, the limit being x means that eventually every number in the sequence is
close to the number x. More precisely, we get arbitrarily close to the limit, provided we go
far enough in the sequence. It does not mean we ever reach the limit. It is possible, and
quite common, that there is no x, in the sequence that equals the limit x. We illustrate
the concept in Figure 2.1. In the figure we first think of the sequence as a graph, as itis a
function of N. Secondly, we also plot it as a sequence of labeled points on the real line.
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Figure 2.1: Illustration of convergence. On top, we show the first ten points of the sequence as
a graph with M and the interval around the limit x marked. On bottom, the points of the same
sequence are marked on the number line.

“In text, this may get rendered as limy,—,c Xy,.
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When we write lim;, . X, = x for some real number x, we are saying two things: First,
that {x,}}_, is convergent, and second, that the limit is x.

The definition above is one of the most important definitions in analysis, and it is
necessary to understand it perfectly. The key point in the definition is that given any € > 0,
we can find an M. The M can depend on ¢, so we only pick an M once we know €. Let us
illustrate convergence on a few examples.

Example 2.1.3: The constant sequence 1,1,1,1, ... converges to 1. For every € > 0, pick
M =1. Thatis, |x, — x| =|1—-1| < € for all n.

Example 2.1.4: Claim: The sequence {1/n}}_, is convergent and

Proof: Given an € > 0, find an M € N such that 0 < /M < € (Archimedean property at
work). Foralln > M,

1

1 —
B n

[x, — x| :'——0
n

Example 2.1.5: The sequence {(—1)” }:;1 is divergent. Proof: If there were a limit x, then

for € = 3 we expect an M that satisfies the definition. Suppose such an M exists. Then for
an even n > M, we compute

12> |x, —x| =|1-x] and V2> |xp1—x| =]-1-x].
And we obtain a contradiction
2=1-x—-(-1-x)| < |1—=x|+|-1—-x| <l2+12=1.
Proposition 2.1.6. A convergent sequence has a unique limit.

The proof of this proposition exhibits a useful technique in analysis. Many proofs
follow the same general scheme. We want to show a certain quantity is zero. We write
the quantity using the triangle inequality as two quantities, and we estimate each one by
arbitrarily small numbers.

Proof. Suppose {x;,} ., has limits x and y. Take an arbitrary € > 0. From the definition
find an M; such that for all n > Mjy, |x,, — x| < ¢/2. Similarly, find an M; such that for all
n > M, we have |xn — y| < €/2. Now take an n such that n > M; and also n > Mj, and
estimate

|y = x| = xn = x = (2 = )|
< |x, — x| +|xn—y|
€, € _
2727 ¢
As |y - x| < € for all € > 0, then |y - x| = 0 and y = x. Hence the limit (if it exists) is
unique. |
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Proposition 2.1.7. A convergent sequence {x,}_, is bounded.

Proof. Suppose {x;,} ", converges to x. Thus there exists an M € N such that forall n > M,
we have |x,, — x| < 1. Forn > M,

|xn| = |xn — x + x|
< xn — x| + x|
<1+|x|.

The set {|x1| x|, oo, lxm-1], 1+ |x|} is a finite set and hence let
B := max{|x1|,|x2l, ..., [xm-1], 1+ x|}

Then foralln € N,
|x,| < B. |

The sequence {(—1)” }::1 shows that the converse does not hold. A bounded sequence
is not necessarily convergent.

[0e]

Example 2.1.8: Let us show {Z;—E} | converges and
n=

241
n = 1.

lim
n—oo n2 + 11

Given € > 0, find M € N such that ﬁ < €. Thenforalln > M,

n%+1 1_nz+1—(nz+n)_ 1-n

nZ+n nz+n nZ+n
_n—l
nZ+n

n 1

< =
n2+n n+1
<1< <
<—-—<—<e.
n- M

n2+1

Therefore, lim, e = 1. This example shows that sometimes to get what you want,
you must throw away some information to get a simpler estimate.

2.1.1 Monotone sequences

The simplest type of a sequence is a monotone sequence. Checking that a monotone
sequence converges is as easy as checking that it is bounded. It is also easy to find the limit
for a convergent monotone sequence, provided we can find the supremum or infimum of a
countable set of numbers.
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Definition 2.1.9. A sequence {x,})_; is monotone increasing if x, < x,1 foralln € N. A
sequence {x, }’_; is monotone decreasing if x, > x,+1 for all n € N. If a sequence is either
monotone increasing or monotone decreasing, we can simply say the sequence is monotone.*

For example, {n}’; is monotone increasing, {1/»}> , is monotone decreasing, the
constant sequence {1} ; is both monotone increasing and monotone decreasing, and

S8} . . . .
{(—1)” }nzl is not monotone. First few terms of a sample monotone increasing sequence
are shown in Figure 2.2.

1 2 3 4 5 6 7 8 9 10

Figure 2.2: First few terms of a monotone increasing sequence as a graph.

Theorem 2.1.10 (Monotone convergence theorem). A monotone sequence {x,}_, is bounded
if and only if it is convergent.
Furthermore, if {x},°_, is monotone increasing and bounded, then

lim x, = sup{x, : n € N}.
n—oo
If {xn} > is monotone decreasing and bounded, then

lim x, = inf{x, : n € N}.

n—oo

Proof. Consider a monotone increasing sequence {x,}’_;. Suppose first the sequence is
bounded, that is, the set {x,, : n € N} is bounded. Let

x = sup{x, : n € N}.

Let € > 0 be arbitrary. As x is the supremum, there must be at least one M € N such that
xm > x — €. As {x,} | is monotone increasing, then it is easy to see (by induction) that
X, > xpm forallm > M. Hence forall n > M,

|xp — x| =x—-x, <x—xpm <E€.

*Some authors use the word monotonic.
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So {xn};_| converges to x. Therefore, a bounded monotone increasing sequence converges.
For the other direction, we already proved that a convergent sequence is bounded.
The proof for monotone decreasing sequences is left as an exercise. O

A monotone increasing sequence {x,} "  is always bounded from below since x; <
x2 < --- < x, for any n, so x1 is a lower bound. So to see if a monotone increasing sequence
is bounded, it is enough to check if it is bounded above. Similarly, a monotone decreasing
sequence is always bounded from above, so it is enough to check whether it is bounded
from below.

Example 2.1.11: Take the sequence {%}:’:1
The sequence is bounded below as in > 0 for all n € N. Let us show that it is monotone

\/_
decreasing. We start with Vi + 1 > /n (why is that true?). From this inequality we obtain

1 1
< —.
Vn+1 «n
So the sequence is monotone decreasing and bounded below (hence bounded). Via
Theorem 2.1.10 we find that the sequence is convergent and

1 1
lim — =inf{—:n € N};.
=% /n {\/n }

We already know that the infimum is greater than or equal to 0, as 0 is a lower bound. Take
anumber b > 0 such that b < % for all n. We square both sides to obtain

b? < for all n € N.

|~

We have seen before that this implies that b> < 0 (a consequence of the Archimedean
property). As b? > 0 as well, we have b?> = 0 and so b = 0. Hence, b = 0 is the greatest
lower bound, and lim -L = 0.

n—sco V1

Example 2.1.12: A word of caution: Showing that a monotone sequence is bounded in
order to use Theorem 2.1.10 may be difficult. The sequence {1 +1/2+---+1/n}> isa
monotone increasing sequence that grows slowly and in fact grows slower and slower as n
gets larger. We will see, once we get to series, that this sequence has no upper bound and
so does not converge. It is not at all obvious that this sequence has no upper bound.

A common example of where monotone sequences arise is the following proposition.
The proof is left as an exercise.

Proposition 2.1.13. Let S C R be a nonempty bounded set. Then there exist monotone sequences

{xn}i and {yn}, | such that x,,y, € S and

sup S = lim x, and inf S = lim y,.

n—oo n—oo



2.1. SEQUENCES AND LIMITS 57

2.1.2 Tail of a sequence

Definition 2.1.14. For a sequence {x,} " ;, the K-tail (where K € N), or just the tail, of

{xn})_, is the sequence starting at K + 1, usually written as

{vnekdysy or {XahLea
For example, the 4-tail of {1/n}>_, is 1/5,1/6,1/7,1/s,.... The 0-tail of a sequence is the
sequence itself. The convergence and the limit of a sequence only depends on its tail.
Proposition 2.1.15. Let {x,})_; be a sequence. Then the following statements are equivalent:
(i) The sequence {x,} >, converges.
(it) The K-tail {x,.+x})_, converges for all K € N.
(i) The K-tail {xy+k},_, converges for some K € N.
Furthermore, if any (and hence all) of the limits exist, then for all K € N

n—oo

n—0oo

Proof. 1t is clear that (ii) implies (iii). We will therefore show first that (i) implies (ii), and
then we will show that (iii) implies (i). That is,

O prove (11)
iyl

to prove

(iii)

In the process we will also show that the limits are equal.

We start with (i) implies (ii). Suppose {x,} ; converges to some x € R. Let K € N be
arbitrary, and define vy, := x,+x. We wish to show that {yn};":1 converges to x. Given an
€ > 0, there exists an M € N such that |x — x| < € for all n > M. Note that n > M implies
n + K > M. Therefore, for all n > M, we have

|x - ]/n| = |x — xn4k| <e€.

Consequently, {yn};"=1 converges to x.

Let us move to (iii) implies (i). Let K € N be given, define vy, := x,+k, and suppose
that {y,})_, converges to x € R. That is, given an € > 0, there exists an M € N such that
|x - yn| <eforalln > M'. Let M .= M’ + K. Then n > M implies n — K > M’. Thus,
whenever n > M, we have

|x —x,| = |x — yn_K| <e.

Therefore, {x,})’_; converges to x. O

At the end of the day, the limit does not care about how the sequence begins, it only
cares about the tail of the sequence. The beginning of the sequence may be arbitrary.
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For example, the sequence defined by x,, := —'== is decreasing if we start at n = 4 (it is
increasing before). That is: {x,}>_, = 1/17,1/10,3/25,1/8,5/41,3/26,7/65,1/10,9/97,5/58, . . ., and

1/17 < 1/10 < 3/25 < 1/8 > 5/41 > 3/26 > 7/65 > 1/10 > 9/97 > 5/58 > .. ..

If we throw away the first 3 terms and look at the 3-tail, it is decreasing. The proof is left as
an exercise. Since the 3-tail is monotone and bounded below by zero, it is convergent, and
therefore the sequence is convergent.

2.1.3 Subsequences

It is useful to sometimes consider only some terms of a sequence. A subsequence of {x,,}_,
is a sequence that contains only some of the numbers from {x,}’_; in the same order.

Definition 2.1.16. Let {x,} | be a sequence. Let {n;};7, be a strictly increasing sequence
of natural numbers, that is, n; < n;41 for all i € N (in other words n1 < n; < n3 <---). The
sequence

{xn Y2y
is called a subsequence of {x,})_;.

So the subsequence is the sequence xy,, xy,, Xy, . - .. Consider the sequence {1/n}7’ ..
The sequence {1/3i}:2, =1,1/3,1/6,1/9,.. . is a subsequence. To see how these two sequences
fit in the definition, take n; := 3i, that is, {ni};’il is the sequence 3, 6,9,12, . ... The numbers
Xp; in the subsequence must come from the original sequence. So 1,0,1/3,0,1/5,... is
not a subsequence of {1/}’ ;. Similarly, order must be preserved. So the sequence
1,1/3,1/2,1/5,...is not a subsequence of {1/n} ™ ,.

A tail of a sequence is one special type of a subsequence. For an arbitrary subsequence,
we have the following proposition about convergence.

Proposition 2.1.17. If {x,}_, is a convergent sequence, then every subsequence {xy,}, is also
convergent, and

lim x, = lim xy,,.

n—oo 1—00
Proof. Suppose lim,— x, = x. So for every € > 0, there is an M € N such that for all
nz=M,

|x, — x| <e.

It is not hard to prove (do it!) by induction that n; > i for all i € N. Hence i > M implies

n; > M. Thus, foralli > M,
|xni - xl <E,

and we are done. O

Example 2.1.18: Existence of a convergent subsequence does not imply convergence of
the sequence itself. Take the sequence 0,1,0,1,0,1,.... Thatis, x, = 0if n is odd, and
xn = 1if n is even. The sequence {x,}_; is divergent; however, the subsequence {x2;} 7,
converges to 1 and the subsequence {x2i+1};’i1 converges to 0. Compare Proposition 2.3.7.



2.1. SEQUENCES AND LIMITS 59

2.1.4 Exercises

In the following exercises, feel free to use what you know from calculus to find the limit, if it exists.
But you must prove that you found the correct limit, or prove that the sequence is divergent.

Exercise 2.1.1: Is the sequence {3n}}’_, bounded? Prove or disprove.

Exercise 2.1.2: Is the sequence {n}" | convergent? If so, what is the limit?

1) 00
Exercise 2.1.3: Is the sequence {( 7 } convergent? If so, what is the limit?
n=1

Exercise 2.1.4: Is the sequence {27} | convergent? If so, what is the limit?

no , .
Exercise 2.1.5: Is the sequence {n n 1} convergent? If so, what is the limit?
n=1

no\® ) .
Exercise 2.1.6: Is the sequence {2—4-1} convergent? If so, what is the limit?
n n=1
Exercise 2.1.7: Let {x,} ", be a sequence.
a) Show that lim x, = 0 (that is, the limit exists and is zero) if and only if lim |x,| = 0.
n—oo n—o0

b) Find an example such that {|x,|};"_, converges and {x,}, _, diverges.

n [o0]
Exercise 2.1.8: Is the sequence {m} convergent? If so, what is the limit?
*n=1

Exercise 2.1.9: Show that the sequence {—} is monotone and bounded. Then use Theorem 2.1.10 to
n=1

%
find the limit.

+1
Exercise 2.1.10: Show that the sequence {n
find the limit.

} is monotone and bounded. Then use Theorem 2.1.10 to
n=1

Exercise 2.1.11: Finish the proof of Theorem 2.1.10 for monotone decreasing sequences.
Exercise 2.1.12: Prove Proposition 2.1.13.
Exercise 2.1.13: Let {x,},_, be a convergent monotone sequence. Suppose there exists a k € N such that

lim x, = x.
n—oo

Show that x,, = xy foralln > k.
Exercise 2.1.14: Find a convergent subsequence of the sequence {(—1)” }20:1'

Exercise 2.1.15: Let {x,} " _, be a sequence defined by

n ifnisodd,
Xy =
! Un if n is even.

a) Is the sequence bounded? (prove or disprove)

b) Is there a convergent subsequence? If so, find it.
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Exercise 2.1.16: Let {x,},, be a sequence. Suppose there are two convergent subsequences {xn,}:, and

{xm, };2,- Suppose
lim x,, = a and lim x,, = b,

i—o00 i—o00

where a # b. Prove that {x,} ", is not convergent, without using Proposition 2.1.17.

Exercise 2.1.17 (Tricky): Find a sequence {x,} ", such that for every y € R, there exists a subsequence
{xn, }32, converging to y.

Exercise 2.1.18 (Easy): Let {x,} ", be a sequence and x € R. Suppose for every € > 0, there is an M such
that |x, — x| < € for alln > M. Show that lim x, = x.

n—o0o

Exercise 2.1.19 (Easy): Let {x,})_, be a sequence and x € R such that there exists a k € N such that for all
n >k, x, = x. Prove that {x,} _, converges to x.

Exercise 2.1.20: Let {x,} ., be a sequence and define a sequence {y,} | by yor = xj2 and yox-1 = x
forall k € N. Prove that {x,} ", converges if and only if {y,} | converges. Furthermore, prove that if they
converge, then lim x, = lim y,.

n—00 n—00
Exercise 2.1.21: Show that the 3-tail of the sequence defined by x,, ‘= —7'5- is monotone decreasing. Hint:
Suppose n > m > 4 and consider the numerator of the expression x, — Xy,.

Exercise 2.1.22: Suppose that {x,} ", is a sequence such that the subsequences {xZn}Z":l, {x2n-1},_,, and
{x3n} 7, all converge. Show that {x,}"_, is convergent.

Exercise 2.1.23: Suppose that {x,} ", is a monotone increasing sequence that has a convergent subsequence.
Show that {x,}};_, is convergent. Note: So Proposition 2.1.17 is an “if and only if” for monotone sequences.
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2.2 Facts about limits of sequences

Note: 2-2.5 lectures, recursively defined sequences can safely be skipped

In this section we go over some basic results about the limits of sequences. We start by
looking at how sequences interact with inequalities.

2.2.1 Limits and inequalities

A basic lemma about limits and inequalities is the so-called squeeze lemma. It allows us to
show convergence of sequences in difficult cases if we find two other simpler convergent
sequences that “squeeze” the original sequence.

(0]

Lemma 2.2.1 (Squeeze lemma). Let {a,}"_;,

{bn};,,, and {x,})_, be sequences such that
ay < x, < by, foralln € N.
Suppose {an};, | and {b,}}’_, converge and

lim a, = lim b,.

n—oo n—-oo

Then {x,}_, converges and

lim x, = lim a, = lim b,,.

n—00 n—oo n—-oo
Proof. Let x = limy 0 a, = limy, 0 by. Let € > 0 be given. Find an M; such that for all
n > My, we have that |a, — x| < €, and an M such that for all n > M, we have |b,, — x| < €.
Set M := max{Mi, Mp}. Suppose n > M. In particular, x —a, < €, or x — € < a,. Similarly,
b, < x + €. Putting everything together, we find

X—€<a,<x,<b,<x+e.

In other words, —e < x, —x < € or |x, —x| < €. So {xn};;"=1 converges to x. See
Figure 2.3. O

€ €

\ \ \
X—¢€ a, b Xn b, xX+e

Figure 2.3: Squeeze lemma proof in picture.
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Example 2.2.2: One application of the squeeze lemma is to compute limits of sequences
using limits that we already know. For example, consider the sequence {ﬁ}:;l Since
\n > 1forall n € N, we have
! <
nyn
for all n € N. We already know lim;,—, 1/n = 0. Hence, using the constant sequence {0} _,
and the sequence {1/x} > in the squeeze lemma, we conclude

1
lim 0.

n— n\/ﬁ_

Limits, when they exist, preserve non-strict inequalities.

0<

gl

Lemma 2.2.3. Let {x,}_, and {y,} ", be convergent sequences and
Xp <Yy foralln € N,

Then
lim x, < lim y,.
n—0oo

n—0oo

Proof. Let x := lim, 0 X, and y = lim, e yn. Let € > 0 be given. Find an M; such
that for all n > M;, we have |x, — x| < ¢/2. Find an M, such that for all n > M;, we

have |yn - y| < ¢/2. In particular, for some n > max{M;j, M}, we have x — x,, < ¢/2 and
Yn — Y < ¢/2. We add these inequalities to obtain

Yn—Xn+Xx—-Y<E, or Yn—Xn <Y —X+E.
Since x,, < y,, we have 0 < y,, — x, and hence 0 < y — x + €. In other words,
x—y <e.
Because € > 0 was arbitrary, we obtain x — y < 0. Therefore, x < y. m]

The next corollary follows by using constant sequences in Lemma 2.2.3. The proof is
left as an exercise.

Corollary 2.2.4.
() If{xu};_, is a convergent sequence such that x, > 0 for all n € N, then
lim x,, > 0.
n—oo

(ii) Leta,b € Randlet {x,} ", bea convergent sequence such that
a<x,<b forallneN.

Then
a < lim x, <b.

n—oo

In Lemma 2.2.3 and Corollary 2.2.4 we cannot simply replace all the non-strict inequali-
ties with strict inequalities. For example, let x,, := -1/n and y, = /n. Then x,, < y,, x, <0,
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and y, > 0 for all n. However, these inequalities are not preserved by the limit operation
as lim,, e X5 = limy, 00 Y» = 0. The moral of this example is that strict inequalities may
become non-strict inequalities when limits are applied; if we know x, < y, for all n, we
may only conclude

lim x, < lim y,.

n—oo n—oo

This issue is a common source of errors.

2.2.2 Continuity of algebraic operations

Limits interact nicely with algebraic operations.

Proposition 2.2.5. Let {x,} | and {yn},,_, be convergent sequences.

(o]

(i) The sequence {Z”}n=1’ where z,, = X, + Yy, converges and

lim (x, + y,) = lim z, = lim x, + lim y,.

n—00 n—oo n—o00 n—oo
(it) The sequence {z} > |, where z, = X, — Yy, converges and

lim (xn - yn) = lim Zn = lim xn - lim yn .

n—oo n—oo n—oo n—oo

o0

(iii) The sequence {z,},_,, where z, = X, Yy, converges and

lim (x,y,) = lim z, = (lim xn) (lim yn) )
71—00 n—0o0 n—00 n—0oo

(iv) Iflimy—e yu # 0 and y, # O for all n € N, then the sequence {z,}:"_,, where z,, = ﬂ,

n=1’ "
converges and
. Xp ) lim,, 00 X5
Iim — = lim z;, = ——.
n—00 yi’l n—00 hmn—mo yn
Proof. We start with (i). Suppose {x,} ", and {y,} _, are convergent sequences and write
Zy = Xp + Yy Letx == 1limy 00 Xy, y = limy o Yy, and z = x + y.
Let € > 0 be given. Find an M; such that for all n > M;, we have |x, — x| < €¢/2. Find
an M, such that for all n > M, we have |yn - y| < €/2. Take M = max{Mi, M}. For all
n > M, we have

|zn — 2| :|(xn+yn)_(x+y)|
=|xn —x+ya—y|
Slxn—x|+|yn—y|
€ €

—+-=e€.
<2 > €

Therefore (i) is proved. Proof of (ii) is almost identical and is left as an exercise.
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Let us tackle (iii). Suppose again that {x,}}’; and {y,} ", are convergent sequences
and write z, == x,y,. Letx == limy 00 Xy, Y = hmn_>oo Yn, and zZ = xy.

Let € > 0 be given. Let K := max{|x|,|y|, ¢/3,1}. Find an M; such that for all n > M;,
we have |x,, — x| < 5%. Find an M such that for all n > M, we have |yn - y| < 3% Take
M := max{M;, M;}. For all n > M, we have

|20 — 2| = |[(xuyn) — (xy)|
= |(xn = x + X)(yu — y + y) — Y|
=|(xn — )y + x(yn — y) + (xu — X) (Y — v))|
< |(xn = )y| + |x(yn = v)| + |Gen = 2)(yn — v)|
= xn = x| |y| + 1%l [yn = y| + 120 = x| [y — ¥

€ € € €
— > < >
< SKK + K3K 3K3K (now notice that 5z < 1and K > 1)
€66,
-3 3 3

Finally, we examine (iv). Instead of proving (iv) directly, we prove the following simpler
claim:

Claim: If {y,}_, is a convergent sequence such that limy, oy, # 0and y, # 0 foralln € N,
then {1y}, converges and

n—eo Yy limy e Yp

Once the claim is proved, we take the sequence {1/,
{xx})_, and apply item (iii).

multiply it by the sequence

nl’

Proof of claim: Lete > Obegiven. Lety = lim; 0 ¥s. As |y| # 0, thenmin {|y|2 5 @} >
0. Find an M such that for all n > M, we have

Y
|y y|<m1n{|y| | |}

For all n > M, we have |y - yn| < |vl/2, and so

vl

[yl =y =y + yul < |y = yul + [ya] < 7 + [yl

Subtracting |v]/2 from both sides we obtain |vl/2 < |yx|,

1 _2
vl |yl
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We finish the proof of the claim:

1 1] |y-ya
y_n_y'_' YYn
_lr—wl
|y ya]
=l 2
T Iyl
v's
vl | |-
And we are done. O

By plugging in constant sequences, we get several easy corollaries. If c € R and {x,} ",
is a convergent sequence, then for example
lim cx, =¢ (lim xn) and lim (¢ +x,) =c+ l1m Xy
n—oo n—,oo n—oo
Similarly, we find such equalities for constant subtraction and division.
As we can take limits past multiplication we can show (exercise) that lim, . xX =
(lim;; -0 xn)k for all k € N. That is, we can take limits past powers. Let us see if we can do
the same with roots.

Proposition 2.2.6. Let {x,} _, be a convergent sequence such that x, > 0 for all n € N. Then

lim /x, = hm Xy

n—oo
Of course, to even make this statement, we need to apply Corollary 2.2.4 to show that
lim, e x5 > 0, so that we can take the square root without worry.

Proof. Let{x,} ", be a convergent sequence and let x := lim, . x,. As we just mentioned,
x> 0.

First suppose x = 0. Let € > 0 be given. Then there is an M such that for all n > M, we
have x,, = |x,,| < €2, or in other words, vVx, < €. Hence,

WE— \/§| =/x, < €.
Now suppose x > 0 (and hence Vx > 0).

[V = Vx| =

xn
1
_x|
N
1
X

We leave the rest of the proof to the reader. m]
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A similar proof works for the kth root. That is, we also obtain lim,_,« x}l/ k-

(lim;; -0 xn)l/ k. We leave this to the reader as a challenging exercise.
We may also want to take the limit past the absolute value sign. The converse of this
proposition is not true, see Exercise 2.1.7 part b).

Proposition 2.2.7. If {x,} >, is a convergent sequence, then {|xy|})’_, is convergent and

lim |x,| = [lim x,
n—o0 n—-0oo

Proof. We simply note the reverse triangle inequality
||xn| _|x||S [xn — x| .

Hence if |x, — x| can be made arbitrarily small, so can | |x,] = | x| | Details are left to the
reader. O

Let us see an example putting the propositions above together. Since lim;, o 1/n =0,
then

=1.

lim ‘\/1 T 1 — 100/,2
n—oo

That is, the limit on the left-hand side exists because the right-hand side exists. You really
should read the equality above from right to left.

On the other hand you must apply the propositions carefully. For example, by rewriting
the expression with common denominator first we find

2
lim( 1 —n):—l.
n—oo \ 1 + 1

2 yo©
However, {#}nzl and {n}> , are not convergent, so (

U (Jim ) =100 i 1)t 1)

. 2 . .
lim #) - (hm n) is nonsense.
n—o0 n—o0

2.2.3 Recursively defined sequences

Now that we know we can interchange limits and algebraic operations, we can compute
the limits of many sequences. One such class are recursively defined sequences, that is,
sequences where the next number in the sequence is computed using a formula from a
fixed number of preceding elements in the sequence.

Example 2.2.8: Let {x,}  , be defined by x; := 2 and

x2 -2

2x,

X+l = Xy —

We must first find out if this sequence is well-defined; we must show we never divide by
zero. Then we must find out if the sequence converges. Only then can we attempt to find
the limit.
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So let us prove that for all n x, exists and x,, > 0 (so the sequence is well-defined
and bounded below). Let us show this by induction. We know that x; = 2 > 0. For the
induction step, suppose x, exists and x,, > 0. Then

x%—2_2x%—x%+2_x%+2
2x, 2%, o 2x,

Xn+l1 = Xn —

2
It is always true that x2 +2 > 0, and as x,, > 0, then x,,41 = xz'i;z > 0.

Next let us show that the sequence is monotone decreasing. If we show that x2 =2 > 0
for all n, then x,,41 < x,, for all n. Obviously x% —2=4-2=2>0. For an arbitrary n, we
have

X2 -2=

(x%+2)2 5 X +4-8x2 xt-dx2+4 (x2-2)°
n+1 —e= = =

2xy 4x2 4x2 4x2

Since squares are nonnegative, xﬁ .1 — 2 = 0 for all n. Therefore, {x,}) _, is monotone
decreasing and bounded (x,, > 0 for all n), and so the limit exists. It remains to find the
limit.
Write
2XpXpe1 = x% + 2.

Since {x;+1},_; is the 1-tail of {x,} " ,, it converges to the same limit. Let us define

x = lim, o X,. Take the limit of both sides to obtain
2x2 = x? + 2,
or x> = 2. As x, > 0 for all n we get x > 0, and therefore x = V2.

You may have seen the sequence above before. It is Newton’s method* for finding the
square root of 2. This method comes up often in practice and converges very rapidly. We
used the fact that x% — 2 > 0, although it was not strictly needed to show convergence by
considering a tail of the sequence. The sequence converges as long as x; # 0, although
with a negative x; we would arrive at x = —V2. By replacing the 2 in the numerator we
obtain the square root of any positive number. These statements are left as an exercise.

You should, however, be careful. Before taking any limits, you must make sure the
sequence converges. Let us see an example.

Example 2.2.9: Suppose x1 := 1 and x,41 = x% + x,,. If we blindly assumed that the limit
exists (call it x), then we would get the equation x = x? + x, from which we might conclude
x = 0. However, it is not hard to show that {x;,}}’_; is unbounded and therefore does not
converge.

The thing to notice in this example is that the method still works, but it depends on
the initial value x1. If we set x; := 0, then the sequence converges and the limit really is 0.
An entire branch of mathematics, called dynamics, deals precisely with these issues. See
Exercise 2.2.14.

*Named after the English physicist and mathematician Isaac Newton (1642-1726/7).
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2.2.4 Some convergence tests

It is not always necessary to go back to the definition of convergence to prove that a
sequence is convergent. We first give a simple convergence test. The main idea is that
{xu}:7 | converges to x if and only if {|x, — x|}, converges to zero.

Proposition 2.2.10. Let {x,} ", be a sequence. Suppose there is an x € R and a convergent
sequence {a,},’_, such that
lim a, =0

n—oo

and
|x, — x| < ay foralln € N.

Then {x,}_, converges and lim x, = x.

n—oo

Proof. Let € > 0be given. Note that a,, > 0 for all n. Find an M € N such that foralln > M,
we have a, = |a, — 0| < €. Then, for all n > M, we have

|x, —x| <a, <e. |

As the proposition shows, to study when a sequence has a limit is the same as studying
when another sequence goes to zero. In general, it may be hard to decide if a sequence
converges, but for certain sequences there exist easy to apply tests that tell us if the sequence
converges or not. Let us see one such test. First, let us compute the limit of a certain specific
sequence.

Proposition 2.2.11. Let ¢ > 0.

(i) Ifc <1, then

lim ¢" =0.
n—00

(it) If c > 1, then {c"}’’_; is unbounded.

Proof. First consider ¢ < 1. As ¢ > 0, then ¢ > 0 for all n € N by induction. As ¢ < 1, then
¢! < " forall n. So {c"}*_, is a decreasing sequence that is bounded below. Hence, it is
convergent. Let x := lim, e ¢”. The 1-tail {c¢"*1} | also converges to x. Taking the limit
of both sides of ¢"*! = ¢ - ¢, we obtain x = cx, or (1 —c)x = 0. It follows that x = 0 as ¢ # 1.

Now consider ¢ > 1. Let B > 0 be arbitrary. As1/c < 1, then {(1/c)”};°=1 converges to 0.
Hence for some large enough n, we get

1 (1\" 1

—=|-] <=

c c B
In other words, ¢ > B, and B is not an upper bound for {c"} ,. As B was arbitrary,
{c"}_, is unbounded. O

In the proposition above, the ratio of the (n + 1)th term and the nth term is c. We
generalize this simple result to a larger class of sequences. The following lemma will come
up again once we get to series.
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Lemma 2.2.12 (Ratio test for sequences). Let {x,} ., be a sequence such that x, # 0 for all n
and such that the limit

X .
L= lim [Xn1] exists.
n—>00 |xn|

(i) If L <1, then {x,}) _, converges and lim x, = 0.

n—-oo

(i) IfL > 1, then {x,} ", is unbounded (hence diverges).

If L exists, but L = 1, the lemma says nothing. We cannot make any conclusion based
on that information alone. For example, the sequence {/n}°_; converges to zero, but L = 1.

The constant sequence {1}’ converges to 1, not zero, and L = 1. The sequence {(—1)” }:;1
does not converge at all, and L = 1 as well. Finally, the sequence {n}’’_; is unbounded, yet
again L = 1. The statement of the lemma may be strengthened somewhat, see exercises
2.2.13 and 2.3.15.

Proof. Suppose L < 1. As |T”*|1| > 0 forall n, then L > 0. Pick r such that L < r < 1. We

wish to compare the sequence {x,})_, to the sequence {r"}* .. The idea is that while the

| n+1|

ratio 7%= is not going to be less than L eventually, it will eventually be less than r, which
is still less than 1. The intuitive idea of the proof is illustrated in Figure 2.4.

L r 1

Asr—L >0, there exists an M € N such that for all n > M, we have

X
X1 —L‘<r—L.
| x|
Therefore, forn > M,
X X
|n+l|—L<1’—L or |n+1|<r
| 2] E

For n > M (that is for n > M + 1) write

| lemal [eman] Xl

<lxm|rr---r=|xpml pM = (|2 m] r‘M)r”.
Ixml| |xmsal  [xn-1]

[ xn] = |xm
The sequence {r"}*  converges to zero and hence |xu| r™r" converges to zero. By
Proposition 2.2.10, the M-tail {x,}*° converges to zero and therefore {x, }_; converges
to zero.

n=M+1
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Now suppose L > 1. Pick r such that1 <7 < L. AsL —r > 0, there existsan M € N
such that foralln > M

X
| n+1| _ L < L —7r.
| x|
Therefore,
|xn+1|
| x5
Again for n > M, write

| lxmal [xman] Xl

> |xm|rr--r =|xpml M — (|xm| r"M)r”.
Ixml 1xme1]  [xn—]

x| = l2em

The sequence {r"} | is unbounded (since r > 1), and so {x,} ~_, cannot be bounded (if

|x,| < B for all n, then r" < ﬁr M for all n > M, which is impossible). Consequently,
{xu};7 | cannot converge. O

Example 2.2.13: A simple application of the lemma above is to prove

n
lim 2— =0
n—oo n'
Proof: Compute
2/ + )t 2L 2
2n/nt 2" (n+1)! n+1

It is not hard to see that {%}:’:1 converges to zero. The conclusion follows by the lemma.

Example 2.2.14: A more complicated (and useful) application of the ratio test is to prove

lim n'/" = 1.

n—oo

Proof: Let € > 0 be given. Consider the sequence {(1 +€)n} . Compute

m+1)/1+e)™" n+1 1
n/l+e)  n l+€

Thelimitof%”zlﬂ-%asn—>ooisl,andso

m+1)/1+e)"" 1

= <1
n—co  n/(1+¢€)" 1+e€

Therefore, {(1+ 7 } , converges to 0. In particular, there exists an M such that for n > M,

we have (1+ T < 1l,orn < (1+¢€)", orn'/" <1+e Asn > 1, then n'/" > 1, and so

0 < n'/" —1 < e. Consequently, lim n'/" = 1.

n—oo
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2.2.5 Exercises

Exercise 2.2.1: Prove Corollary 2.2.4. Hint: Use constant sequences and Lemma 2.2.3.
Exercise 2.2.2: Prove part (ii) of Proposition 2.2.5.

Exercise 2.2.3: Prove that if {x,} " , is a convergent sequence, k € N, then
k k
lim x, = (lim xn) .
n—00 n—o0o
Hint: Use induction.

Exercise 2.2.4: Suppose x1 = % and x,11 ‘= x2. Show that {xu}: | converges and find limy, o x,. Hint:
You cannot divide by zero!

Exercise 2.2.5: Let x,, :
limit.

—”_CZS(”). Use the squeeze lemma to show that {x,})_, converges and find the

Exercise 2.2.6: Let x,, = # and y, = 1. Define z, = % and w, = i—: Do {z,}, and {w,}
converge? What are the limits? Can you apply Proposition 2.2.57 Why or why not?

[o0]

Exercise 2.2.7: True or false, prove or find a counterexample. If {x,}_, is a sequence such that {x3}°_|

converges, then {x,}}’_, converges.

Exercise 2.2.8: Show that
2
.on
LTINS

Exercise 2.2.9: Suppose {x,} ", is a sequence, x € R, and x, # x for all n € N. Suppose the limit

Xpe1 — X
L:= lim —l ntl |

n—oo |Xx, — X|
exists and L < 1. Show that {x,}_, converges to x.

Exercise 2.2.10 (Challenging): Let {x,})_, be a convergent sequence such that x,, > 0 and k € N. Then
1/k
lim x,l/k = (lim xn) .
n—oo n—oo

k_1/k

b i ; x! 1
Hint: Find an expression q such that =—— = 7

Exercise 2.2.11: Let v > 0. Show that starting with an arbitrary x1 # 0, the sequence defined by

-r

Xp+1 = Xp — o
n

converges to \r if x1 > 0 and —r if x1 < 0.
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Exercise 2.2.12: Let {a,}, _, and {b,} " _; be sequences.

a) Suppose {a,},_, is bounded and {b,}>_, converges to 0. Show that {a,b,} ", converges to 0.

[se]

b) Find an example where {a,}_, is unbounded, {b,} ", converges to 0, and {a, b} _, is not convergent.

c) Find an example where {a,} >, is bounded, {b,}

_, converges to some x # 0, and {a,b,})_, is not
convergent.

Exercise 2.2.13 (Easy): Prove the following stronger version of Lemma 2.2.12, the ratio test. Suppose
{xn};_, is a sequence such that x, # 0 for all n.

a) Prove that if there exists an v < 1 and M € N such that

|xn+1|

<r foralln > M,
[ 2]

then {x,}_, converges to 0.
b) Prove that if there exists an v > 1 and M € N such that

|xn+1|
| x|

>r foralln > M,

then {x,}>_, is unbounded.

Exercise 2.2.14: Suppose x1 = c and Xp41 = x% + x,,. Show that {xn};"=1 converges if and only if
—1 < ¢ £ 0, in which case it converges to 0.

Exercise 2.2.15: Prove lim (n2 +1)"" = 1.
n—o0
Exercise 2.2.16: Prove that {(n!)l/ ”}(::1 is unbounded. Hint: Show that for every C > 0, %}::1

conoerges to zero.
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2.3 Limit superior, limit inferior, and Bolzano—-Weierstrass

Note: 1-2 lectures, alternative proof of BW optional

In this section we study bounded sequences and their subsequences. In particular,
we define the so-called limit superior and limit inferior of a bounded sequence and talk
about limits of subsequences. Furthermore, we prove the Bolzano-Weierstrass theorem?*,
an indispensable tool in analysis, showing the existence of convergent subsequences.

We proved that every convergent sequence is bounded; nevertheless, there exist many
bounded divergent sequences. For instance, the sequence {(—1)”}:0=1 is bounded, but
divergent. All is not lost, however, and we can still compute certain limits with a bounded
divergent sequence.

2.3.1 Upper and lower limits

There are ways of creating monotone sequences out of any sequence, and in this fashion
we get the so-called limit superior and limit inferior. These limits always exist for bounded
sequences.

If a sequence {x,} , is bounded, then the set {x : k € N} is bounded. For every 7, the
set {xx : k > n} is also bounded (as it is a subset), so we take its supremum and infimum.

Definition 2.3.1. Let {x,}’_; be a bounded sequence. Define the sequences {a,} ~, and
{bn};_ by an = sup{xx : k > n} and b, = inf{xy : k > n}. Define, if the limits exist,

limsup x, := lim a,, liminfx, = lim b,.
n—0co n—oo n—oo n—-oo
For a bounded sequence, liminf and limsup always exist (see below). It is possible to
define liminf and limsup for unbounded sequences if we allow co and —oo, and we do so
later in this section. It is not hard to generalize the following results to include unbounded
sequences; however, we first restrict our attention to bounded ones.

Proposition 2.3.2. Let {x,} " _, bea bounded sequence. Let a, and b, be as in the definition above.

(i) The sequence {ay,};_, is bounded monotone decreasing and {b,},_; is bounded monotone
increasing. In particular, lim inf x,, and lim sup x,, exist.
n

— n—oo
(ii) limsup x, = inf{a, : n € N} and liminf x,, = sup{b, : n € N}.
n— o0 n—oo
(iii) liminfx, < limsup x,.
n—eo n—-00
Proof. Let us see why {a,} ", is a decreasing sequence. As a, is the least upper bound
for {xy : k > n}, it is also an upper bound for the subset {xy : k > n + 1}. Therefore a,11,
the least upper bound for {x; : k > n + 1}, has to be less than or equal to a,, the least

*Named after the Czech mathematician Bernhard Placidus Johann Nepomuk Bolzano (1781-1848), and
the German mathematician Karl Theodor Wilhelm Weierstrass (1815-1897).
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upper bound for {xi : k > n}. Thatis, a, > a,41 for all n. Similarly (an exercise), {b,}_,
is an increasing sequence. It is left as an exercise to show that if {x;} ", is bounded, then
{an};,_, and {b,}  _, must be bounded.

The second item follows as the sequences {a,}; _, and {b,} ", are monotone and
bounded.

For the third item, note that b, < a,, as the inf of a nonempty set is less than or equal
to its sup. The sequences {a,}  , and {b,}  , converge to the limsup and the liminf
respectively. Apply Lemma 2.2.3 to obtain

lim b, < lim a,. O
n—00 n—oo
cooe
©00000000000000000000 46006
° 00000000000 ®
’ 0ooo0o0o0O0
limsup x, | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ e
n—oo
Iiminf x,, | =~ _ _ _ _ _* _ _ _ _ " _ " _ _ _ ..
n—oo .
QOOOOOOOOOOOOOOOOOO0
. . O0®
COOOOOOOOOOOO0O0®
. 000

Figure 2.5: First 50 terms of an example sequence. Terms x,, of the sequence are marked with
dots (+), a,, are marked with circles (o), and b, are marked with diamonds (o).

Example 2.3.3: Let {x,} , be defined by

X, = o
0 if n is even.

{”T“ if 1 is odd,

Let us compute the lim inf and lim sup of this sequence. See also Figure 2.6. First the limit
inferior:

liminfx, = lim (inf{x; : k > n}) = lim 0 = 0.
n—oo

n—oo n—oo

For the limit superior, we write

limsup x, = lim (sup{xy : k > n}).
n—oo

n—oo
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It is not hard to see that

1l if 1 is odd,
sup{xk:an}:{é nmso

It if 11 is even.

We leave it to the reader to show that the limit is 1. That is,

limsup x, = 1.

n—oo

Do note that the sequence {xn};"’=1 is not a convergent sequence.

hmsupxn_ © ® 0o e 0 e 0 e 0 ® 0 ® o

n—oo

liminf x,
n—0oo

&

Figure 2.6: First 20 terms of the sequence in Example 2.3.3. The marking is as in Figure 2.5.

We associate certain subsequences with lim sup and liminf. It is important to notice
that {a,} >, and {b,} ", are not subsequences of {x,}  ,, nor do they have to even consist
of the same numbers. For example, if the sequence is {1/n}> ,, then b, = 0 for all n € N.
Theorem 2.3.4. If {x,}}’_, is a bounded sequence, then there exists a subsequence {x, } ., such
that

lim x,, = limsup x,.

k—o0 H—00

Similarly, there exists a (perhaps different) subsequence {xm, }7. | such that

lim x,,, = liminfx,.

k—o0 n—oo

Proof. Define a, = sup{xy : k > n}. Write x = limsup,_,  x, = lim, e a,. We define
the subsequence inductively. Let n1 := 1, and suppose n1, np, ..., nx—1 are already defined
for some k > 2. Pick an m > njy_1 + 1 such that

A(n_q+1) — Xm < X
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Such an m exists as a,, ,+1) is a supremum of the set {x; : £ > n;_1 + 1} and hence there are

elements of the sequence arbitrarily close (or even possibly equal) to the supremum. Set

ng = m. The subsequence {x,,}}. ; is defined. Next, we must prove that it converges to x.
For all k > 2, we have a(,, ,+1) > a,, (Why?) and a,, > x,,. Therefore, for every k > 2,

|ai’lk - lek| = ai’lk - x?’lk

S Ay +1) ~ Xy
- 1
7
Let us show that {x;, }}7, converges to x. Note that the subsequence need not be
monotone. Let € > 0 be given. As {a,}) _, converges to x, the subsequence {ay,}},

converges to x. Thus there exists an M; € N such that for all k > M;, we have
k 2
Find an M5, € N such that

1
— <
M, —

Take M := max{Mj, Mj,2}. Forall k > M,

N o

|x — xnk| = |ank —Xp, X — ank|
< |ank — xnk| + |x — ank|
1
< %4‘
1

S_
M,

+ NI

<

We leave the statement for lim inf as an exercise. m|

2.3.2 Using limit inferior and limit superior

The advantage of liminf and limsup is that we can always write them down for any
(bounded) sequence. If we could somehow compute them, we could also compute the
limit of the sequence if it exists, or show that the sequence diverges. Working with lim inf
and lim sup is a little bit like working with limits, although there are subtle differences.

Proposition 2.3.5. Let {x,} _, be a bounded sequence. Then {x,} ", converges if and only if

liminf x, = limsup x;,.

n—oo n—00

Furthermore, if {x,} >~ | converges, then

lim x, = liminfx, = limsup x,.

n—oo n—oo n—00
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Proof. Let a, and b, be as in Definition 2.3.1. In particular, forall n € N,

b, < x, < a,.
First suppose liminf, .. x,, = limsup, _, x,,. Then {czn};":1 and {bn};’(’=1 both converge to
the same limit. By the squeeze lemma (Lemma 2.2.1), {x,} , converges and

lim b, = lim x, = lim a,.
n—00 n—00 n—oo
0o .
Now suppose {x,};_; converges to x. By Theorem 2.3.4, there exists a subsequence
{xu,} 1o, converging to limsup, ,  x,. As {x,}  , converges to x, every subsequence
converges to x and so limsup, _,  x; = limy_,c Xy, = x. Similarly, liminf, .o x, =x. O

Limit superior and limit inferior behave nicely with subsequences.

Proposition 2.3.6. Suppose {x,},_, is a bounded sequence and {xn, },__, is a subsequence. Then

liygn infx, < 11;11 inf x,, < limsupx,, <limsup x,.
—00 —00 k—s00 Nn—00
Proof. The middle inequality has been proved already. We will prove the third inequality,
and leave the first inequality as an exercise.

We want to prove that limsup,_,, x5, < limsup,_, x,. Define a,, = sup{xy : k > n}
as usual. Also define ¢, = sup{xy, : k > n}. It is not true that {c,}};_; is necessarily a
subsequence of {a,} . However, as ny > k for all k, we have {x;, : k > n} C {x) : k > n}.
A supremum of a subset is less than or equal to the supremum of the set, and therefore

cn < ay for all n.

Lemma 2.2.3 gives
lim ¢, < lim a,,

n—oo n—oo

which is the desired conclusion. m|

Limit superior and limit inferior are the largest and smallest subsequential limits. If
the subsequence {x,, }} , in the previous proposition is convergent, then lim inf_,c Xy, =
limy 0 Xy, = limsup,_,  xp,. Therefore,

liminfx, < lim x,, < limsupx,.
n—o0 k— o0 n—00

Similarly, we get the following useful test for convergence of a bounded sequence. We
leave the proof as an exercise.

Proposition 2.3.7. A bounded sequence {x,}_, is convergent and converges to x if and only if
every convergent subsequence {xp, }}. , converges to x.
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2.3.3 Bolzano-Weierstrass theorem

While it is not true that a bounded sequence is convergent, the Bolzano—Weierstrass
theorem tells us that we can at least find a convergent subsequence. The version of
Bolzano-Weierstrass we present in this section is the Bolzano-Weierstrass for sequences of
real numbers.

Theorem 2.3.8 (Bolzano-Weierstrass). Suppose a sequence {x,}";_; of real numbers is bounded.

Then there exists a convergent subsequence {xp,}32 ;.

Proof. Theorem 2.3.4 says that there exists a subsequence whose limitis limsup, _,  x,. O

The reader might complain right now that Theorem 2.3.4 is strictly stronger than the
Bolzano-Weierstrass theorem as presented above. That is true. However, Theorem 2.3.4
only applies to the real line, but Bolzano—Weierstrass applies in more general contexts (that
is, in R") with pretty much the exact same statement.

As the theorem is so important to analysis, we present an explicit proof. The idea of the
following proof also generalizes to different contexts.

Alternate proof of Bolzano—Weierstrass. As the sequence is bounded, there exist two numbers
a1 < by such thatay < x, < by forall n € N. We will define a subsequence {xni};’i1 and two
sequences {a;};7, and {b;}3?,, such that {a;}, is monotone increasing, {b;}?, is monotone
decreasing, a; < x,,; < b; and such that lim; e a; = lim; b;. That {x;,}32, converges
then follows by the squeeze lemma.

We define the sequences inductively. We will define the sequences so that for all i, we
have a; < b;, and that x,, € [a;, b;] for infinitely many n € N. We have already defined a;
and b1. We take n; := 1, that is x,,;, = x1. Suppose that up to some k € N, we have defined
the subsequence x;,, X, . .., X5, and the sequences a1, ay, ..., ax and by, by, ..., bx. Let
y = @ Clearly ax <y < by. If there exist infinitely many j € N such that x; € [a, y],
then set ax.1 = ax, bx+1 =y, and pick ng41 > ng such that x,,,, € [ax, y]. If there are not
infinitely many j such that x; € [ax, y], then it must be true that there are infinitely many
j € N such that x; € [y, b]. In this case pick a1 ‘= y, bxy1 = by, and pick ng1 > ny such
that x,,,., € [y, bx].

We now have the sequences defined. What is left to prove is that lim; . a; = lim;_, b;.
The limits exist as the sequences are monotone. In the construction, b; — 4; is cut in half in

each step. Therefore, bj11 — 4,41 = % By induction,

bi —a; = blzl_—_lal
Let x := lim; e a;. As {a;};2, is monotone,
x =sup{a; :i € N}.
Let y := lim; o b; = inf{b; : i € N}. Since a; < b; for all i, then x < y. As the sequences
are monotone, then for all 7, we have (why?)

b1 — a7
2i-1

y—-x<bi—a;=
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Because b;i__”fl is arbitrarily small and y — x > 0, we have y — x = 0. Finish by the squeeze

lemma. O

Yet another proof of the Bolzano—Weierstrass theorem is to show the following claim,
which is left as a challenging exercise. Claim: Every sequence has a monotone subsequence.

2.3.4 Infinite limits

Just as for infima and suprema, it is possible to allow certain limits to be infinite. That is,
we write lim, e X, = 00 or lim;,_,. X, = —oo for certain divergent sequences.

Definition 2.3.9. We say {x,},_, diverges to infinity* if for every K € R, there exists an
M € N such that for all n > M, we have x,, > K. In this case we write

lim x, = oco.

n—oo

Similarly, if for every K € R there exists an M € N such that for all # > M, we have x,, < K,
we say {x,} _, diverges to minus infinity and we write

lim x, := —oo.

With this definition and allowing co and —oo, we can write lim,_,« X, for any monotone
sequence.

Proposition 2.3.10. Suppose {x,}'_, is a monotone unbounded sequence. Then

lim x, =

n—oo

oo if{xn}> | isincreasing,
—oo if{xn}> | is decreasing.

Proof. The case of monotone increasing follows from Exercise 2.3.14 part c) below. Suppose
{xx})_, is decreasing and unbounded. That the sequence is unbounded means that for
every K € R, there is an M € N such that x); < K. By monotonicity, x, < xp < K for all

n > M. Therefore, lim,, 0 X;; = —0. O
Example 2.3.11:

im n = oo, lim n? = o, lim —n = —co.

n—00 n—0o0 n—0o0o

We leave verification to the reader.

We may also allow lim inf and lim sup to take on the values co and —oo, so that we can
apply lim inf and lim sup to absolutely any sequence, not just a bounded one. Unfortunately,
the sequences {a,,}_; and {b,} ", are not sequences of real numbers but of extended real
numbers. In particular, a,, can equal oo for some 7, and b,, can equal —c0. So we have no
definition for the limits. But since the extended real numbers are still an ordered set, we
can take suprema and infima.

*Sometimes it is said that {x, } | converges to infinity.
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Definition 2.3.12. Let {x,} >, be an unbounded sequence of real numbers. Define
sequences of extended real numbers by a,, := sup{xy : k > n} and b, := inf{x : k > n}.
Define

limsup x,, = inf{a, : n € N}, and liminf x, = sup{b, : n € N}.
n—oo

n—oo

This definition agrees with the definition for bounded sequences.

Proposition 2.3.13. Let {x,} _, be an unbounded sequence. Define {a,}, , and {b,} ", as
above. Then {a,}:, is decreasing, and {b,},’_, is increasing. If a, is a real number for every
n, then limsup, | x, = lim, 0 ay. If by is a real number for every n, then liminf, . x, =
limn_)oo bn.

Proof. As before, a, = sup{xy : k > n} > sup{xx : k > n+1} = ay1. So{a,}, , is
decreasing. Similarly, {b,} ", is increasing.

If the sequence {a,,l};":1 is a sequence of real numbers, then lim,,_,. a4, = inf{a, : n € N}.
This follows from Theorem 2.1.10 if {a, }}_, is bounded and Proposition 2.3.10 if {a,}}_, is
unbounded. We proceed similarly with {b, } ;. O

The definition behaves as expected with lim sup and lim inf, see exercises 2.3.13 and
2.3.14.

Example 2.3.14: Suppose x, = 0 for odd n and x,, := n for even n. Then a,, = co for all n,
since for every M, there exists an even k such that x;y = k > M. On the other hand, b, =0
for all n, as for every n, the set {by : k > n} consists of 0 and positive numbers. So,

lim x, does not exist, limsup x,, = oo, liminf x, = 0.

n—oo n—00 n—oo

2.3.5 Exercises

Exercise 2.3.1: Suppose {xn}Z":1 is a bounded sequence. Define a,, and b,, as in Definition 2.3.1. Show that
{an}:, and {b,}*_, are bounded.

Exercise 2.3.2: Suppose {x,}, _, is a bounded sequence. Define b, as in Definition 2.3.1. Show that {b,}
is an increasing sequence.

Exercise 2.3.3: Finish the proof of Proposition 2.3.6. That is, suppose {x,}, _, is a bounded sequence and
{xu,} i, is a subsequence. Prove liminfx, < liminfx,,.

n—00 k—o0

Exercise 2.3.4: Prove Proposition 2.3.7.

Exercise 2.3.5:
n

-1
a) Let x,, = % Find lim sup x,, and lim inf x,,.

(n - 1)(=D)"
n

n—00

b) Let x, = . Find lim sup x,, and lim inf x,,.
n—oo

n—oo
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Exercise 2.3.6: Let {x,} ", and {y,} | be bounded sequences such that x, < y, for all n. Show

limsup x,, < limsup y, and liminf x,, < liminf y,.

n—00 n—oo n—oo n

Exercise 2.3.7: Let {x,}_, and {y,} ", be bounded sequences.
a) Show that {x, + yn},_; is bounded.
b) Show that
(iminfx, ) + (liminfy, ) < timinf (x, + ).
Hint: One proof is to find a subsequence {xy,, + Yn,, } _; of {Xu + yn};,_, that converges. Then find a
subsequence {xn,, };2, of {xn, },_; that converges.

¢) Find an explicit {x,}; | and {y,},_, such that

n=1

(lim inf xn) + (liﬂg}f yn) < h,fii{,‘f (Xn + Yn).

n—oo

Hint: Look for examples that do not have a limit.
Exercise 2.3.8: Let {x,},_, and {yn},_, be bounded sequences (by the previous exercise, {xn + Yn}, _, is
bounded).
a) Show that
(lim sup xn) + (lim sup yn) > limsup (x, + ¥n).

n—oo n—oo n—oo

Hint: See previous exercise.
b) Find an explicit {x,} _ and {y,} >, such that

(lim sup xn) + (lim sup yn) > limsup (x, + yn).

n—o0o n—00 n—00

Hint: See previous exercise.

Exercise2.3.9: IfS C Risaset, then x € R isa cluster point if for every € > 0, the set (x—€, x +€)NS\ {x}
is not empty. That is, if there are points of S arbitrarily close to x. For example, S == {1/n : n € N} has a
unique (only one) cluster point 0, but 0 ¢ S. Prove the following version of the Bolzano—Weierstrass theorem:

Theorem. Let S C R be a bounded infinite set, then there exists at least one cluster point of S.

Hint: If S is infinite, then S contains a countably infinite subset. That is, there is a sequence {x,})_, of
distinct numbers in S.

Exercise 2.3.10 (Challenging):

a) Prove that every sequence contains a monotone subsequence. Hint: Call n € N a peak of the sequence
{xn}, if xm < xy for all m > n. There are two possibilities: Either the sequence has at most finitely
many peaks, or it has infinitely many peaks.

b) Conclude the Bolzano—Weierstrass theorem.
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Exercise 2.3.11: Prove a stronger version of Proposition 2.3.7. Suppose {x,}_, is a sequence such that
every subsequence {xn, }_, has a subsequence {xy,, }:2, that converges to x.

a) First show that {x,} ", is bounded.

b) Now show that {x,}_, converges to x.

Exercise 2.3.12: Let {xy}; _, be a bounded sequence.

a) Prove that there exists an s such that for every r > s, there exists an M € N such that for all n > M, we
have x,, < r.

b) If s is a number as in a), then prove limsup x,, < s.

n—oo

c) Show that if S is the set of all s as in a), then limsup x,, = inf S.

n—o00
Exercise 2.3.13 (Easy): Suppose {x,} ", is such that liminf x,, = —co, lim sup x,, = oo.
B n—00 n—o0
a) Show that {x,};’_, is not convergent, and also that neither lim x, = co nor lim x, = —oo is true.
n—oo n—-oo

b) Find an example of such a sequence.

Exercise 2.3.14: Let {x,} " be a sequence.
a) Show that lim x, = oo if and only if liminf x,, = co.
n—00 1n—00

b) Then show that lim x, = —co if and only if lim sup x, = —oo.
n—oo n—oo
c) If {xn},_, is monotone increasing, show that either lim, o x, exists and is finite or lim, e X, = 0.
In either case, lim;, _,o X, = sup{x, : n € N}.

Exercise 2.3.15: Prove the following stronger version of Lemma 2.2.12, the ratio test. Suppose {x,})_, isa
sequence such that x, # 0 for all n.

a) Prove that if

x
limsup| n+| <1,
n—00 |x1’l|
then {x,}_, converges to 0.
b) Prove that if
x
liming 224105
n—oo | x|

then {x,}>_, is unbounded.

Exercise 2.3.16: Suppose {x,},_, is a bounded sequence, a,, = sup{xy : k > n} as before. Suppose that
for some € € N, ag ¢ {xi : k > £}. Then show that a; = a, for all j > {, and hence lim sup x,, = ay.
n—oo
Exercise 2.3.17: Suppose {x,}, _, is a sequence, and a, ‘= sup{xy : k > n} and b, := sup{xy : k > n}
as before.
a) Prove that if a; = oo for some € € N, then lim sup x,, = oo.
n—00

b) Prove that if by = —oo for some { € N, then lim inf x,, = —oo.

n—o0
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Exercise 2.3.18: Suppose {x,}_, is a sequence such that both liminf, . x, and limsup, _, _ x, are finite.
Prove that {x,}}"_, is bounded.

[e¢]

Exercise 2.3.19: Suppose {x,},
such that for all k > M,

| 1s a bounded sequence, and € > 0 is given. Prove that there exists an M

Xp — (limsup xn) <e€ and (liminf xn) —xr <E.
n—o00 n—oo

Exercise 2.3.20: Extend Theorem 2.3.4 to unbounded sequences: Suppose that {x,},°_, is a sequence. If

limsup,,_,, xn = oo, then prove that there exists a subsequence {x,} converging to co. Then prove the

same result for —oo, and then prove both statements for lim inf.
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2.4 Cauchy sequences

Note: less than a lecture

Often we wish to describe a certain number by a sequence that converges to it. In this
case, it is impossible to use the number itself in the proof that the sequence converges. It
would be nice if we could check for convergence without knowing the limit.

Definition 2.4.1. A sequence {x,})_, is a Cauchy sequence® if for every € > 0 there exists an
M € N such that for all n > M and all k > M, we have

|x, — xx| < €.

Informally, being Cauchy means that the terms of the sequence are eventually all
arbitrarily close to each other. We might expect such a sequence to be convergent, and we
would be correct due to R having the least-upper-bound property. Before we prove this
fact, we look at some examples.

Example 2.4.2: The sequence {!/»}>_; is a Cauchy sequence.
Proof: Given € > 0, find M such that M > 2/e. Then for n, k > M, we have 1/n < €/2 and
1/k < €/2. Therefore, for n, k > M, we have

1 1

n k

1

n

1

<
k

+lol< S+
—+=-=€.
2 2

Example 2.4.3: The sequence {(—1)” }:ozl is not a Cauchy sequence.
Proof: Given any M € N, take n > M to be any even number, and let k := n + 1. Then

1" = 0| = |07 -
=[1-(-1)| =2.
Therefore, for any € < 2 the definition cannot be satisfied, and the sequence is not Cauchy.
Proposition 2.4.4. If a sequence is Cauchy, then it is bounded.

Proof. Suppose {x,}>_; is Cauchy. Pick an M such that for all n,k > M, we have
|x, — xi| < 1. In particular, for alln > M,

|x, —xm| < 1.
By the reverse triangle inequality, |x,| — |xm| < |x, — xpm| < 1. Hence for n > M,
|xn| <1+ |xml|.

Let
B = max{|x1| x|, o lxpm=1], 1+ |xM|}.
Then |x,| < B forall n € N. O
*Named after the French mathematician Augustin-Louis Cauchy (1789-1857).
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Theorem 2.4.5. A sequence of real numbers is Cauchy if and only if it converges.

Proof. Suppose {x, })_, converges to x, and let € > 0 be given. Then there exists an M such
that forn > M,

€
|x, — x| < 5

Hence forn > M and k > M,
€

€
|xn — xk| = |xn —x +x — x| < |xy — x| +|x — xk] <§+§:e.

Alright, that direction was easy. Now suppose {x,}_; is Cauchy. We have shown that
{xu}7, is bounded. For a bounded sequence, liminf and limsup exist, and this is where
we use the least-upper-bound property. If we show that

liminf x, = limsup x,,

n—o00 n—0co

then {x,}° ; must be convergent by Proposition 2.3.5.
Define a = limsup,_,  x, and b = liminf, . x,. By Theorem 2.3.4, there exist

subsequences {xy,} 2, and {xy,}:2,, such that

lim x,, =a and lim x,,, = b.

1—00 1—00
Given an € > 0, there exists an M; such that |xni - a| < ¢/3forall i > M7 and an M, such
that |xml. - b| < €/3 for all i > Mj;. There also exists an M3 such that |x, — x| < €¢/3 for all
n,k > Ms. Let M := max{Mi, My, M3}. If i > M, then n; > M and m; > M. Hence,

la —b| = a—xni+xni—xmi+xmi—b|
< |a —xni| + |xni - xm,.| + |xm1. - b|
<Stiiii=e
3 3 3
As|a —b| < € forall € > 0, then a = b and the sequence converges. O

Remark 2.4.6. The statement of this theorem is sometimes used to define the completeness
property of the real numbers. We say a set is Cauchy-complete (or sometimes just complete)
if every Cauchy sequence converges to something in the set. Above, we proved that
as R has the least-upper-bound property, R is Cauchy-complete. One can construct R
via “completing” Q by “throwing in” just enough points to make all Cauchy sequences
converge (we omit the details). The resulting field has the least-upper-bound property. The
advantage of defining completeness via Cauchy sequences is that it generalizes to more
abstract settings such as metric spaces, see chapter 7.

The Cauchy criterion is stronger than |x,+1 — x| (or |xn+]~ - xn| for a fixed j) going to
zero as n goes to infinity. When we get to the partial sums of the harmonic series (see
Example 2.5.11 in the next section), we will have a sequence such that x,41 — x, = /n,
yet {x,}_, is divergent. In fact, for that sequence, lim;, |xn+]- - xn| =0 for everyj e N
(compare Exercise 2.5.12). The key point in the definition of Cauchy is that n and k vary
independently and can be arbitrarily far apart.
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2.4.1 Exercises

Exercise 2.4.1: Prove that {”igl }2021 is Cauchy using directly the definition of Cauchy sequences.

Exercise 2.4.2: Let {x,}, _, be a sequence such that there exists a positive C < 1 and for all n,
|Xn41 = x| < Clxpy = xp-1] .

Prove that {x,}_, is Cauchy. Hint: You can freely use the formula (for C # 1)

1_Cn+1
2 .. f’l:—
1+C+C*+ +C -

Exercise 2.4.3 (Challenging): Suppose F is an ordered field that contains the rational numbers Q, such that
Q is dense, that is: Whenever x,y € F are such that x <y, then there exists a q € Q such that x < q < y.
Say a sequence {x,},_, of rational numbers is Cauchy if given every € € Q with € > 0, there exists an M
such that for all n, k > M, we have |x, — x| < €. Suppose every Cauchy sequence of rational numbers has
a limit in F. Prove that F has the least-upper-bound property.

Exercise 2.4.4: Let {x,} , and {y,}_, be sequences such that limy e y, = 0. Suppose that for all k € N
and for all m > k, we have

|Xm — xk| < Y.

Show that {x,}_, is Cauchy.

Exercise 2.4.5: Suppose a Cauchy sequence {x,},°_, is such that for every M € N, there exists a k > M
and an n > M such that xx < 0and x, > 0. Using simply the definition of a Cauchy sequence and of a
convergent sequence, show that the sequence converges to 0.

Exercise 2.4.6: Suppose |x, — xi| < n/i? for all n and k. Show that {x,}}_, is Cauchy.

Exercise 2.4.7: Suppose {x,},_, is a Cauchy sequence such that for infinitely many n, x, = c. Using only
the definition of Cauchy sequence prove that lim x, = c.
n—oo

Exercise 2.4.8: True or false, prove or find a counterexample: If {x,} ", is a Cauchy sequence, then there
exists an M such that for all n > M, we have |x,11 — xu| < x4 — Xp—1].
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2.5 Series

Note: 2 lectures

A fundamental object in mathematics is that of a series. In fact, when the foundations
of analysis were being developed, the motivation was to understand series. Understanding
series is important in applications of analysis. For example, solutions to differential
equations are often given as series, and differential equations are the basis for understanding
almost all of modern science.

2.5.1 Definition

Definition 2.5.1. Given a sequence {x,})_,, we write the formal object

o0
Xn

n=1

and call it a series. A series converges if the sequence {si} 7, defined by

k
Sk = an:x1+x2+-~-+xk
n=1

converges. The numbers sy are called partial sums. If the series converges, we write

(oe]

an = lim sy.
k—o0

n=1

In this case, we cheat a little and treat ), ; x, as a number.
If the sequence {sx};7, diverges, we say the series is divergent. In this case, }.;”; x, is
simply a formal object and not a number.

In other words, for a convergent series, we have

We only have this equality if the limit on the right actually exists. If the series does not
converge, the right-hand side does not make sense (the limit does not exist). Therefore, be
careful as ), ; x, means two different things (a notation for the series itself or the limit of
the partial sums), and you must use context to distinguish.

Remark 2.5.2. Tt is sometimes convenient to start the series at an index different from 1. For
instance, we can write

o0 o0
r't = Z L
n=0 n=1

The left-hand side is more convenient to write.
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Remark 2.5.3. It is common to write the series ) ; x, as
X1 +Xxy+Xx3+---

with the understanding that the ellipsis indicates a series and not a simple sum. We do not
use this notation as it is the sort of informal notation that leads to mistakes in proofs.

Example 2.5.4: The series
o 1
2.5
n=1

converges and the limit is 1. That is,

<1 £
2= lm g =t

n=1
1
2| T ox
n:

The equality is immediate when k = 1. The proof for general k follows by induction, which
we leave to the reader. See Figure 2.7 for an illustration.

Proof: We need the equality

iD=

0 12+1/4+1/8 1

1/2 1/4 1/8 1/8

Figure 2.7: The equality (Zn 1 2”)

zk = 1 illustrated for k = 3.

Let s be the partial sum. We write

1

2k’

k
27|
n=1

and therefore {| 1 — s¢ }:’:1, converges to zero. So, {s}}. , converges

|1 —s¢] =1

2k

The sequence {
to 1.

2k }k 1’

Proposition 2.5.5. Suppose —1 < r < 1. Then the geometric series )., t" converges, and
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Details of the proof are left as an exercise. The proof consists of showing
kzz 1-rF
— 1-

and then taking the limit as k goes to co. Geometric series is one of the most important
series, and in fact it is one of the few series for which we can so explicitly find the limit.

As for sequences we can talk about a tail of a series.

Proposition 2.5.6. Let )" ; x,, be a series. Let M € N. Then

(59 (&)
Z xn converges if and only if Z Xn Converges.
n=1 n=M

Proof. We look at partial sums of the two series (for k > M)

k M-1 k
3k (Z) S,
n=1 n=M

Note that Zn _1 Xy is a fixed number. Use Proposition 2.2.5 to finish the proof. O

2.5.2 Cauchy series

Definition 2.5.7. A series ), X, is said to be Cauchy or a Cauchy series if the sequence of
partial sums {s,} ", is a Cauchy sequence.

A sequence of real numbers converges if and only if it is Cauchy. Therefore, a series is
convergent if and only if it is Cauchy. The series ), x,, is Cauchy if and only if for every
€ > 0, there exists an M € N, such that for every n > M and k > M, we have

£

i=1 i=1

<E€E.

Without loss of generality we assume n < k. Then we write

£

i=1 i=1

k

>

i=n+1

We have proved the following simple proposition.

Proposition 2.5.8. The series ), | X, is Cauchy if and only if for every € > 0, there exists an
M € N such that for every n > M and every k > n,

k

2,

i=n+1

Xi| < €.
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2.5.3 Basic properties

Proposition 2.5.9. Let 3,." ;| x,, be a convergent series. Then the sequence {x,,}>" , is convergent
and

lim x, =0.

n—oo
Proof. Let € > 0be given. As ;7 x,, is convergent, it is Cauchy. Thus we find an M such
that for every n > M,

n+1
€ > Z Xi| = |xn41] -
i=n+1
Hence for every n > M + 1, we have |x,| < €. O

Example 2.5.10: If r > 1 or r < —1, then the geometric series ), " diverges.
Proof: |r"| = |r|" > 1" = 1. The terms do not go to zero and the series cannot converge.

So if a series converges, the terms of the series go to zero. The implication, however,
goes only one way. Let us give an example.

Example 2.5.11: The series ), ; 1/n diverges (despite the fact that lim, . 1/n = 0). This is
the famous harmonic series*.

Proof: We will show that the sequence of partial sums is unbounded, and hence cannot
converge. Write the partial sums s, for n = 2 as:

5121,
1
52:(1)+ E 7
1 1 1
S4—(1)+ E +(§+Z),
sg = (1) + E + 1+1 + 1+1+1+1
8~ 2] "\371) " (57677 8}’
k 21 1
Szk:1+z Z E .
i=1 \m=2i-141

Notice 1/3 + 1/4 > /4 +1/3s = 1/ and /5 + 1/6 + 1/7 + 1/8 > 1/8 + 1/ + 1/8 + 1/3 = 1/2. More

generally
L1 & 1 1
_ (hk-1y - _ =
Z —_— Z x -2 )x=g
m=2k-14+1

m=2k-14+1

*The divergence of the harmonic series was known long before the theory of series was made rigorous.
The proof we give is the earliest proof and was given by Nicole Oresme (1323?-1382).


https://en.wikipedia.org/wiki/Oresme
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Therefore,
2i

: 1 £ q k
S2k=1+2 Z - 21+Z§=1+§.
i=1

i=1 \m=2i-141

As {k/2}}? | is unbounded by the Archimedean property, that means that {sy}}; ; is un-
bounded, and therefore {s,,}_; is unbounded. Hence {s,} _, diverges, and consequently
Yineq I/n diverges.

Like finite sums, convergent series behave linearly. That is, we can multiply them by
constants and add them and these operations are done term by term.

Proposition 2.5.12 (Linearity of series). Let « € Rand ), ; x, and Y, yn be convergent
series. Then

(i) X4 axy is a convergent series and

(o) (o)
Saxn=aY x.
n=1 n=1

(i1) X1 (xn + yn) is a convergent series and

g(xn ) = (ix) R (2 yn),

n=1

Proof. For the first item, we simply write the kth partial sum

k k
S ax, :a(zxn).
n=1 n=1
We look at the right-hand side and note that the constant multiple of a convergent sequence

is convergent. Hence, we take the limit of both sides to obtain the result.
For the second item we also look at the kth partial sum

nZ:(xn + Yn) = (Zk: xn) + (nz: yn) _

n=1

We look at the right-hand side and note that the sum of convergent sequences is convergent.
Hence, we take the limit of both sides to obtain the proposition. O

An example of a useful application of the first item is the following formula. If |7| < 1
and i € N, then

-~ .
rl
1—-7

r" =

n=i
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The formula follows by using the geometric series and multiplying by r':

o o o0
DBV
n=0 n=0 n=i

Multiplying series is not as simple as adding, see the next section. It is not true, of
course, that we multiply term by term. That strategy does not work even for finite sums:
(a+b)c+d)#ac+bd.

2.54 Absolute convergence

As monotone sequences are easier to work with than arbitrary sequences, it is usually
easier to work with series ) ; x,,, where x,, > 0 for all n. The sequence of partial sums

is then monotone increasing and converges if it is bounded above. Let us formalize this
statement as a proposition.

Proposition 2.5.13. If x, > 0 for all n, then Y7, x, converges if and only if the sequence of
partial sums is bounded above.

As the limit of a monotone increasing sequence is the supremum, then when x,, > 0 for
all n, we have the inequality

If we allow infinite limits, the inequality still holds even when the series diverges to infinity,
although in that case it is not terribly useful.

We will see that the following common criterion for convergence of series has big
implications for how the series can be manipulated.

Definition 2.5.14. A series )., ; x, converges absolutely if the series ), ; |x,| converges. If a
series converges, but does not converge absolutely, we say it converges conditionally.

Proposition 2.5.15. If the series Y, ; x, converges absolutely, then it converges.

Proof. A series is convergent if and only if it is Cauchy. Hence suppose ., |x,| is Cauchy.
That is, for every € > 0, there exists an M such that for all k > M and all n > k, we have

n
Z | x;]

i=k+1

n

Z |xi| =

i=k+1

<E€.

We apply the triangle inequality for a finite sum to obtain

n

S

i=k+1

n

< :E] |xi| < €.

i=k+1

Hence ), x,, is Cauchy, and therefore it converges. O
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If >, x, converges absolutely, the limits of }7° ; x, and )7’ ;|x,| are generally
different. Computing one does not help us compute the other. However, the computation
above leads to a useful inequality for absolutely convergent series, a series version of the
triangle inequality, a proof of which we leave as an exercise:

00
2%
i=1

Absolutely convergent series have many wonderful properties. For example, absolutely
convergent series can be rearranged arbitrarily, or we can multiply such series together
easily. Conditionally convergent series on the other hand often do not behave as one would
expect. See the next section.

We leave as an exercise to show that

o (-1

converges, although the reader should finish this section before trying. On the other hand,

we prOVed
Z
n
n=1

is a conditionally convergent series.

(o)
< |x,-|.
1

i:

o (=1)"

n=1 n

diverges. Therefore, };

2.5.5 Comparison test and the p-series

We noted above that for a series with positive terms to converge the terms not only have to
go to zero, but they have to go to zero “fast enough.” If we know about convergence of a
certain series, we can use the following comparison test to see if the terms of another series
go to zero “fast enough.”

Proposition 2.5.16 (Comparison test). Let Y"1 x, and Y 1 y,, be series such that 0 < x, < y,
foralln € N.

(i) If X5 1 Yn converges, then so does Y, Xy.

(i) If Yq Xn diverges, then so does Y, 1 Yn.

Proof. As the terms of the series are all nonnegative, the sequences of partial sums are both
monotone increasing. Since x, < y, for all n, the partial sums satisfy for all k

k k
RN 2.1)
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If the series ), ; y» converges, the partial sums for the series are bounded. Therefore, the
right-hand side of (2.1) is bounded for all k; there exists some B € R such that Zﬁzl yn < B

for all k, and so -
k k
Z Xy < Z yn < B.
n=1 n=1

Hence the partial sums for };_; x, are also bounded. Since the partial sums are a monotone
increasing sequence they are convergent. The first item is thus proved.

On the other hand if } ;7 ; x,, diverges, the sequence of partial sums must be unbounded
since it is monotone increasing. That is, the partial sums for )}’ ; x,, are eventually bigger
than any real number. Putting this together with (2.1) we see that for every B € R, there is
a k such that

Hence the partial sums for },;’_; y, are also unbounded, and )" ; v, also diverges. O

A useful series to use with the comparison test is the p-series®.

Proposition 2.5.17 (p-series or the p-test). For p € R, the series
e
nb
n=1

converges if and only if p > 1.

o0 1

Proof. First suppose p < 1. Asn > 1, we have - > 1. Since Y ; L diverges, Y);"; & must
diverge for all p < 1 by the comparison test.

Now suppose p > 1. We proceed as we did for the harmonic series, but instead of
showing that the sequence of partial sums is unbounded, we show that it is bounded. The
terms of the series are positive, so the sequence of partial sums is monotone increasing and
converges if it is bounded above. Let s, denote the nth partial sum.

5121,
1 1
53:(1)+(2—p+3—p),
PO N O O O O O
S7—()+ 2_P+3_P + 4_P+5_P+6_P+7_P ,

k-1 [2i+1-1

=1ty
i=1

*We have not yet defined x? for x > 0 and an arbitrary p € R. The definition is x” := exp(p Inx). We
will define the logarithm and the exponential in §5.4. For now you can just think of rational p where

xkim = (xl/’")k. See also Exercise 1.2.17.
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Instead of estirnating from below, we estimate frorn above As p is positive then 27 < 37,

and hence 7 7wt < zip o Similarly, 4 rtgtetms < 4p + 3 + 7 + 37 Therefore, for

allk > 2,

_ i+1_

k-1 (2 1i
Z_ mbP

m=2!

Sok_1 = 1+

i

2i+1_1

1
Z (21’)?’

m=2i

i
> )
k-1 i
1
=1+ (F) .
i1 \2
Asp > 1, then Zp%l < 1. Proposition 2.5.5 says that

%)

i=1

A

—_

+
=~
N

Il
—_
+
=
_

—_

converges. Thus,
k-1 1 i 00 1 i
Szk_1<1+zl:(2p—_1)31+zll(2p—_l).
1= 1=

For every n thereis a k > 2 such that n < 2¥ — 1, and as {s,,} ., is a monotone sequence,

Sn < Sok_q. So for all n, _
(o) 1 i
Sy < 1+ Zl (2}7_—1)

1=

Thus the sequence of partial sums is bounded, and the series converges. |

Neither the p-series test nor the comparison test tell us what the sum converges to.
They only tell us that a limit of the partial sums exists. For instance, while we know that
Yoy 1/n? converges, it is far harder to find* that the limit is /6. If we treat Y., ; 1/n” as a
function of p, we get the so-called Riemann C (zeta) function. Understanding the behavior
of this function contains one of the most famous unsolved problems in mathematics today
and has applications in seemingly unrelated areas such as modern cryptography.

Example 2.5.18: The series ),
Proof: First, 2 e,
Therefore, by the comparison test, 3.,

el n2 — converges.

% for all n € N. The series ., ; % converges by the p-series test.
1
n2+1

*Demonstration of this fact is what made the Swiss mathematician Leonhard Paul Euler (1707-1783)
famous.

converges.
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2.5.6 Ratio test

. . . . . n+1
Suppose r > 0. The ratio of two subsequent terms in the geometric series 3., " is 5 =1,

and the series converges whenever r < 1. Just as for sequences, this fact can be generalized
to more arbitrary series as long as we have such a ratio “in the limit.” We then compare the
tail of a series to the geometric series.

Proposition 2.5.19 (Ratio test). Let )" 1 x,, be a series, x, # 0 for all n, and such that

|xn+1|

n—o0 |xn|

L= exists.

(i) If L <1, then )" ; x,, converges absolutely.
(i0) IfL > 1, then 3, x, diverges.

Although the test as stated is often sufficient, it can be strengthened a bit, see
Exercise 2.5.6.

Proof. If L > 1, then Lemma 2.2.12 says that the sequence {x,} " , diverges. Since itis a
necessary condition for the convergence of series that the terms go to zero, we know that
Yoy Xn must diverge.

Thus suppose L < 1. We will argue that ), ; |x,| must converge. The proof is similar
to that of Lemma 2.2.12. Of course L > 0. Pick r such that L < r < 1. Asr — L > 0, there
exists an M € N such that for alln > M,

|xn+1|

- L
| x|

<r-—1L.

Therefore,
[x141]
| %]

For n > M (that is for n > M + 1), write

<r

| | x| | xm+2] ||

<|xM|rr---r:|xM|r”_M:(|xM|r_M)r”.
Ixml 1xme1]  [xn—1]

[l = [xm

For k > M, write the partial sum as

Zw ém +( i |xn|)

n=M+1
M k
<D Ixl +( > (|xM|r-M>r")
n=1 n=M+1

= i|xn| +(|xM|r—M)( > r”).

n=M+1
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As 0 < r < 1, the geometric series ), _, 1" converges, so >, .1 " converges as well. We
take the limit as k goes to infinity on the right-hand side above to obtain

St < (St Gt 5 )

n=M+1
(o)

[Searo(5)

The right-hand side is a number that does not depend on k. Hence the sequence of partial
sums of ), |x,| is bounded and ), [x,| is convergent. Thus ), _; x, is absolutely
convergent. O

Example 2.5.20: The series

Y=

n=1
converges absolutely.
Proof: We write
20 ) 1) 2
lim =

= =0.
n—oo 2" [n! n—oo 11 + 1

Therefore, the series converges absolutely by the ratio test.

2.5.7 Exercises

Exercise 2.5.1: Suppose the kth partial sum of Z Xp 1S Sk = % Find the series, that is, find x,,, prove that
n=1
the series converges, and then find the limit.

Exercise 2.5.2: Prove Proposition 2.5.5, that is, for =1 < r < 1, prove

oo
5

n=0

Hint: See Example 0.3.8.

Exercise 2.5.3: Decide the convergence or divergence of the following series.

> 3 o1 o (—1)" o1 >
”);9n+1 b);2n—1 C); n2) d);n(nﬂ) 6);”62

Exercise 2.5.4:

a) Prove that if Z Xy converges, then Z(xZn + Xon+1) also converges.
n=1 n=1
b) Find an explicit example where the converse does not hold.
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Exercise 2.5.5: Fori=1,2,...,n,let {xl-,k},;"’z1 denote n sequences. Suppose that for each i € N,

[Se]
2 ik
k=1
is convergent. Prove
n (] (&) n
(Z ) =2 (Z ) -
i=1 \k=1 k=1 \i=1

Exercise 2.5.6: Prove the following stronger version of the ratio test: Let Y, | x,, be a series.

a) If there is an N and a p < 1 such that % < pforall n > N, then the series converges absolutely.

(Remark: Equivalently the condition can be stated as lim sup % <1)

n—o0

b) If there is an N such that % > 1foralln > N, then the series diverges.

Exercise 2.5.7 (Challenging): Suppose {x,}*_, is a decreasing sequence and 3.,_; x,, converges. Prove
lim nx, =0.

n—o0

~1)" . . :
) converges. Hint: Consider the sum of two subsequent entries.

Exercise 2.5.8: Show that Z "

n=1
Exercise 2.5.9:
a) Prove that if 3,7, x,, and ), ; Y converge absolutely, then ), X, Y, converges absolutely.
b) Find an explicit example where the converse does not hold.

c) Find an explicit example where all three series are absolutely convergent, are not just finite sums, and
(X xn) (X yn) # Yoy XnYn. That is, show that series are not multiplied term-by-term.

Exercise 2.5.10: Prove the triangle inequality for series: If 3,4 x, converges absolutely, then

(o9
2
n=1

Exercise 2.5.11: Prove the limit comparison test. That is, prove that if a, > 0 and b, > 0 for all n, and

(o8]
< [xn] .
1

n=

. a
0 < lim — < oo,

n—00 n
then either Y, 1 a, and Y,> 1 b, both converge or both diverge.

Exercise 2.5.12: Let x,, := )7, 1/i. Show that for every k, we get nh_r)r;o |Xn+k = xn| =0, yet {xn};_ is not

Cauchy.
Exercise 2.5.13: Let sy be the kth partial sum of 3, 1 xy.

a) Suppose there exists an m € N such that klirn Smk exists and lim x, = 0. Show that ) | x, converges.

n—00

b) Find an example where lim sy exists and lim x,, # 0 (and therefore Y| x,, diverges).
n—oo

k—o0
c) (Challenging) Find an example where limy,, x, = 0, and there exists a subsequence {sy,}:2, such that
lim sy, exists, but )1 x, still diverges.

i—00
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Exercise 2.5.14: Suppose Y| X, converges and x, > 0 for all n. Prove that Y, x3 converges.

Exercise 2.5.15 (Challenging): Suppose {x,} ", is a decreasing sequence of positive numbers. The proof of
convergence/divergence for the p-series generalizes. Prove the so-called Cauchy condensation principle:

(o] [o0]
Z Xn converges if and only if Z 2" xon converges.
n=1

n=1

Exercise 2.5.16: Use the Cauchy condensation principle (see Exercise 2.5.15) to decide the convergence of

< Inn o1 o1 N 1
a) ) —- b) c) d)
nzz; n2 nz:; nlnn nZ:; n(inn)? nZ:; n(Inn)(Inlnn)*

Note that only the tails of some of these series satisfy the hypotheses of the principle; you should argue why
that is sufficient.
Hint: Feel free to use the identity In(2") = nIn2.

Exercise 2.5.17 (Challenging): Prove Abel’s theorem:

Theorem. Suppose }.;° X, is a series whose sequence of partial sums is bounded, {1,}_, is a
sequence with lim, e A, =0, and };"; [An41 — Ayl is convergent. Then )’ ; A, x, is convergent.
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2.6 More on series

Note: up to 2-3 lectures (optional, can safely be skipped or covered partially)

2.6.1 Root test

A test similar to the ratio test is the so-called root test. The proof of this test is similar. Again,
the idea is to generalize what happens for the geometric series.

Proposition 2.6.1 (Root test). Let Y., x, be a series and let

L := limsup |x,|"/".

n—oo

() IfL <1, then Y 1 x, converges absolutely.
(i) IfL > 1, then )., x,, diverges.

Proof. If L > 1, then there exists™ a subsequence {x;, }7, such that L = limy_,« |xnk|1/ ",
Let r be such that L > r > 1. There exists an M such that for all k > M, we have
|xnk|1/”" > r > 1, or in other words |x,,| > 7" > 1. The subsequence {|xy,|}}>,, and
therefore also {|x,|}’_;, cannot possibly converge to zero, and so the series diverges.

Now suppose L < 1. Pick r such that L < r < 1. By definition of limit supremum, there
isan M such that foralln > M,

sup{lxkll/k tk > n} <r.

Therefore, for all n > M,

1/n

lxn| ™" <1, or in other words lx,| <™.

Let k > M, and estimate the kth partial sum:

i|xn| = (fw) +( i |xn|) < (g’f|xn|) '

n=1 n=1 n=M+1

k
el
n=M+1

. . 00 n TMJrl . . ..
As 0 < r <1, the geometric series >, _,,; " converges to 5—. As everything is positive,

k M rM+1
lenl < lenl + .
- 1-7r

n=1 n=1

Thus the sequence of partial sums of X", |x,| is bounded, and the series converges.
Therefore, ), x,, converges absolutely. O

“In case L = oo, see Exercise 2.3.20. Alternatively, note that if L = oo, then { |xn|1/ " };ozl is unbounded, and
thus sois {x,} " ;.
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2.6.2 Alternating series test

The tests we have seen so far only addressed absolute convergence. The following test
gives a large supply of conditionally convergent series.

Proposition 2.6.2 (Alternating series). Let {x,}) _; be a monotone decreasing sequence of
positive real numbers such that lim x, = 0. Then

n—oo

Z (=1)"x, converges.
n=1

Proof. Let s, == Y\, (—1)"x, be the mth partial sum. Then

k

2k
Sok = Z (=1)"xp = (=x1 4+ x2) + - -+ + (=x2p-1 + X21) = Z(_xZé’—l + X2¢).
n=1 (=1

The sequence {x,})_; is decreasing, so (—x2¢-1 + x2¢) < 0 for all £. Thus, the subsequence
{SZk}]‘:’:l of partial sums is a decreasing sequence. Similarly, (xp¢ — x2¢+1) > 0, and so

Sok = —x1 + (X2 — x3) + - + (Xok—2 — X2k-1) + X2k = —X1.

The intuition behind the bound 0 > sy, > —x7 is illustrated in Figure 2.8.

X2
X4
X6
X8
_x7+x81:::::::::j::::::::i:::: ﬁxl_x7& —X3
[ R B SRR I S .« —
—x5+x6[7 iiiiiiiiiiiiiiiiiiiii —x5 6
_ B s R P e —X4
X3+X4L<””””%”” —x3
Y A, o —xz
—x1+x2] | x

Figure 2.8: Showing that 0 > sy, > —x1 where k = 4 for an alternating series.

As {szk},‘j’zl is decreasing and bounded below, it converges. Let a := limj_,o s2x. We
wish to show that lim,;, e« S5 = 4 (and not just for the subsequence). Given € > 0, pick M
such that [syr — a| < ¢/2 whenever k > M. Since lim,, .« x, = 0, we also make M possibly
larger to obtain xpk+1 < €/2 whenever k > M. Suppose m > 2M + 1. If m = 2k, then

k>M+12> Mand|s;, —a| = sy —a| <¢/2<e€. If m=2k+1,then also k > M. Notice
Sok+1 = S2k — X2k+1. Thus

|sm — al = |sok41 — al = |sok — @ — xok41| < [s2k — af + xok41 < €¢f2+¢/2=€. m
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Notably, there exist conditionally convergent series where the absolute values of the
terms go to zero arbitrarily slowly. The series

o (1)

converges for arbitrarily small p > 0, but it does not converge absolutely when p < 1.

2.6.3 Rearrangements

Absolutely convergent series behave as we imagine they should. For example, absolutely
convergent series can be summed in any order whatsoever. Nothing of the sort holds for
conditionally convergent series (see Example 2.6.4 and Exercise 2.6.3).

(e
S

n=1

Consider a series

Given a bijective function o: N — N, the corresponding rearrangement is the series:
(o)
pIECS
k=1

We simply sum the series in a different order.

Proposition 2.6.3. Let ), | x,, be an absolutely convergent series converging to a number x. Let
0: N — N be a bijection. Then 3,1 X 5(n) is absolutely convergent and converges to x.

In other words, a rearrangement of an absolutely convergent series converges (absolutely)
to the same number.

Proof. Let e > 0be given. As Y, x,, is absolutely convergent, take M such that

S

n=1

o0

€ €
<= and Z |x,| < =.

2 2
n=M+1

As o is a bijection, there exists a number K such that for each n < M, there exists k < K
such that o(k) = n. In other words {1,2,..., M} c 6({1,2,...,K}).
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For N > K, let Q :=maxo({1,2,...,N}). Compute

N M N
(Zxa(n))_x S e D x|
n=1 n=1 (n=>1M
on
M N
< an - x|+ Z |xo(n)|
n=1 n=1
a(n)>M
M Q
< an —X|+ Z B
n=1 n=M+1

<e€2+¢€r=¢.

S0 3.1 Xo(n) converges to x. To see that the convergence is absolute, we apply the argument
above to )7, |x,| to show that 3}, |xg(n)| converges. |

n+l
Example 2.6.4: Let us show that the alternating harmonic series ), ; (_121 , which does

not converge absolutely, can be rearranged to converge to anything. The odd terms and the
even terms diverge to plus infinity and minus infinity respectively (prove this!):

> 1 — —1
sz—1_°°’ and Z%‘“‘X"
m=1 m=1

_ (_1)n+1

Let a, := ~—— for simplicity, let an arbitrary number L € R be given, and set o(1) = 1.
Suppose we have defined o(n) foralln < N. If

N
2ot < L,

n=1

then let (N + 1) := k be the smallest odd k € N that we have not used yet, thatis, o(n) # k
forall n < N. Otherwise, let (N + 1) := k be the smallest even k that we have not yet used.

By construction, 0: N — N is one-to-one. It is also onto, because if we keep adding
either odd (resp. even) terms, eventually we pass L and switch to the evens (resp. odds).
So we switch infinitely many times.

Finally, let N be the N where we just pass L and switch. For example, suppose we have
just switched from odd to even (so we start subtracting), and let N” > N be where we first
switch back from even to odd. Then

1 N-1 N’-1 1
L+ > L- .
o(N) = HZ:; Ag(n) > ; Ag(n) > (N
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Similarly for switching in the other direction. Therefore, the sum up to N’ — 1 is within
of L. As we switch infinitely many times, 6(N) — oo and 6(N’) — oco. Hence

© © ( 1) (n)+1
2000 =2, oy =

n=1 n=1

1
min{c(N),c(N’)}

Here is an example to illustrate the proof. Suppose L = 1.2, then the order is
1+13-124+1/5+1/7+1/0=1/a+111+1/13 =16 +1/15+ 117 +1/19—-1/8 +---

At this point we are no more than 1/s from the limit. See Figure 2.9.

Figure 2.9: The first 14 partial sums of the rearrangement converging to 1.2.

2.6.4 Multiplication of series

As we have already mentioned, multiplication of series is somewhat harder than addition.
If at least one of the series converges absolutely, then we can use the following theorem.
For this result, it is convenient to start the series at 0, rather than at 1.

Theorem 2.6.5 (Mertens’ theorem®). Suppose Y, a, and Y., by, are two convergent series,
converging to A and B respectively. Suppose at least one of the series converges absolutely. Define

n

¢, = agb, + a1b,_1+---+a,by = Z a;ib,_;.
i=0

Then the series ., ¢, converges to AB.

The series )., ¢y is called the Cauchy product of )", a, and ), by

*Proved by the German mathematician Franz Mertens (1840-1927).


https://en.wikipedia.org/wiki/Franz_Mertens
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Proof. Suppose )., 4, converges absolutely, and let € > 0 be given. In this proof instead
of picking complicated estimates just to make the final estimate come out as less than ¢, let
us simply obtain an estimate that depends on € and can be made arbitrarily small.

Write
m m
Ay = Zan, B, = an.
n=0 n=0
We rearrange the mth partial sum of )}, ¢,
m m n
(Z cu| - AB|=|| > > aibu-i| - AB
n=0 n=0 i=0
m
= [ D Buamn| - AB
n=0
m
- Z(Bn — B)am_n | + BA,, — AB
n=0
m
< (Z |Bu = Bl |an-nl | + |BI [An — Al
n=0

We can surely make the second term on the right-hand side small. The trick is to handle
the first term. Pick K such that for all m > K, we have |A,, — A| < € and also |B;;, — B| < €.
As ), an converges absolutely, make sure that K is large enough such that for all m > K,

m
D laul <e.
n=K

As )" by converges, then Bmay = sup{an -Bl:n=0,1,2,.. } is finite. Take m > 2K.
In particular m — K+ 1 > K. So

m m—K m
D 1By = Bllan-ul = (Z By, - Bl |am_n|) * ( >, IB.—B |am_n|)

n=0 n=0 n=m-K+1
m K-1
< (Z |an|) Bmax + (Z elanl)
n=K n=0
o0
< €Bmax + € (Z |an|) .
n=0

Therefore, for m > 2K, we have

-

n=0

m

> 1B, —B] |am_n|) +1B||A, - A

n=0

— AB| <

o

< €Bmax + € (Z |an|) +|Ble=¢ (Bmax + (Z |an|) + |B|) .
n=0

n=0
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The expression in the parenthesis on the right-hand side is a fixed number. Hence, we can
make the right-hand side arbitrarily small by picking a small enough € > 0. So >, c»
converges to AB. |

Example 2.6.6: If both series are only conditionally convergent, the Cauchy product
series need not even converge. Suppose we take a, = b, = (—1)”%. The series

Ymeo dn = Yo bn converges by the alternating series test; however, it does not converge
absolutely as can be seen from the p-test. Let us look at the Cauchy product.

n

1 1 1 1 1
n — _11’[ = _1n )
en = (=1) Vil ,fg(n_l TV -y ;\/(Hl)(n—iﬂ)

Therefore,
n

Z\/(1+1)(n—1+1) Z\/(n+1)(n+1

The terms do not go to zero and hence ", ¢, cannot converge.

lcul =

2.6.5 Power series

Fix xg € R. A power series about x is a series of the form

[e0]

Z an(x — xO)n'

n=0

A power series is really a function of x, and many important functions in analysis can be
written as a power series. We use the convention that 0° = 1 (that is, if x = xg and n = 0).
A power series is said to be convergent if there is at least one x # x that makes the series
converge. If x = xg, then the series always converges since all terms except the first are
zero. If the series does not converge for any point x # x, we say that the series is divergent.

Example 2.6.7: The series

is absolutely convergent for all x € R using the ratio test: For any x € R

o (Y/m+Dy X
m, (1/nl)xn nh_r)rgon +1 =0

Recall from calculus that this series converges to e*.

Example 2.6.8: The series
1o
n
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converges absolutely for all x € (=1, 1) via the ratio test:

(1/(n + 1)) x"*+

lim A/

n—oo

=|x| < 1.

. n
= lim |x|
n—00 n+1

The series converges at x = —1,as ), 4 (_% converges by the alternating series test. But
the power series does not converge absolutely at x = —1, because Y, 1 does not converge.
The series diverges at x = 1. When |x| > 1, then the series diverges via the ratio test.

Example 2.6.9: The series

Z n"x"
n=1
diverges for all x # 0. Let us apply the root test

lim sup |n"x"|'" = limsup 1 |x| = co.

n—0oo n—oo

Therefore, the series diverges for all x # 0.

Convergence of power series in general works analogously to the three examples above.

Proposition 2.6.10. Let Y, a,(x — x0)" be a power series. If the series is convergent, then
either it converges absolutely at all x € R, or there exists a number p, such that the series converges
absolutely on the interval (xo — p, xo + p) and diverges when x < xo — p or x > xo + p.

The number p is called the radius of convergence of the power series. We write p = oo if
the series converges for all x, and we write p = 0 if the series is divergent. At the endpoints,
that is, if x = xg + p or x = xo — p, the proposition says nothing, and the series might or
might not converge. See Figure 2.10. In Example 2.6.8, the radius of convergence is p = 1,
in Example 2.6.7, the radius of convergence is p = oo, and in Example 2.6.9, the radius of
convergence is p = 0.

diverges converges absolutely diverges

SN TR, T

Xo—p xo X0

p

Figure 2.10: Convergence of a power series.

Proof. Write

= lim sup |a,|"/".

n—oo
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We apply the root test,

L= 1imsup|an(x - xg)”|1/'1 = |x — xo| limsuplan|1/” = |x — xg| R.

n—oo n—oo

If R = oo, then L = oo for every x # xo, and the series diverges by the root test. On the other
hand, if R = 0, then L = 0 for every x, and the series converges absolutely for all x.
Suppose 0 < R < oco. The series converges absolutely if 1 > L = R |x — xo|, that is,

|x — xo| < 1YR.
The series diverges when 1 < L = R |x — xg|, or
|x — xo| > 1/R.
Letting p = 1/R completes the proof. O

It may be useful to restate what we have learned in the proof as a separate proposition.

Proposition 2.6.11. Let Y., a,(x — x0)" be a power series, and let

R = limsup|an|1/n.

n—oo

If R = oo, the power series is divergent. If R = 0, then the power series converges everywhere.
Otherwise, the radius of convergence p = 1/R.

Often, the radius of convergence is written as p = 1/r in all three cases, with the
understanding of what p should be if R = 0 or R = co.

Convergent power series can be added and multiplied together, and multiplied by
constants. The proposition has a straightforward proof using what we know about series
in general, and power series in particular. We leave the proof to the reader.

Proposition 2.6.12. Let >} o a,(x — x0)" and Y, by (x — x0)" be two convergent power series
with radius of convergence at least p > 0 and a € R. Then for all x such that |x — xo| < p, we

have
(Z an(x = xo)”) * (Z b (x = xo)”) = > (@n + bu)lx = x0)",
n=0 n=0 n=0
a (i an(x — xo)") = i aay(x — xo)",
n=0 n=0
and

(i an(x = xo)”) (i by (x = xo)”) = i cn(x = x0)",
n=0

n=0 n=0

where ¢,, = agb, + a1b,_1 + -+ + a,by.
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For all x with |x — xo| < p, we have two convergent series so their term-by-term addition
and multiplication by constants follows by the previous section. As for such x the series
converges absolutely, we can apply Merten’s theorem to find the product of two series.
Consequently, after performing the algebraic operations, the radius of convergence of the
resulting series is at least p. The radius of convergence of the result could be strictly larger
than the radius of convergence of either of the series we started with. See the exercises.

Let us look at some examples of power series. Polynomials are simply finite power
series: A polynomial is a power series where the a,, are zero for all n large enough. We
expand a polynomial as a power series about any point x( by writing the polynomial as a
polynomial in (x — xp). For example, 2x? — 3x + 4 as a power series around x( = 1 is

202 —3x+4=3+(x—1)+2(x - 1)
We can also expand rational functions (that is, ratios of polynomials) as power series,
although we will not completely prove this fact here. Notice that a series for a rational

function only defines the function on an interval even if the function is defined elsewhere.
For example, for the geometric series, we have that for x € (-1,1),

1 o0
1-x =an'
n=0

The series diverges when |x| > 1, even though ﬁ is defined for all x # 1.

We can use the geometric series together with rules for addition and multiplication
of power series to expand rational functions as power series around xy, as long as the
denominator is not zero at xg. We state without proof that this is always possible, and we
give an example of such a computation using the geometric series.

Example 2.6.13: Let us expand 1+ as a power series around the origin (xo = 0) and
find the radius of convergence.

Write 1 +2x +x2 = (1+x)* = (1 - (—x))z, and suppose |x| < 1. Compute

2
_x
1+2x + x2 1—(—x))

- 2
= x( (—1)"x”)
n=0

—
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Using the formula for the product of series, we obtaincp =1, ¢c; = -1-1=-2,¢c; =
1+1+1 =3, etc. Hence, for |x| <1,

(o]
n+1
1+2x+x2 Z_;

The radius of convergence is at least 1. We leave it to the reader to verify that the radius of
convergence is exactly equal to 1.

You can use the method of partial fractions you know from calculus. For example, to

3
X +x at 0, write

find the power series for 7

X3+ x 1
= - = 1 -
x2 -1 YT x+Z( )'x Z

n=0

2.6.6 Exercises
Exercise 2.6.1: Decide the convergence or divergence of the following series.

S o (—1)"(n - 1) o (-1)" - n"
a) ; 22n+1 b) HZ:; n c) ; n1/10 d) Z (n + 1)2n

n=1

Exercise 2.6.2: Suppose both Y,y a, and Y, b, converge absolutely. Show that the product series,
Yineo Cn Where ¢, = agby + a1by—1 + - - - + a,bo, also converges absolutely.

Exercise 2.6.3 (Challenging): Let Y., a, be conditionally convergent. Show that given an arbitrary
x € R there exists a rearrangement of Y., a, such that the rearranged series converges to x. Hint: See
Example 2.6.4.

Exercise 2.6.4:

n+1
a) Show that the alternating harmonic series ., 4 CU hasa rearrangement such that for every interval

(x,y), there exists a partial sum s, of the rearranged series such that s, € (x, y).

b) Show that the rearrangement you found does not converge. See Example 2.6.4.

¢) Show that for every x € R, there exists a subsequence of partial sums {sy,}7", of your rearrangement
such that klim Sp, = X.
Exercise 2.6.5: For the following power series, find if they are convergent or not, and if so find their radius of
convergence.

a)i2”x” b)inx” c)in!x” d)i (Zi)'(x—lo)” e)ixz’1 ﬂin!x”!
n=0 = n=0 n=0 ’ n=0 n=0

Exercise 2.6.6: Suppose Y, a,x" converges for x = 1.
a) What can you say about the radius of convergence?

b) If you further know that at x = 1 the convergence is not absolute, what can you say?
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. X . . .
Exercise 2.6.7: Expand 2 as a power series around xo = 0, and compute its radius of convergence.

22
Exercise 2.6.8:

a) Find an example where the radii of convergence of 3,y anx" and Y., b,x™ are both 1, but the radius
of convergence of the sum of the two series is infinite.

b) (Trickier) Find an example where the radii of convergence of 3.y anx™ and Y,y by, x™ are both 1, but
the radius of convergence of the product of the two series is infinite.

Exercise 2.6.9: Figure out how to compute the radius of convergence using the ratio test. That is, suppose

o0 ; ; T |21
2in=0 an?c” is a power series and R = limy, o |an|l
your claim.

exists or is co. Find the radius of convergence and prove

Exercise 2.6.10:

a) Prove that limy, e n'/" = 1 using the following procedure: Write n*/" = 1 + b,, and note b, > 0. Then
show that (1 + b,,)" > @b% and use this to show that lim b, = 0.

n—oo0

b) Use the result of part a) to show that if 3,y a,x" is a convergent power series with radius of convergence
R, then Y,y na,x™ is also convergent with the same radius of convergence.

There are different notions of summability (convergence) of a series than just the one we have
seen. A common one is Cesdro summability*. Let )", a, be a series and let s,, be the nth partial

sum. The series is said to be Cesaro summable to a if
. S1+Sy+---+8y,
a = lim .

n—o0 n

Exercise 2.6.11 (Challenging):
a) If 307 a, is convergent to a (in the usual sense), show that Y1 a, is Cesdro summable (see above) to a.
b) Show that in the sense of Cesaro Y, 1 (=1)" is summable to 1/2.

c) Leta, =k whenn = k3 for some k € N, a, = —k when n = k3 + 1 for some k € N, otherwise let
an = 0. Show that ", a, diverges in the usual sense (in fact, both the sequence of terms and the partial
sums are unbounded), but it is Cesdaro summable to 0 (seems a little paradoxical at first sight).

Exercise 2.6.12 (Challenging): Show that the monotonicity in the alternating series test is necessary. That
is, find a sequence of positive real numbers {x,}*_ with lim, e X, = 0 but such that 3,7, (-1)"x,
diverges.

Exercise 2.6.13: Find a series ), ; Xy, that converges, but 3> 4 x2 diverges. Hint: Compare Exercise 2.5.14.

Exercise 2.6.14: Suppose {c,},_, is a sequence. Prove that for every r € (0,1), there exists a strictly
increasing sequence {nk}Z":1 of natural numbers (ny41 > ny) such that

[s¢]

S

k=1

converges absolutely for all x € [—r,r].

*Named for the Italian mathematician Ernesto Cesaro (1859-1906).


https://en.wikipedia.org/wiki/Ernesto_Ces%C3%A0ro
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Exercise 2.6.15 (Tonelli/Fubini for sums, challenging): Suppose let {xx ¢}, ,_, denote a doubly indexed
sequence and let o: N — N2 be a bijection. Consider the series

Z) i xa(i), ZZ) i (i xk,g) , ZZZ) i (i xk,g) .
i=1 k=1 \{=1 =1 \k=1

The expressions ii) and iii) are series of series and so we say they converge if the inner series always converges
and the outer series then also converges.

a) (Tonelli) Suppose xi ¢ > 0 for all k, {. Show that the three series i), ii), iii) either all diverge (to oo) or they
all converge to the same number. In the case of divergence, some of the “inner” series might be infinity in
which case we consider the entire sum to diverge.

b) (Fubini) Suppose i) converges absolutely. Show that ii) and iii) converge and they both converge to the
same number as i).



Chapter 3

Continuous Functions

3.1 Limits of functions

Note: 2-3 lectures

Before we define continuity of functions, we visit a somewhat more general notion of a
limit than that of a sequence. Given a function f: S — R, we want to see how f(x) behaves
as x tends to a certain point.

3.1.1 Cluster points

First, we return to a concept we have seen previously in an exercise. When moving within
the set S, we can only approach points that have elements of S arbitrarily near.

Definition 3.1.1. Let S C R be a set. A number x € R is called a cluster point of S if for
every € > 0, the set (x —€,x + €) N S \ {x} is not empty.

That is, x is a cluster point of S if there are points of S arbitrarily close to x. Another way
to phrase the definition is to say that x is a cluster point of S if for every € > 0, there exists
ay € Ssuchthaty # x and |x - y| < €. Note that a cluster point of S need not lie in S.

Let us see some examples.

(i) The set {1/n : n € N} has a unique cluster point zero.

(ii) The cluster points of the open interval (0, 1) are all points in the closed interval [0, 1].
(iii) The set of cluster points of Q is the whole real line R.
(iv) The set of cluster points of [0, 1) U {2} is the interval [0, 1].

(v) The set N has no cluster points in R.

Proposition 3.1.2. Let S C R. Then x € R is a cluster point of S if and only if there exists a
convergent sequence of numbers {x, }7_, such that x, # x and x, € S for all n, and lim x, = x.

n—-0oo
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Proof. First suppose x is a cluster point of S. For every n € N, pick x, to be an arbitrary
point of (x —1/n, x +1/n) N S \ {x}, which is nonempty because x is a cluster point of S.
Then x,, is within 1/» of x, that is,

|x — x| < 1n.

As {1/n} > | converges to zero, {x,}, ., converges to x.

On the other hand, if we start with a sequence of numbers {x,}* , in S converging
to x such that x,, # x for all n, then for every € > 0 there is an M such that, in particular,
|xp — x| < €. Thatis, xpre (x —€,x +€)N S\ {x}. O

3.1.2 Limits of functions

If a function f is defined on a set S and c is a cluster point of S, then we define the limit of
f(x) as x approaches c. It is irrelevant for the definition whether f is defined at ¢ or not.
Even if the function is defined at c, the limit of the function as x goes to ¢ can very well be
different from f(c).

Definition 3.1.3. Let f : S — R be a function and c a cluster point of S C R. Suppose there
exists an L € R and for every € > 0, there exists a 6 > 0 such that whenever x € S\ {c} and
|x —c| < 6, we have

|f(x)—L| <E€.

We then say f(x) converges to L as x goes to ¢, and we write
f(x) =L as x—c.
We say L is a limit of f(x) as x goes to ¢, and if L is unique (it is), we write
lim f(x) = L.
x—c
If no such L exists, then we say that the limit does not exist or that f diverges at c.

Again the notation and language we are using above assumes the limit L, if it exists, is
unique, which needs to be proved. Note that the fact that c is a cluster point is important
to prove uniqueness.

Proposition 3.1.4. Let ¢ be a cluster point of S C R and let f: S — R be a function such that
f(x) converges as x goes to c. Then the limit of f(x) as x goes to c is unique.

Proof. Let L1 and L; be two numbers that both satisfy the definition. Take an € > 0 and
find a 61 > 0 such that |f(x) — L1| < ¢/2forall x € S\ {c} with |x —c| < 61. Also find
02 > 0 such that |f(x) — Lyl <e¢/2forall x € S\ {c} with |x — ¢| < 0. Put 6 := min{01, 62}.
Suppose x € S, |x —c| < §,and x # c. As 6 > 0 and c is a cluster point, such an x exists.
Then

L1 = Lol = |1 = f(x) + f(x) = La| < [La = f)| + [f ()~ La| < 5 + 5 = €.

As |L1 = Lp| < € for arbitrary € > 0, then L1 = L. O
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Example 3.1.5: Consider f: R — R defined by f(x) := x2. Then for any ¢ € R,
lim f(x) = lim x? = 2.
X—C X—cC

Proof: Let c € R be fixed, and suppose € > 0 is given. Write

€
=min{l, ——.
0 mm{ '2|c|+1}

Take x # ¢ such that |x — ¢| < 6. In particular, |x — c| < 1. By reverse triangle inequality,
|x| —|c| < |x—c|] <1.
Adding 2 |c| to both sides, we obtain |x| + |c| < 2|c| + 1. Estimate

)= = |12 -3
=|(x +c)(x —¢)|
=|x+c||x—c|
< (lx[+]cD]x = ¢l

< 2lc]+1)|x =]

€
< (2]c| +1)2|c| =€

Example 3.1.6: Define f: [0,1) — R by

x ifx >0,
x) =
fx) {1 ifx =0.

Then lin}) f(x) =0, even though f(0) = 1. See Figure 3.1.
X—

|
T

Figure 3.1: Function with a different limit and value at 0.

Proof: Let € > 0 be given. Let 6 := €. For x € [0,1), x # 0, and |x — 0] < 9, we get

|f(x)—0|:|x| <d=¢e.
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3.1.3 Sequential limits

Let us connect the limit as defined above with limits of sequences.

Lemma 3.1.7. Let S C R, let c be a cluster point of S, let f: S — R be a function, and let L € R.
Then f(x) — Las x — c if and only if for every sequence {x,}_, such that x, € S\ {c} for
all n, and such that limy, e X, = ¢, we have that the sequence { f (xn)}:o=1 converges to L.

Proof. Suppose f(x) — Las x — ¢, and {x,}_; is a sequence such that x, € S \ {c} and
limy—0 X5 = c. We wish to show that {f (xn)}:o=1 converges to L. Let € > 0 be given. Find

aod > 0suchthatifx € S\ {c} and |x — c| < 9, then |f(x) - L| <e. As{x,})_, converges
to ¢, find an M such that for n > M, we have that |x,, — c| < 6. Therefore, for n > M,

|f(xn)—L| <e€.

Thus { f (xn)}:o=1 converges to L.

For the other direction, we use proof by contrapositive. Suppose it is not true that
f(x) = Las x — c. The negation of the definition is that there exists an € > 0 such that for
every 0 > 0 there exists an x € S \ {c}, where |x — ¢| < 6 and |f(x) — L| > €.

Let us use 1/ for 6 in the statement above to construct a sequence {x,}’_,. We have
that there exists an € > 0 such that for every n, there exists a point x,, € S\ {c}, where
|x, —c| <1/n and | fxn)— L| > €. The sequence {x,})_, just constructed converges to c,

but the sequence {f (xn)}:;l does not converge to L. And we are done. O

It is possible to strengthen the reverse direction of the lemma by simply stating that
“ { f (xn)}:o=1 converges,” without requiring a specific limit. See Exercise 3.1.11.

Example 3.1.8: lin}) sin(1/x) does not exist, but lir% x sin(1/x) = 0. See Figure 3.2.
x— X—

Figure 3.2: Graphs of sin(!/x) and x sin(!/x). Note that the computer cannot properly graph
sin(1/x) near zero as it oscillates too fast.
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Proof: We start with sin(1/x). Define a sequence by x,, := #’7/2 It is not hard to see
that lim, . x,; = 0. Furthermore,

sin(1/x,) = sin(ntn + 7/2) = (=1)".

Therefore, {sin(l/ xn)}zo_1 does not converge. By Lemma 3.1.7, lin}) sin(1/x) does not exist.
- xX—

Now consider x sin(/x). Let {x,})_, be a sequence such that x,, # 0 for all n, and such
that lim, —,o x, = 0. Notice that |sin(t)| < 1 for all t € R. Therefore,

|, sin(Yx,) — 0] = |xp]| |sin(Y/x,)| < |x4].

As x, goes to 0, then |x,| goes to zero, and hence {xn sin(l/xn)}:o:1 converges to zero. By
Lemma 3.1.7, lirrg) x sin(1/x) = 0.
X—

Keep in mind the phrase “for every sequence” in the lemma. For example, take sin(1/x)
and the sequence given by x,, := 1/mn. Then {sin(l/xn)}:;l is the constant zero sequence,
and therefore converges to zero, but the limit of sin(1/x) as x — 0 does not exist.

Using Lemma 3.1.7, we can start applying everything we know about sequential limits
to limits of functions. Let us give a few important examples.

Corollary 3.1.9. Let S C R and let c be a cluster point of S. Suppose f: S - Rand g: S - R
are functions such that the limits of f(x) and g(x) as x goes to c both exist, and

f(x) < g(x)  forallx € S\ {c}.

Then
lim f(x) < lim g(x).

Proof. Take {x,} ", be a sequence of numbers in S \ {c} that converges to c. Let

Ly = J1(132 f(x), and Ly = chlil’} g(x).

Lemma 3.1.7 says that { f (xn)}:o:1 converges to L1 and { (gr(xn)};lw:1 converges to L,. We also
have f(x,) < g(x,) for all n. We obtain L; < L, using Lemma 2.2.3. |

By applying constant functions, we get the following corollary. The proof is left as an
exercise.

Corollary 3.1.10. Let S C R and let c be a cluster point of S. Suppose f: S — R is a function
such that the limit of f(x) as x goes to ¢ exists. Suppose there are two real numbers a and b such
that

a< f(x)<b  forallx e S\ {c}.

Then
a < lim f(x) < b.
X—C
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Using Lemma 3.1.7 in the same way as above, we also get the following corollaries,
whose proofs are again left as exercises.

Corollary 3.1.11. Let S C R and let ¢ be a cluster point of S. Suppose f: S - R, g: S = R,
and h: S — R are functions such that

f(x) < g(x) < h(x)  forallx € S\ {c}.

Suppose the limits of f(x) and h(x) as x goes to c both exist, and
lim f(x) = lim h(x).
X—cC X—C
Then the limit of g(x) as x goes to c exists and
lim g(x) = lim £(x) = lim h(x).

Corollary 3.1.12. Let S C R and let c be a cluster point of S. Suppose f: S - Rand g: S - R
are functions such that the limits of f(x) and g(x) as x goes to c both exist. Then

() lim (f(x) + g(x) = (lim f(x)) + (lim g(x)) .
(i) lim (f(x) - g(x)) = (lim f(x)) - (tim g(x)) .
(i) im (f(0)g(x) = (lim £(x)) (lim g(x)) .
(iv) If}lc1_)rr} g(x)#0and g(x) #0 forall x € S\ {c}, then

1i f(x) _ lim, f(x)
m

y—c g(x)  limy_, g(x)

Corollary 3.1.13. Let S C R and let ¢ be a cluster point of S. Suppose f: S — R is a function
such that the limit of f(x) as x goes to c exists. Then

lim |f (x)] =

lm (2]

3.1.4 Limits of restrictions and one-sided limits
Sometimes we work with the function defined on a subset.

Definition 3.1.14. Let f: S — R be a function and A C S. Define the function f|4: A —» R
by
fla(x) = f(x) for x € A.

We call f|4 the restriction of f to A.
The function f|4 is simply the function f taken on a smaller domain. The following

proposition is the analogue of taking a tail of a sequence. It says that the limit is “local”:
The limit only depends on points arbitrarily near c.
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Proposition 3.1.15. Let SC R, c € R, and let f: S — R be a function. Suppose A C S is such
that there is some a > 0 such that (A\{c})N(c—a,c+a)=(S\{c})N(c—a,c+a).

(i) The point c is a cluster point of A if and only if c is a cluster point of S.

(if) Supposing c is a cluster point of S, then f(x) — L as x — c if and only if f|a(x) — L as
X —c.

Proof. First, let ¢ be a cluster point of A. Since A C S, then if (A \ {c})N(c—€,c+¢€)is
nonempty for every € > 0, then (S \ {c}) N (c — €, c + €) is nonempty for every € > 0. Thus
c is a cluster point of S. Second, suppose c is a cluster point of S. Then for € > 0 such that
e <awegetthat(A\{c})N(c—€,c+€)=(S\{c})N(c—e,c+e) whichis nonempty.
This is true for all € < a and hence (A \ {c}) N (c — €, ¢ + €) must be nonempty for all € > 0.
Thus ¢ is a cluster point of A.

Now suppose c is a cluster point of S and f(x) — L as x — c. That s, for every € > 0
thereisa 6 > O such thatif x € S\ {c} and |x — ¢| < 6, then |f(x) — L| < €. Because A C S,
ifxe A\{c}, thenx € S\ {c}, and hence f|a(x) - Las x — c.

Finally, suppose f|a(x) — Las x — c and let € > 0 be given. There is a 6" > 0 such that
ifxe A\{c}and |x —c| < &, then |f|A(x) - L| < €. Take 6 := min{d’, a}. Now suppose
xeS\{cland |x —c| < 0. As|x —c| <a,wefindx € A\ {c},and as |x — c| < O, we get

lf(x) = L| = |flax) - L| < e. O

The hypothesis on A in the proposition is necessary. For an arbitrary restriction we
generally get an implication in only one direction, see Exercise 3.1.6. The usual notation for
the limit is

L £(5) o= lim fla(s).
A common use of restriction with respect to limits, which does not satisfy the hypothesis
in the proposition, is the so-called one-sided limit*

Definition 3.1.16. Let f: S — Rbe function and let ¢ € R. If ¢ is a cluster point of SN (c, )
and the limit of the restriction of f to S N (¢, o) as x — ¢ exists, define

lim+f(x) = lim f|gn(c,00)(X)-
X—C X—C

Similarly, if c is a cluster point of S N (oo, c) and the limit of the restriction as x — c exists,
define

lim f(x) = lim flsn(-co,c)(%)-
Proposition 3.1.15 does not apply to one-sided limits. It is possible to have one-sided

limits, but no limit at a point. For example, define f: R — R by f(x) := 1 for x < 0 and
f(x) :=0for x > 0. We leave it to the reader to verify that

lim f(x)=1, lim f(x) =0, lim f(x) does not exist.
x—0~ x—0* x—0

All is not lost, however, for we have the following replacement.

“One sees a plethora of one-sided limit notations. E.g., lim f(x), li%n f(x),or li;n f(x) for lim f(x).
s xTc x,/c x—c”
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Proposition 3.1.17. Let S C R be such that c is a cluster point of both S N (—co, ¢) and SN (c, o),
let f: S — R bea function, and let L € R. Then c is a cluster point of S and

lim f(x) =L if and only if lim f(x) = lim f(x)=L.

That is, a limit at c exists if and only if both one-sided limits exist and are equal. The
proof is a straightforward application of the definition of limit and is left as an exercise.
The key point is that (S N (=e0,¢)) U (SN (¢, 00)) =S\ {c}.

3.1.5 Exercises

Exercise 3.1.1: Find the limit (and prove it of course) or prove that the limit does not exist

a) lim Vx, for ¢ > 0 b) im x% + x + 1, forc e R c) lirrg) x? cos(1/x)
X—C X—C X—>

d) lirr(l) sin(1/x) cos(1/x) e) lirr(1) sin(x) cos(1/x)
x— x—

Exercise 3.1.2: Prove Corollary 3.1.10.
Exercise 3.1.3: Prove Corollary 3.1.11.
Exercise 3.1.4: Prove Corollary 3.1.12.

Exercise 3.1.5: Let A C S. Show that if ¢ is a cluster point of A, then c is a cluster point of S. Note the
difference from Proposition 3.1.15.

Exercise 3.1.6: Let A C S. Suppose c is a cluster point of A and it is also a cluster point of S. Let f: S — R
be a function. Show that if f(x) — L as x — c, then f|a(x) — L as x — c. Note the difference from
Proposition 3.1.15.

Exercise 3.1.7: Find an example of a function f: [-1,1] — R, where for A = [0, 1], we have f|a(x) — 0
as x — 0, but the limit of f(x) as x — 0 does not exist. Note why you cannot apply Proposition 3.1.15.

Exercise 3.1.8: Find example functions f and g such that the limit of neither f(x) nor g(x) exists as x — 0,
but such that the limit of f(x) + g(x) exists as x — 0.

Exercise 3.1.9: Let c1 be a cluster point of A C R and c; be a cluster point of B C R. Suppose f: A — B
and g: B — R are functions such that f(x) — coas x — cyand g(y) — Lasy — c2. If co € B, also
suppose that g(c2) = L. Let h(x) = g(f(x)) and show h(x) — L as x — cy. Hint: Note that f(x) could
equal ¢y for many x € A, see also Exercise 3.1.14.

Exercise 3.1.10: Suppose that f: R — R be a function such that for every sequence {x,} _, in R, the
sequence { f (xn)}:o:1 converges. Prove that f is constant, that is, f(x) = f(y) forall x,y € R.

Exercise 3.1.11: Prove the following stronger version of one direction of Lemma 3.1.7: Let S C R, c bea
cluster point of S, and f : S — R be a function. Suppose that for every sequence {x}};_; in S\ {c} such that

lim,, e X, = ¢ the sequence { f (xn)}:;1 is convergent. Then show that the limit of f(x) as x — c exists.

Exercise 3.1.12: Prove Proposition 3.1.17.
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Exercise 3.1.13: Suppose S C R and c is a cluster point of S. Suppose f: S — R is bounded. Show that
there exists a sequence {x,}7" | with x, € S\ {c} and limy e X, = ¢ such that { f (xn)}:;1 converges.

Exercise 3.1.14 (Challenging): Show that the hypothesis that g(c3) = L in Exercise 3.1.9 is necessary. That
is, find f and g such that f(x) — cy as x — c1 and g(y) — Lasy — ca, but g(f(x)) does not go to L as
X — (1.

Exercise 3.1.15: Show that the condition of being a cluster point is necessary to have a reasonable definition
of a limit. That is, suppose c is not a cluster point of S C R, and f: S — R is a function. Show that every L
would satisfy the definition of limit at ¢ without the condition on c being a cluster point.

Exercise 3.1.16:
a) Prove Corollary 3.1.13.

b) Find an example showing that the converse of the corollary does not hold.
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3.2 Continuous functions

Note: 2-2.5 lectures

A high-school criterion for the concept of continuity is that a function is continuous if
we can draw its graph without lifting the pen from the paper. While that intuitive concept
may be useful in simple situations, we require rigor. The following definition took three
great mathematicians (Bolzano, Cauchy, and finally Weierstrass) to get correctly and its
final form dates only to the late 1800s.

3.2.1 Definition and basic properties

Definition 3.2.1. Suppose S C Rand c € S. Wesay f: S — R is continuous at c if for every
€ > 0 there is a 6 > 0 such that whenever x € S and |x — ¢| < §, we have |f(x) — f(c)| <e€.
When f: S — R is continuous at all ¢ € S, then we simply say f is a continuous function.

Figure 3.3: For |x — c| < 0, the graph of f(x) should be within the gray region.

If f is continuous for all ¢ € A, we say f is continuous on A C S. A straightforward
exercise (Exercise 3.2.7) shows that this implies that f|4 is continuous, although the
converse does not hold (as we will see in Example 3.2.13).

Continuity may be the most important definition to understand in analysis, and it is not
an easy one. See Figure 3.3. Note that 6 not only depends on ¢, but also on c; we need not
pick one 6 for all ¢ € S. It is no accident that the definition of continuity is similar to the
definition of a limit of a function. The main feature of continuous functions is that these
are precisely the functions that behave nicely with limits.

Proposition 3.2.2. Consider a function f: S — R defined onaset S C R and let ¢ € S. Then:
(1) If c is not a cluster point of S, then f is continuous at c.

(ii) If ¢ is a cluster point of S, then f is continuous at c if and only if the limit of f(x)asx — ¢
exists and

lim £(x) = f(c).

(i) The function f is continuous at c if and only if for every sequence {x,}) _, where x, € S
and lim x, = c, the sequence {f (xn)}:o_1 converges to f(c).
n—oo -



3.2. CONTINUOUS FUNCTIONS 123

Proof. We start with (i). Suppose c is not a cluster point of S. Then there exists a 6 > 0 such
that SN (c = 0,c +6) = {c}. For any € > 0, simply pick this given 6. The only x € S such
that |x —c| < 6is x = c. Then |f(x) —f(c)| = |f(c) —f(c)| =0<e.

Let us move to (ii). Suppose c is a cluster point of S. Let us first suppose that
lim,_. f(x) = f(c). Then for every € > 0, thereis a 6 > 0 such thatif x € S\ {c} and
|x —c| < O, then |f(x) - f(c)| < €. Also |f(c) - f(c)| = 0 < ¢, so the definition of continuity
at c is satisfied. On the other hand, suppose f is continuous at c. For every € > 0, there
exists a 0 > 0 such that for x € S where |x — ¢| < 0, we have |f(x) - f(c)| < €. Then the
statement is, of course, still true if x € S \ {c} C S. Therefore, lim,_,. f(x) = f(c).

For (iii), first suppose f is continuous at c. Let {x,} _, be a sequence such that x, € S
and lim, . x, = c. Let € > 0 be given. Find a 6 > 0 such that |f(x) - f(c)| < € for all
x € S where |x — c| < 0. Find an M € N such that for n > M, we have |x,, — c| < 6. Then
for n > M, we have that |f(xn) — f(c)| <€, 80 {f(xn)}:)=1 converges to f(c).

We prove the other direction of (iii) by contrapositive. Suppose f is not continuous
at c. Then there exists an € > 0 such that for every 6 > 0, there exists an x € S such that
|x —¢c| < 6 and |f(x) —f(c)| > €. Define a sequence {x,}_; as follows. Let x,, € S be
such that |x,, — c¢| < 1/n and |f(xn) — f(c)| > €. Now {x,} ", is a sequence in S such that
lim, e x; = ¢ and such that |f(xn) — f(c)| > € for all n € N. Thus {f(xn)}:;1 does not
converge to f(c). It may or may not converge, but it definitely does not converge to f(c). O

The last item in the proposition is particularly powerful. It allows us to quickly apply
what we know about limits of sequences to continuous functions and even to prove that
certain functions are continuous. It can also be strengthened, see Exercise 3.2.13.

Example 3.2.3: The function f: (0, ) — R defined by f(x) := 1/x is continuous.
Proof: Fix ¢ € (0, ). Let {x,}) _, be asequencein (0, co) such that lim;,—c x, = c. Then

f(c) :1 ! = lim L = lim f(xy).

¢ limyex, nowx, n—oo
Thus f is continuous at ¢. As f is continuous at all ¢ € (0, ), f is continuous.

We have previously shown limy_,. x> = ¢? directly. Therefore the function x? is
continuous. The last item of Proposition 3.2.2 and the continuity of algebraic operations
with respect to limits of sequences, Proposition 2.2.5, gives a quick proof of a much more

general result.
Proposition 3.2.4. Let f: R — R be a polynomial. That is,

d-1

f(x) = agx® +ag_1x* V- agx + ao,

for some constants ag, a1, ..., aq. Then f is continuous.
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Proof. Fix c € R. Let {x,})_; be a sequence such that lim,, e x, = c. Then

1+'--+111C+(10

d-1

flc) = age +ag_1c*

d
:ad(lim xn) +ad_1(lim xn) +---+a1(hm xn)+a0
n—0o0 n—00 n—0oo

= lim (ade + ad_lxz_l + oo+ agx, + Ll()) = lim f(xy).
n—oo n—0oo
Thus f is continuous at c¢. As f is continuous at all c € R, f is continuous. m]

By similar reasoning, or by appealing to Corollary 3.1.12, we can prove the following
proposition. The proof is left as an exercise.

Proposition 3.2.5. Let f: S — Rand g: S — R be functions continuous at ¢ € S.
(i) The function h: S — R defined by h(x) = f(x) + g(x) is continuous at c.
(i) The function h: S — R defined by h(x) := f(x) — g(x) is continuous at c.
(iif) The function h: S — R defined by h(x) := f(x)g(x) is continuous at c.
(iv) If g(x) # 0 for all x € S, the function h: S — R given by h(x) = % is continuous at c.
Example 3.2.6: The functions sin(x) and cos(x) are continuous. In the following computa-

tions we use the sum-to-product trigonometric identities. We also use the simple facts that
|sin(x)| < |x]|, |[cos(x)| < 1, and [sin(x)| < 1.

|sin(x) — sin(c)| = (Zsin(xgc)cos(xzc)‘
—Zsin(x_c)’cos(x—i_c)‘
xX-—c
< 2fsin (23)|
sin 5
<2 x;C|=|x—C|
|COS(x) —COS(C)| = ‘—2sin(x - )Sln(x‘zi‘c)|
+

= 2fin (=5 sin ()
=<]|Ss 5 sm >
X —cC
< 2fain (%)
s 5

<2

2

The claim that sin and cos are continuous follows by taking an arbitrary sequence
{xn})_, converging to c, or by applying the definition of continuity directly. Details are
left to the reader.
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3.2.2 Composition of continuous functions

You probably already realized that one of the basic tools in constructing complicated
functions out of simple ones is composition. Recall that for two functions f and g, the
composition f o g is defined by (f o g)(x) = f(g(x)). A composition of continuous functions
is again continuous.

Proposition 3.2.7. Let A,B C Rand f: B — Rand g: A — B be functions. If g is continuous
at c € A and f is continuous at g(c), then f o g: A — R is continuous at c.

Proof. Let {xn}Z"=1 be a sequence in A such that lim, . X, = c. As g is continuous at c,
we have {g(xn)}:)=1 converges to g(c). As f is continuous at g(c), we have {f(g(xn))}zo=1
converges to f(g(c)). Thus f o g is continuous at c. O

Example 3.2.8: Claim: (sin(l/x))2 is a continuous function on (0, o).

Proof: The function 1/x is continuous on (0, o) and sin(x) is continuous on (0, c0)
(actually on R, but (0, o) is the range for 1/x). Hence the composition sin(1/x) is continuous.
Also, x? is continuous on the interval [-1, 1] (the range of sin). Thus the composition

(sin(l/x))2 is continuous on (0, ).

3.2.3 Discontinuous functions

When f is not continuous at ¢, we say f is discontinuous at c, or that it has a discontinuity
at c. The following proposition is a useful test and follows immediately from third item of
Proposition 3.2.2.

Proposition 3.2.9. Let f: S — R be a function and c € S. Suppose there exists a sequence
{xn};"zl, Xp € S for all n, and limy, .« X, = ¢ such that {f(xn)}:’=1 does not converge to f(c).
Then f is discontinuous at c.

Again, saying that {f (xn)}:’:1 does not converge to f(c) means that it either does not
converge at all, or it converges to something other than f(c).

Example 3.2.10: The function f: R — R defined by

-1 ifx <0,
x) =
fx) {1 ifx>0

is not continuous at 0.
Proof: Consider {-1/n}> ,, which converges to 0. Then f(-1/z) = —1 for every 1, and so
limy, e f(~1/n) = =1, but f(0) = 1. Thus the function is not continuous at 0. See Figure 3.4.
Notice that f(1/n) = 1 for all n € N. Hence, lim, .« f(/n) = f(0) = 1. So {f(xn)};o=1
may converge to f(0) for some specific sequence {x,} ", going to 0, despite the function
being discontinuous at 0.

=D"
n

Finally, consider = (=1)". This sequence diverges.
Y) q &
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Figure 3.4: Jump discontinuity. The values of f(~1/n) and f(0) are marked as black dots.

Example 3.2.11: For an extreme example, take the so-called Dirichlet function®.

1 if x is rational,
fx) = e
0 if x is irrational.
The function f is discontinuous at all c € R.

Proof: If c is rational, take a sequence {x,}~ , of irrational numbers such that
lim, 0 X, = ¢ (Why can we?). Then f(x,) = 0 and so lim,,« f(x,) =0, but f(c) = 1. If
c is irrational, take a sequence of rational numbers {x,}’_; that converges to ¢ (why can
we?). Then lim, .« f(x,) =1, but f(c) = 0.

Let us test the limits of our intuition. Can there exist a function continuous at all
irrational numbers, but discontinuous at all rational numbers? There are rational numbers
arbitrarily close to any irrational number. Perhaps strangely, the answer is yes, such a
function exists. The following example is called the Thomae function® or the popcorn function.

Example 3.2.12: Define f: (0,1) —» R as

) Uk if x = m/x, where m, k € N and have no common divisors (lowest terms),
X) =
0  if x is irrational.

See the graph of f in Figure 3.5. We claim that f is continuous at all irrational ¢ and
discontinuous at all rational c.

Proof: Let ¢ = m/k be rational and in lowest terms. Take a sequence of irrational numbers
{xu}5, such that lim, e x, = c. Then lim, e f(x,) = lim, e 0 = 0, but f(c) = 1/k # 0.
So f is discontinuous at c.

Now let ¢ be irrational, so f(c) = 0. Take a sequence {x,}  , in (0,1) such that
limy, e X, = c. Given € > 0, find K € N such that 1/k < € by the Archimedean property. If
mfk € (0,1) and m, k € N, then 0 < m < k. So there are only finitely many rational numbers
in (0,1) whose denominator k in lowest terms is less than K. As lim,_,« X, = ¢, every
number not equal to ¢ can appear at most finitely many times in {x, }}_;. Hence, there is

“Named after the German mathematician Johann Peter Gustav Lejeune Dirichlet (1805-1859).
tNamed after the German mathematician Carl Johannes Thomae (1840-1921).


https://en.wikipedia.org/wiki/Peter_Gustav_Lejeune_Dirichlet
https://en.wikipedia.org/wiki/Carl_Johannes_Thomae
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Figure 3.5: Graph of the “popcorn function.”

an M such that for n > M, all the numbers x,, that are rational have a denominator larger
than or equal to K. Thus for n > M,

|f(xn) = 0] = fxn) < Yk <ee.
Therefore, f is continuous at irrational c.
Let us end on an easier example.

Example 3.2.13: Define g: R — R by g(x) := 0if x # 0 and g(0) := 1. Then g is not
continuous at zero, but continuous everywhere else (why?). The point x = 0 is called a
removable discontinuity. That is because if we would change the definition of g, by insisting
that ¢(0) be 0, we would obtain a continuous function. On the other hand, let f be the
function of Example 3.2.10. Then f does not have a removable discontinuity at 0. No matter
how we would define f(0) the function would still fail to be continuous. The difference is
that lim,_,p g(x) exists while lim,_,o f(x) does not.

We stay with this example to show another phenomenon. Let A := {0}, then g|4 is
continuous (why?), while g is not continuous on A. Similarly, if B := R\ {0}, then g|p is
also continuous, and g is in fact continuous on B.

3.2.4 Exercises

Exercise 3.2.1: Using the definition of continuity directly prove that f: R — R defined by f(x) = x% is
continuous.

Exercise 3.2.2: Using the definition of continuity directly prove that f: (0, 00) — R defined by f(x) = 1/x
is continuous.

Exercise 3.2.3: Define f: R — R by

x% if x is irrational.

x  if x is rational,
£(x) ::{ /

Using the definition of continuity directly prove that f is continuous at 1 and discontinuous at 2.
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Exercise 3.2.4: Define f: R — R by

_sin(Yx) ifx #0,
fw%_{o ifx=0.

Is f continuous? Prove your assertion.
Exercise 3.2.5: Define f: R — R by
xsin(l/x) ifx #0,
fx) = .
0 ifx=0.
Is f continuous? Prove your assertion.

Exercise 3.2.6: Prove Proposition 3.2.5.

Exercise 3.2.7: Let S C Rand A C S. Let f: S — R be a continuous function. Prove that the restriction
fla is continuous.

Exercise 3.2.8: Suppose S C R, such that (c —a,c +a) C S forsomec € Rand a > 0. Let f: S — R be
a function and A = (c — o, ¢ + ). Prove that if f| is continuous at c, then f is continuous at c.

Exercise 3.2.9: Give an example of functions f: R — Rand g: R — R such that the function h, defined
by h(x) == f(x)+ g(x), is continuous, but f and g are not continuous. Can you find f and g that are
nowhere continuous, but h is a continuous function?

Exercise 3.2.10: Let f: R — Rand g: R — R be continuous functions. Suppose that f(r) = g(r) for all
r € Q. Show that f(x) = g(x) forall x € R.

Exercise 3.2.11: Let f: R — R be continuous. Suppose f(c) > 0. Show that there exists an o > 0 such
that for all x € (¢ — a, ¢ + a), we have f(x) > 0.

Exercise 3.2.12: Let f: Z — R be a function. Show that f is continuous.

Exercise 3.2.13: Let f: S — R be a function and ¢ € S, such that for every sequence {x,},_, in S with
limy—e0 Xy = c, the sequence { f (xn)}:;1 converges. Show that f is continuous at c.

Exercise 3.2.14: Suppose f: [-1,0] —» Rand g: [0,1] — R are continuous and f(0) = g(0). Define
h:[-1,1] > R by h(x) == f(x)ifx < 0and h(x) = g(x) if x > 0. Show that h is continuous.

Exercise 3.2.15: Suppose g: R — R is a continuous function such that g(0) = 0, and suppose f: R — R
is such that |f(x) - f(y)| < g(x —y) forall x and y. Show that f is continuous.

Exercise 3.2.16 (Challenging): Suppose f: R — R is continuous at 0 and such that f(x+y) = f(x)+ f(y)
for every x and y. Show that f(x) = ax for some a € R. Hint: Show that f(nx) = nf(x), then show f is
continuous on R. Then show that f(¥)/x = f(1) for all rational x.

Exercise 3.2.17: Suppose S C Randlet f: S — Rand g: S — R be continuous functions. Define
p: S — Rbyp(x) = max{f(x), g(x)} and g: S — R by q(x) := min{f(x), g(x)}. Prove that p and q

are continuous.
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Exercise 3.2.18: Suppose f: [-1,1] — R is a function continuous at all x € [-1,1] \ {0}. Show that for
every € such that 0 < € < 1, there exists a function g: [-1,1] — R continuous on all of [-1, 1], such that

f(x) = g(x) forall x € [-1,—€] U e, 1], and |g(x)| < |f(x)| for all x € [-1,1].

Exercise 3.2.19 (Challenging): A function f: I — R is convex if whenever a < x < b fora, x,b in I, we
have f(x) < f(a)=2 + f(b)3=2. In other words, if the line drawn between (a, f(a)) and (b, f(b)) is above
the graph of f.

a) Prove that if I = (a, B) an open interval and f: I — R is convex, then f is continuous.

b) Find an example of a convex f: [0,1] — R that is not continuous.
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3.3 Extreme and intermediate value theorems

Note: 1.5 lectures

Continuous functions on closed and bounded intervals are quite well behaved.

3.3.1 Min-max or extreme value theorem

Recall that f: [a,b] — R is bounded if there exists a B € R such that | f (x)| < B for all
x € [a,b]. For a continuous function on a closed and bounded interval, we have the
following lemma.

Lemma 3.3.1. A continuous function f: [a,b] — R is bounded.

Proof. We prove the claim by contrapositive. Suppose f is not bounded. Then for each
n € N, there is an x,, € [a, b], such that

|f(xn)| > n.

The sequence {x,} >, is bounded as a < x, < b. By the Bolzano-Weierstrass theorem,
there is a convergent subsequence {xni};’il. Let x := lim; e Xp;. Since a < x,,, < b forall i,
then a < x < b. The sequence {f(xnl.)}z1 is not bounded as |f(xnl.)| > n; > i. Thus f is not

continuous at x as
f(x)= f(lim xnl.), but lim f(x;) does not exist. O

1—00 1—00

Notice a key point of the proof. Boundedness of [a,b] allows us to use Bolzano-
Weierstrass, while the fact that it is closed gives us that the limit is back in [a,b]. The
technique is a common one: Find a sequence with a certain property, then use Bolzano-

Weierstrass to make such a sequence that also converges.
Recall from calculus that f: S — R achieves an absolute minimum at c € S if

f(x)= f(c) forall x € S.
On the other hand, f achieves an absolute maximum at c € S if
f(x) < f(ec) forall x € S.

If such a ¢ € S exists, then we say f achieves an absolute minimum (resp. absolute maximum) on
S, and we call f(c) the absolute minimum (resp. absolute maximum,).

If S is a closed and bounded interval, then a continuous f is not just bounded, it must
achieve an absolute minimum and an absolute maximum on S.

Theorem 3.3.2 (Minimum-maximum theorem / Extreme value theorem). A continuous
function f: [a,b] — R achieves both an absolute minimum and an absolute maximum on [a, b].

Again, we remark that is important that the domain of f is a closed and bounded
interval [a, b].
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absolute maximum of f = f(c) - — o~—~- - - — — -

absolute minimum of f = f(d) - - - - - — —

Figure 3.6: f: [a,b] — R achieves an absolute maximum f(c) at ¢, and an absolute minimum

£(d) atd.

Proof. The lemma says that f is bounded, so the set f([a,b]) = {f(x) : x € [a,b]} has
a supremum and an infimum. There exist sequences in the set f([a, b]) that approach
its supremum and its infimum. That is, there are sequences { f (xn)}:)=1 and { f (yn)}:;l,
where x, and y, are in [a, b], such that

lim f(x,) =inff([a,b]) and  lim f(y,) = sup f([a,b]).

We are not done yet; we need to find where the minima and the maxima are. The problem
is that the sequences {x,} ~, and {y,} _, need not converge. We know {x,} and
{yn},_, are bounded (thelr elements belong to a bounded interval [a, b]). Apply the

Bolzano-Weierstrass theorem to find convergent subsequences {x,,}:7, and {yn,} 2. Let
x = lim x,, and y = lim y,.
1—00 1—00

Asa < x,, < bforalli,wehavea < x < b. Similarly,a < y < b. Sox and y arein [a,b]. A
limit of a subsequence is the same as the limit of the sequence, and we can take a limit past
the continuous function f:

inf £([a,b]) = lim f(.) = lim f(x,) = f(lim x,) = £(x).

Similarly,
sup £([a,b]) = lim f(ya) = lim F(yn) = f(1im yn, | = F@).
Hence, f achieves an absolute minimum at x and an absolute maximum at y. m|

Example 3.3.3: The function f(x) := x? + 1 defined on the interval [~1,2] achieves a
minimum at x = 0 when f(0) = 1. It achieves a maximum at x = 2 where f(2) = 5. Do note
that the domain of definition matters. If we instead took the domain to be [-10, 10], then f
would no longer have a maximum at x = 2. Instead, the maximum would be achieved at
either x = 10 or x = —10.

We show by examples that the different hypotheses of the theorem are truly needed.
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Example 3.3.4: The function f: R — R defined by f(x) := x achieves neither a minimum,
nor a maximum. So it is important that we are looking at a bounded interval.

Example 3.3.5: The function f: (0,1) — R defined by f(x) = 1/x achieves neither a
minimum, nor a maximum. It is continuous, but (0, 1) is not closed. The values of the
function are unbounded as we approach 0. Also as we approach x = 1, the values of the
function approach 1, but f(x) > 1 for all x € (0,1). There isno x € (0, 1) such that f(x) = 1.
So it is important that we are looking at a closed interval.

Example 3.3.6: Continuity is important. Define f: [0,1] — R by f(x) := /x for x > 0 and
let £(0) := 0. The function does not achieve a maximum. The domain [0, 1] is closed and
bounded, but the problem is that the function is not continuous at 0.

3.3.2 Bolzano’s intermediate value theorem

Bolzano’s intermediate value theorem is one of the cornerstones of analysis. It is sometimes
only called the intermediate value theorem, or just Bolzano’s theorem. To prove Bolzano’s
theorem we prove the following simpler lemma.

Lemma 3.3.7. Let f: [a,b] — R be a continuous function. Suppose f(a) < 0 and f(b) > 0.
Then there exists a number ¢ € (a,b) such that f(c) = 0.
Proof. We define two sequences {a,}’ _, and {b,} ", inductively:

(i) Leta; :=aand by == b.

(i) 16 £ (22525) 2 0, let 1 = @, and by = 250,

(iid) If f (%) <0,detan = 2 and by = by.

See Figure 3.7 for an example defining the first five steps. If a, < b,, then a, < “”;b” <b,.

So ay41 < byy1. Thus by induction a, < b, for all n. Furthermore, a, < 4,41 and
by, > by4 for all n, that is, the sequences are monotone. As a, < b, < by = b and
b, > a, > a1 = a for all n, the sequences are also bounded. Therefore, the sequences

converge. Let ¢ == lim, 0 4, and d := lim, . by, where alsoa < ¢ < d < b. We need to
show that ¢ = d. Notice

b 4 _ b, —ay
n+1 n+l = > .
By induction,
bi1—a _
bn - an = ]21’1—11 = 21 n(b - ﬂ).

As 217(b — a) converges to zero, we take the limit as 1 goes to infinity to get
d—c= lim (b, —a,) = lim 27"(b —a) = 0.
n—oo n—oo

In other words, d = c.
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Figure 3.7: Finding roots (bisection method).

By construction, for all n,
f(ay) <0 and f(by) = 0.

Since limy, w0 7 = lim, e by, = c and f is continuous at ¢, we may take limits in those
inequalities:
f(c)=lim f(a,) <0 and f(c) = lim f(b,) > 0.
n—oo n—00

As f(c) > 0and f(c) < 0, we conclude f(c) = 0. Thusalsoc # aandc # b,soa <c <b. O

Theorem 3.3.8 (Bolzano’s intermediate value theorem). Let f: [a,b] — R be a continuous
function. Suppose y € R is such that f(a) <y < f(b)or f(a) >y > f(b). Then there exists a
c € (a,b) such that f(c) = y.

The theorem says that a continuous function on a closed interval achieves all the values
between the values at the endpoints.

Proof. If f(a) < y < f(b), then define g(x) := f(x) —y. Then g(a) < 0 and g(b) > 0, and we
apply Lemma 3.3.7 to g to find c. If g(c) =0, then f(c) = v.

Similarly, if f(a) > y > f(b), then define g(x) := y — f(x). Again, g(a) < 0and g(b) > 0,
and we apply Lemma 3.3.7 to find c. As before, if g(c) = 0, then f(c) = y. O

If a function is continuous, then the restriction to a subset is continuous; if f: S — R is
continuous and [a, b] C S, then f|(, 5 is also continuous. We generally apply the theorem
to a function continuous on some large set S, but we restrict our attention to an interval.

The proof of the lemma tells us how to find the root c. The proof is not only useful for
us pure mathematicians, it is a useful idea in applied mathematics, where it is called the
bisection method.
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Example 3.3.9 (Bisection method): The polynomial f(x) := x®> — 2x2 + x — 1 has a real root
in (1,2). We simply notice that f(1) = -1 and f(2) = 1. Hence there must exist a point
¢ € (1,2) such that f(c) = 0. To find a better approximation of the root we follow the proof
of Lemma 3.3.7. We look at 1.5 and find that f(1.5) = —0.625. Therefore, there is a root
of the polynomial in (1.5,2). Next we look at 1.75 and note that f(1.75) ~ —0.016. Hence
there is a root of f in (1.75,2). Next we look at 1.875 and find that f(1.875) ~ 0.44, thus
there is a root in (1.75, 1.875). We follow this procedure until we gain sufficient precision.
In fact, the root is at ¢ ~ 1.7549.

The technique is the simplest method of finding roots of polynomials, a common
problem in applied mathematics. In general, finding roots is hard to do quickly, precisely,
and automatically. There are other, faster methods of finding roots of polynomials, such as
Newton’s method. One advantage of the method above is its simplicity. The moment we
find an interval where the intermediate value theorem applies, we are guaranteed to find a
root up to a desired precision in finitely many steps. Furthermore, the bisection method
finds roots of any continuous function, not just a polynomial.

The theorem guarantees one c such that f(c) = y, but there may be other roots of the
equation f(c) = y. If we follow the procedure of the proof, we are guaranteed to find
approximations to one such root. We need to work harder to find any other roots.

Polynomials of even degree may not have any real roots. There is no real number x such
that x2 + 1 = 0. Odd polynomials, on the other hand, always have at least one real root.

Proposition 3.3.10. Let f(x) be a polynomial of odd degree. Then f has a real root.

Proof. Suppose f is a polynomial of odd degree d. We write

d-1

f(x) = agx® +ag_1x¥ Vo agx + ag,

where a; # 0. We divide by a4 to obtain a monic polynomial*

d-1

g(x) = x4+ by x4 o4 byx + by,

where by = a/a;. Let us show that g(n) is positive for some large n € N. We first compare
the highest order term with the rest:

baoan U+ +bin +bo| _ [ba1n®t 4+ + bin + by

nd nd
_ bal nd= 4.+ |by| n + |bol
< "
|bg_1| n971 + -+ |by| n971 + |bo| !

i
n4 Y (|bg1| + -+ + |b1] + |bol)
1
(Ibg-1] + - +1b1] +1bol).

_1
n

*The word monic means that the coefficient of x? is 1.
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Therefore,
) bd_lnd‘l +---+bin + by
lim =

n=c0 nd

Thus there exists an M € N such that

0.

bd_lMd_l +---+b1M + by
M4 <

1,

which implies
—(bg M+ -+ BiM + by) < M7

Therefore, g(M) > 0.

Next, consider g(—n) for n € N. By a similar argument, there exists a K € N such that
bd_l(—K)d_1 + -+ +b1(=K) + bg < K? and therefore g(~K) < 0 (see Exercise 3.3.5). In the
proof, make sure you use the fact that d is odd. In particular, if d is odd, then (—n)d = —(n%).

We appeal to the intermediate value theorem to find a ¢ € (—K, M), such that g(c) = 0.

As g(x) = %, then f(c) = 0, and the proof is done. O

Example 3.3.11: You may recall how hard we worked in Example 1.2.3 to show that V2
exists. With Bolzano’s theorem, we can prove the existence kth root of any positive number
y > 0 without any effort. We claim that for any k € N and any y > 0, there exists a number
x > 0 such that x* = y.

Proof: If y = 1, then it is clear, so assume y # 1. Let f(x) := x* — y. We notice
f(0)=-y <0.Ify < 1,then f(1) = 1¥—y > 0. Ify > 1, then f(y) = y* -y = y(y*1-1) > 0.
In either case, apply Bolzano’s theorem to find an x > 0 such that f(x) = 0, or in other
words xF = y.

Example 3.3.12: Interestingly, there exist discontinuous functions with the intermediate
value property. The function
sin(l/x) ifx #0,
f(x) = .
0 ifx=0,
is not continuous at 0; however, f has the intermediate value property: Whenever a < b

and y is such that f(a) < y < f(b) or f(a) > y > f(b), there exists a ¢ € (a,b) such that
f(c) = y. See Figure 3.2 for a graph of sin(1/x). Proof is left as Exercise 3.3.4.

The intermediate value theorem says that if f: [a,b] — R is continuous, then f ([a, b])
contains all the values between f(a) and f(b). In fact, more is true. Combining all the
results of this section one can prove the following useful corollary whose proof is left as an
exercise. Hint: See Figure 3.8 and notice what the endpoints of the image interval are.

Corollary 3.3.13. If f: [a,b] — R is continuous, then the direct image f ([a, b)) is a closed and
bounded interval or a single number.
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Figure 3.8: The image of a continuous f: [4,b] — R.

3.3.3 Exercises

Exercise 3.3.1: Find an example of a discontinuous function f: [0,1] — R where the conclusion of the
intermediate value theorem fails.

Exercise 3.3.2: Find an example of a bounded discontinuous function f: [0,1] — R that has neither an
absolute minimum nor an absolute maximum.

Exercise 3.3.3: Let f:(0,1) — R be a continuous function such that lirr(1) f(x) = lirr% f(x) = 0. Show that
x— x—

f achieves either an absolute minimum or an absolute maximum on (0, 1) (but perhaps not both).

Exercise 3.3.4: Let

_Jsin(i/x) ifx #0,
fx) = {O ifx=0.

Show that f has the intermediate value property. That is, whenever a < b, if there exists a y such that
f(a) <y < f(b)or f(a) >y > f(b), then there exists a ¢ € (a,b) such that f(c) = y.
Exercise 3.3.5: Suppose g(x) is a monic polynomial of odd degree d, that is,

1

g(x) = x¥ + by x4+ -+ bx + by,

for some real numbers by, by, ...,bs—1. Show that there exists a K € N such that g(—K) < 0. Hint: Make
sure to use the fact that d is odd. You will have to use that (—n)d = —(n?).

Exercise 3.3.6: Suppose g(x) is a monic polynomial of positive even degree d, that is,

1+--~+b1x+b0,

glx) = x? + bg_qxf”
for some real numbers by, b, ..., bs—1. Suppose g(0) < 0. Show that g has at least two distinct real roots.

Exercise 3.3.7: Prove Corollary 3.3.13: Suppose f: [a,b] — R is a continuous function. Prove that the
direct image f ([a, b]) is a closed and bounded interval or a single number.

Exercise 3.3.8: Suppose f: R — R is continuous and periodic with period P > 0. That is, f(x + P) = f(x)
forall x € R. Show that f achieves an absolute minimum and an absolute maximum.
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Exercise 3.3.9 (Challenging): Suppose f(x) is a bounded polynomial, in other words, there is an M such
that |f(x)| < M for all x € R. Prove that f must be a constant.

Exercise 3.3.10: Suppose f: [0,1] — [0, 1] is continuous. Show that f has a fixed point, in other words,
show that there exists an x € [0, 1] such that f(x) = x.

Exercise 3.3.11: Find an example of a continuous bounded function f: R — R that does not achieve an
absolute minimum nor an absolute maximum on R.

Exercise 3.3.12: Suppose f: R — R is continuous such that x < f(x) < x + 1 for all x € R. Find f(R).

Exercise 3.3.13: True/False, prove or find a counterexample. If f : R — R is a continuous function such
that f|z is bounded, then f is bounded.

Exercise 3.3.14: Suppose f: [0,1] — (0,1) is a bijection. Prove that f is not continuous.

Exercise 3.3.15: Suppose f: R — R is continuous.
a) Prove that if there is a ¢ such that f(c)f(—c) < O, then there isa d € R such that f(d) = 0.
b) Find a continuous function f such that f(R) = R, but f(x)f(-x) > 0 forall x € R.

Exercise 3.3.16: Suppose g(x) is a monic polynomial of even degree d, that is,

L 4 bix + by,

g(x) = x? + bggx®
for some real numbers by, b, . ..,ba—1. Show that g achieves an absolute minimum on R.

Exercise 3.3.17: Suppose f(x) is a polynomial of degree d and f(R) = R. Show that d is odd.
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3.4 Uniform continuity

Note: 1.5-2 lectures (continuous extension can be optional)

3.4.1 Uniform continuity

We made a fuss of saying that the 6 in the definition of continuity depended on the point
c. There are situations when it is advantageous to be able to pick a 6 independent of any
point, and so we give a name to this concept.

Definition 3.4.1. Let S C R, and let f: S — R be a function. Suppose for every € > 0 there
exists a 0 > 0 such that whenever x,c € S and |x — ¢| < 0, then |f(x) - f(c)| < €. Then we
say f is uniformly continuous.

A uniformly continuous function must be continuous. The only difference in the
definitions is that in uniform continuity, for a given € > 0 we pick a 6 > 0 that works for all
c € S. Thatis, 6 can no longer depend on ¢, it only depends on €. The domain of definition
of the function makes a difference now. A function that is not uniformly continuous on a
larger set, may be uniformly continuous when restricted to a smaller set. Note that x and c
are not treated any differently in this definition.

Example 3.4.2: f:[0,1] — R defined by f(x) := x? is uniformly continuous.
Proof: Note that0 < x,c¢ < 1. Then

2—czl =|lx+c|lx—c| < (|x| +|c|)|x—c| <(1+1)|x—c|.

|x
Therefore, given € > 0, let 6 := €/2. If |x — ¢| < §, then |[x? — ¢?| < 2|x — ¢| < €.

On the other hand, ¢: R — R defined by g(x) := x? is not uniformly continuous.
Proof: Suppose it is uniformly continuous, then for every € > 0, there would exist a
5 > 0 such that if |[x — c| < 0, then |x% — c?| < €. Take x > 0 and let ¢ := x + 6/2. Write
e>|x?=c? =|x+c||x —c| = 2x +6/2)5/2 > bx.
Therefore, x < €/s for all x > 0, which is a contradiction.

Example 3.4.3: The function f: (0,1) — R defined by f(x) := 1/x is not uniformly continu-
ous.
Proof: Given € > 0, then € > |1/x —1/y| holds if and only if

ly—x| |y -+

>t = S =

or
|x - y| < xye.

Suppose € < 1, and we wish to see if a small 6 > 0 would work. If x € (0,1) and

y=x+92¢€(0,1), then |x - y| = 0/2 < 6. We plug y into the inequality above to get

5/2 < x(x +9/2)€ < x. If the definition of uniform continuity is satisfied, then the inequality

6/2 < x holds for all x > 0. But then 6 < 0. Therefore, no single 6 > 0 works for all points.
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The examples show that if f is defined on an interval that is either not closed or not
bounded, then f can be continuous, but not uniformly continuous. For a closed and
bounded interval [a, b], we can, however, make the following statement.

Theorem 3.4.4. Let f: [a,b] — R be a continuous function. Then f is uniformly continuous.

Proof. We prove the statement by contrapositive. Suppose f is not uniformly continuous.
We will prove that there is some c € [a, b] where f is not continuous. Let us negate the
definition of uniformly continuous. There exists an € > 0 such that for every 6 > 0, there
exist points x, y in [a, b] with |x - y| < 6 and |f(x) — f(y)| > €.

So for the € > 0 above, we find sequences {x,} | and {y,} ", such that |xn — yn| < 1/n
and such that | flxn)—f (yn)| > €. By Bolzano—Weierstrass, there exists a convergent
subsequence {xnk};"zl. Let ¢ == limy_,00 Xy,. Asa < x,, < b forall k, we havea < c < b.
Estimate

[V, — ¢l = Yn, — Xnp + X, — €| < |Ynp — X | + X0, — €| < Y + x5, — .

As 1/n; and |xnk - c| both go to zero when k goes to infinity, {yn, }}., converges and the
limit is c. We now show that f is not continuous at c. Estimate

[f(xn) = FO| = [fGen) = FYn) + fym) = £(0)|
1f () = F )| = |f () = F(©)]
e —|f(yu) - F(O)|.

\%

v

Or in other words,

[f Gene) = FO| + [ f () — F0)| = €.

At least one of the sequences { f(x, k)}:;l or {f(yn k)}:’zl cannot converge to f(c), otherwise
the left-hand side of the inequality would go to zero while the right-hand side is positive.
Thus f cannot be continuous at c. m]

As before, note what is key in the proof: We can apply Bolzano—Weierstrass because
the interval [a, b] is bounded, and the limit of the subsequence is back in [a, b] because the
interval is closed.

3.4.2 Continuous extension

Uniformly continuous functions on open intervals extend continuously to the endpoints.
The key is the following lemma, which also has many other uses. It says that uniformly
continuous functions preserve Cauchy sequences. The new issue here is that for a Cauchy
sequence, the limit may not end up in the domain of the function.

Lemma 3.4.5. Let S C Randlet f: S — R be a uniformly continuous function. Let {x,}}_, be
a Cauchy sequence in S. Then {f (xn)}:’:1 is Cauchy.



140 CHAPTER 3. CONTINUOUS FUNCTIONS

Proof. Let € > 0 be given. There is a 0 > 0 such that |f(x) = f(y)| < € whenever x,y € S
and [x — y| < 0. Find an M € N such that for all n, k > M, we have |x,, — xx| < 6. Then for
all n, k > M, we have |f(xn) —f(xk)| <e€. O

An application of the lemma above is the following extension result. It says that a
function on an open interval is uniformly continuous if and only if it can be extended to a
continuous function on the closed interval.

Proposition 3.4.6. A function f: (a,b) — R is uniformly continuous if and only if the limits
L, = lim f(x) and Ly == lim f(x)
x—a x—b

exist and the function f: [a,b] — R defined by

f(x) ifxe(ab),
f(x) =1L, ifx=a,
Lb ifx:b

is continuous.

Proof. One direction is quick. If f is continuous, then it is uniformly continuous by
Theorem 3.4.4. As f is the restriction of fto (a,b), f is also uniformly continuous (exercise).

Now suppose f is uniformly continuous. We must first show that the limits L, and
Ly exist. Let us concentrate on L,. Take {x,}; _, in (a,b) such that lim; . x, = a. The
sequence {x,}*_, is Cauchy, so by Lemma 3.4.5 the sequence {f (xn)}zo=1 is Cauchy and
thus convergent. Let Ly := lim,« f(x,). Take another sequence {y,}>_, in (a,b) such
that lim, . y» = a. By the same reasoning we get L, = lim, o f(y»). If we show that
L1 = Ly, then the limit L, = lim,_,, f(x) exists. Let € > 0 be given. Find 6 > 0 such
that |x - y| < 0 implies |f(x) - f(y)| < ¢/3. Find M € N such that for n > M, we have
la = xu| <9/2, |a = yn| <02, |f(xn) — L1| < /3, and |f(yn) — Lo| < ¢/3. Then for n > M,

|xn—yn|:|xn—a+a—yn| < |x, —a| +|a—yn| <02+ 0/2=0.
So
|L1 — La| = |L1 = fxn) + f(xn) = fyn) + fyn) = L2|
< |Ly = flea)| + | f(xn) = f(yn)| + |f(yn) — Lo
<e€f3+e/3+€/3=¢.
Therefore, L1 = Lp. Thus L, exists. To show that L, exists is left as an exercise.
If L, = lim,,, f(x) exists, then lim,_,, f(x) exists and equals L, (see Proposition 3.1.15).

Similarly for L,. Hence f is continuous at @ and b. And since f is continuous at ¢ € (a, ),
then f is continuous at c € (a,b) (Proposition 3.1.15 again). O

A typical application of this proposition (together with Proposition 3.1.17) is the
following. Suppose f: (-1,0) U (0,1) — R is uniformly continuous, then lim,_,o f(x)
exists and the function has a removable singularity, that is, we can extend the function to a
continuous function on (-1, 1).
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3.4.3 Lipschitz continuous functions

Definition 3.4.7. A function f: S — R is Lipschitz continuous®, if there exists a K € R, such
that

lf(x) = f(y)| < K|x -y forall x and y in S.

A large class of functions is Lipschitz continuous. Be careful, just as for uniformly
continuous functions, the domain of definition of the function is important. See the
examples below and the exercises. First, we justify the use of the word continuous.

Proposition 3.4.8. A Lipschitz continuous function is uniformly continuous.

Proof. Let f: S — R be a function and let K be a constant such that |f(x) - f(y)| < K|x -y
forall x,yin S. Let € > 0 be given. Take 6 := ¢/k. For all x and y in S such that |x - y| <9,

€

|f(x)—f(]/)|SK|x—y|<K6:KK

=e€.
Therefore, f is uniformly continuous. O

We interpret Lipschitz continuity geometrically. Let f be a Lipschitz continuous
function with some constant K. We rewrite the inequality to say that for x # y, we have

f(x) = fy)
xr—y

< K.

The quantity %f;(y) is the slope of the line between the points (x, f(x)) and (y, f(y)), that
is, a secant line. Therefore, f is Lipschitz continuous if and only if every line that intersects

the graph of f in at least two distinct points has slope in absolute value less than or equal
to K. See Figure 3.9.

_ f0-f®)
x=y

slope

Figure 3.9: The slope of a secant line. A function is Lipschitz if ‘J%J;(y)’ < Kforall x and y.

*Named after the German mathematician Rudolf Otto Sigismund Lipschitz (1832-1903).


https://en.wikipedia.org/wiki/Rudolf_Lipschitz
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Example 3.4.9: The functions sin(x) and cos(x) are Lipschitz continuous. In Example 3.2.6
we have seen the following two inequalities.

|sin(x) — sin(y)| < |x — y| and |cos(x) - cos(y)| < |x — y| i
Hence sine and cosine are Lipschitz continuous with K = 1.

Example 3.4.10: The function f: [1, 00) — R defined by f(x) := v/x is Lipschitz continuous.
Proof:

x-y | k-ul

Asx > 1and y > 1, we see that \/E-lf 7 < % Therefore,

NEE

X—y

1
—\/E+\/y S§|X—y|.

NEE

On the other hand, g: [0, ) — R defined by ¢(x) := v/x is not Lipschitz continuous.
Proof: Suppose for all x, y € [0, o),

[Vx = Vy| <K|x -y

for some K. Set y = 0 to obtain yx < Kx. If K > 0, then for x > 0 we get 1/k < +/x or
1/k? < x. This cannot possibly be true for all x > 0. Thus no such K > 0 exists and g is not
Lipschitz continuous. See Figure 3.10 and note how secant lines would be more and more
vertical as we get closer to x = 0.

7

J J J ]
T T T T 1

Figure 3.10: Graph of y/x and some secant lines through (0, 0) and (x, V).

The last example g is a function that is uniformly continuous but not Lipschitz
continuous. To see that /x is uniformly continuous as a function on [0, ), note that it is
uniformly continuous when restricted to [0, 1] by Theorem 3.4.4. It is also Lipschitz (and
so uniformly continuous) when restricted to [1, c0). It is not hard (exercise) to show that
this means that y/x is a uniformly continuous function on [0, o).
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3.4.4 Exercises

Exercise 3.4.1: Let f: S — R be uniformly continuous. Let A C S. Then the restriction f|4 is uniformly
continuous.

Exercise 3.4.2: Let f: (a,b) — R be a uniformly continuous function. Finish the proof of Proposition 3.4.6
by showing that the limit lirr;) f(x) exists.
X—

Exercise 3.4.3: Show that f: (c, 00) — R for some ¢ > 0 and defined by f(x) := 1/x is Lipschitz continuous.
Exercise 3.4.4: Show that f: (0, 00) — R defined by f(x) := 1/x is not Lipschitz continuous.

Exercise 3.4.5: Let A, B be intervals. Let f: A — Rand g: B — R be uniformly continuous functions
such that f(x) = g(x) for x € AN B. Define the function h: AUB — R by h(x) = f(x)if x € A and
h(x) .= g(x)if x € B\ A.

a) Prove that if AN B # 0, then h is uniformly continuous.

b) Find an example where AN B = 0 and h is not even continuous.

Exercise 3.4.6 (Challenging): Let f: R — R be a polynomial of degree d > 2. Show that f is not Lipschitz
continuous.

Exercise 3.4.7: Let f: (0,1) — R be a bounded continuous function. Show that the function g(x) =
x(1 — x) f(x) is uniformly continuous.

Exercise 3.4.8: Show that f: (0, 00) — R defined by f(x) := sin(1/x) is not uniformly continuous.

Exercise 3.4.9 (Challenging): Let f: Q — R be a uniformly continuous function. Show that there exists a
uniformly continuous function f: R — R such that f(x) = f(x) forall x € Q.

Exercise 3.4.10:
a) Find a continuous f: (0,1) — R and a sequence {x,}, _, in (0,1) that is Cauchy, but such that
{f (xn)}:;l is not Cauchy.

b) Prove that if f: R — R is continuous, and {x,}_, is Cauchy, then {f(xn)}:lo:1 is Cauchy.

Exercise 3.4.11: Prove:

a) If f: S — Rand g: S — R are uniformly continuous, then h: S — R given by h(x) = f(x) + g(x)
is uniformly continuous.

b) If f: S — R is uniformly continuous and a € R, then h: S — R given by h(x) = af(x) is uniformly
continuous.

Exercise 3.4.12: Prove:
a) If f: S — Rand g: S — R are Lipschitz, then h: S — R given by h(x) = f(x) + g(x) is Lipschitz.
b) If f: S — Riis Lipschitzand a € R, then h: S — R given by h(x) := af(x) is Lipschitz.
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Exercise 3.4.13:

a) If f:[0,1] — R is given by f(x) := x™ for an integer m > 0, show f is Lipschitz and find the best (the
smallest) Lipschitz constant K (depending on m of course). Hint: (x — y)(x™ 1 + x™ =2y + x"3y2 +

b) Using the previous exercise, show that if f: [0,1] — R is a polynomial, that is, f(x) = a,x™ +
A1 x™ 1 4o+ ag, then f is Lipschitz.

Exercise 3.4.14: Suppose for f: [0,1] — R, we have |f(x) - f(y)| <K |x - y|for all x,y in [0,1], and
f(0) = f(1) = 0. Prove that |f(x)| < K/2 for all x € [0,1]. Further show by example that K/2 is the best
possible, that is, there exists such a continuous function for which | f (x)| = K/2 for some x € [0, 1].

Exercise 3.4.15: Suppose f: R — R is continuous and periodic with period P > 0. That is, f (x +P) = f(x)
forall x € R. Show that f is uniformly continuous.

Exercise 3.4.16: Suppose f: S — R and g: [0, c0) — [0, o0) are functions, g is continuous at 0, g(0) = 0,
and whenever x and y are in S, we have | f(x)—-f (y)| < g(|x - y|) Prove that f is uniformly continuous.

Exercise 3.4.17: Suppose f: [a,b] — R is a function such that for every c € [a, b] there is a K, > 0 and an
€. > 0 for which |f(x) - f(y)| < K. |x - y|for all x and y in (c — €, ¢ + €:) N [a,b]. In other words, f is
“locally Lipschitz.”

a) Prove that there exists a single K > 0 such that |f(x) - f(y)| <K |x - y|for all x,y in [a, b].

b) Find a counterexample to the above if the interval is open, that is, find an f: (a,b) — R that is locally
Lipschitz, but not Lipschitz.
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3.5 Limits at infinity

Note: less than 1 lecture (optional, can safely be omitted unless §3.6 or §5.5 is also covered)

3.5.1 Limits at infinity

As for sequences, a continuous variable can also approach infinity.

Definition 3.5.1. We say oo is a cluster point of S C R if for every M € R, there exists an
x € S such that x > M. Similarly, —co is a cluster point of S C R if for every M € R, there
exists an x € S such that x < M.

Let f: S — R be a function, where oo is a cluster point of S. If there exists an L € R
such that for every € > 0, there is an M € R such that

|f(x)—L| <e€

whenever x € S and x > M, then we say f(x) converges to L as x goes to co. We call L the
limit and write

xli_r)rgof(x) = L.

Alternatively we write f(x) — L as x — oo.
Similarly, if —co is a cluster point of S and there exists an L € R such that for every € > 0,
there is an M € R such that

|f(x)—L| <e€

whenever x € S and x < M, then we say f(x) converges to L as x goes to —co. Alternatively,
we write f(x) — L as x — —oco. We call L a limit and, if unique, write

lim f(x):=L.
xX——00
The first thing to do, as usual, is to prove that the limit, if it exists, is unique. We leave it

as an exercise for the reader.

Proposition 3.5.2. The limit at oo or —oo as defined above is unique if it exists.

Example 3.5.3: Let f(x) := —. Then

[x|+1°

lim f(x)=0 and lim f(x)=0.
X—00 X——00

Proof: Let € > 0 be given. Find M > 0 large enough so that ﬁ <e.If x> M, then

0< leﬁ = L < -1~ < e. The first limit follows. The proof for —co is left to the reader.

Example 3.5.4: Let f(x) := sin(nx). Then lim,_,« f(x) does not exist. To prove this fact
note that if x = 2n + 1/2 for some n € N, then f(x) = 1, while if x = 2n +3/2, then f(x) = —1.
So they cannot both be within a small € of a single real number.
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Be careful not to confuse continuous limits with limits of sequences. We could say

lim sin(wtn) =0, but lim sin(7tx) does not exist.
n—00 X—00

Of course the notation is ambiguous: Are we thinking of the sequence {sin(mz)}:;l or the
function sin(rtx) of a real variable? We are simply using the convention that n € N, while
x € R. When the notation is not clear, it is good to explicitly mention where the variable
lives, or what kind of limit are you using. If there is possibility of confusion, one can write,
for example,

nlglgo sin(7tn).

neN

There is a connection of continuous limits to limits of sequences, but we must take all

sequences going to infinity, just as before in Lemma 3.1.7.

Lemma 3.5.5. Suppose f: S — R is a function, oo is a cluster point of S C R, and L € R. Then
lim f(x)=L if and only if lim f(x,)=L
X—00 n—00

for all sequences {x,}_, in S such that lim x, = co.

n—0oo

The lemma also holds for the limit as x — —oo. Its proof is almost identical and is left
as an exercise.

Proof. First suppose f(x) — L as x — oco. Given an € > 0, there exists an M such that for
all x > M, we have |f(x) - L| < €. Let{x,} >, beasequence in S such that lim, . x, = 0.
Then there exists an N such that for all n > N, we have x,, > M. And thus | fxn)— L| < €.

We prove the converse by contrapositive. Suppose f(x) does not go to L as x — oo. This
means that there exists an € > 0, such that for every n € N, there existsan x € S, x > n, let
us call it x,, such that |f(x,) — L| > e. Consider the sequence {x,}*_,. Clearly {f(xn)}:;1
does not converge to L. It remains to note that lim,,_,. x, = 00, because x, > n foralln. O

Using the lemma, we again translate results about sequential limits into results about
continuous limits as x goes to infinity. That is, we have almost immediate analogues of the
corollaries in §3.1.3. We simply allow the cluster point ¢ to be either co or —oo, in addition
to a real number. We leave it to the student to verify these statements.

3.5.2 Infinite limit

Just as for sequences, it is often convenient to distinguish certain divergent sequences, and
talk about limits being infinite almost as if the limits existed.

Definition 3.5.6. Let f: S — R be a function and suppose S has oo as a cluster point. We
say f(x) diverges to infinity as x goes to oo if for every N € R there exists an M € R such that

f(x) >N
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whenever x € S and x > M. We write

lim f(x) = oo,

X—00

or we say that f(x) — oo as x — oo.

A similar definition can be made for limits as x — —oo or as x — c¢ for a finite c. Also
similar definitions can be made for limits being —co. Stating these definitions is left as an
exercise. Note that sometimes converges to infinity is used. We can again use sequential
limits, and an analogue of Lemma 3.1.7 is left as an exercise.

Example 3.5.7: Let us show that lim 111’;2 =
X—00
Proof: For x > 1, we have
1+ x? o 2 x

1+x " x+x 2
Given N € R, take M = max{2N + 1,1}. If x > M, then x > 1 and */2 > N. So

1+ x2
>

X
— > N.
1+x 2>

3.5.3 Compositions
Finally, just as for limits at finite numbers we can compose functions easily.
Proposition 3.5.8. Suppose f: A — B, g: B - R, A,BC R, a € RU{-c0, 00} is a cluster
point of A, and b € R U {—c0, 0o} is a cluster point of B. Suppose

lim f(x)=b and lim g(y) =c

x—a y—b
for some ¢ € RU {—o0,00}. If b € B, then suppose g(b) = c. Then

lim g (f(x)) = c.

The proof is straightforward, and left as an exercise. We already know the proposition
whena, b, c € R, see Exercises 3.1.9 and 3.1.14. Again the requirement that g is continuous
at b, if b € B, is necessary.

Example 3.5.9: Let h(x) := e~¥+*_Then
lim h(x) =0.

X—00

Proof: The claim follows once we know

lim —x2 + x = —c0

X—00

and
lim e¥ =0,

y——00

which is usually proved when the exponential function is defined.
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3.5.4 Exercises
Exercise 3.5.1: Prove Proposition 3.5.2.

Exercise 3.5.2: Let f: [1,00) — R be a function. Define g: (0,1] — R via g(x) = f(1/x). Using the
definitions of limits directly, show that lim,_,o+ g(x) exists if and only if limy_,« f(x) exists, in which case
they are equal.

Exercise 3.5.3: Prove Proposition 3.5.8.

Exercise 3.5.4: Let us justify terminology. Let f: R — R be a function such that lim,_,. f(x) = o
(diverges to infinity). Show that f(x) diverges (i.e. does not converge) as x — oo.

Exercise 3.5.5: Come up with the definitions for limits of f(x) going to —co as x — oo, x — —oo, and as
x — c for a finite c € R. Then state the definitions for limits of f(x) going to co as x — —oo, and as x — ¢
for a finite c € R.

Exercise 3.5.6: Suppose P(x) := x" + a,_1x"~! + -+ + a1x + ag is a monic polynomial of degree n > 1
(monic means that the coefficient of x™ is 1).

a) Show that if n is even, then lim P(x) = lim P(x) = oo.
X—00 X—>—00

b) Show that if n is odd, then lim P(x) = co and lim P(x) = —oo (see previous exercise).
X—00 X——00

Exercise 3.5.7: Let {x,} " be a sequence. Consider S :=N C R, and f: S — R defined by f(n) = x.
Show that the two notions of limit,

lim x, and lim f(x)
X—00

n—0oo

are equivalent. That is, show that if one exists so does the other one, and in this case they are equal.

Exercise 3.5.8: Extend Lemma 3.5.5 as follows. Suppose S C R has a cluster point c € R, ¢ = oo, or
c=—o0. Let f: S — R be a function and suppose L = oo or L = —oco. Show that

lim f(x)=L  ifand only if lim f(x,) = L for all sequences {x,}, _ such that lim x, = c.
X—C n—oo

n—oo

Exercise 3.5.9: Suppose f: R — R is a 2-periodic function, that is f(x +2) = f(x) for all x. Define

g:R—>Rby
Q)= f (_.x-’--;l—l)

a) Find the function ¢: (=1,1) — R such that g(¢(t)) = f(t), that is ™ (x) = —”‘2;1_1

b) Show that f is continuous if and only if g is continuous and

lim g() = lim_g(x) = f(1) = f(-1).
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3.6 Monotone functions and continuity
Note: 1 lecture (optional, can safely be omitted unless §4.4 is also covered, requires §3.5)

Definition 3.6.1. Let S C R. We say f: S — R is increasing (resp. strictly increasing) if
x,y € S with x < y implies f(x) < f(y) (resp. f(x) < f(y)). We define decreasing and
strictly decreasing in the same way by switching the inequalities for f.

If a function is either increasing or decreasing, we say it is monotone. If it is strictly
increasing or strictly decreasing, we say it is strictly monotone.

Sometimes nondecreasing (resp. nonincreasing) is used for increasing (resp. decreasing)
function to emphasize it is not strictly increasing (resp. strictly decreasing).

If f is increasing, then —f is decreasing and vice versa. Therefore, many results about
monotone functions can just be proved for, say, increasing functions, and the results follow
easily for decreasing functions.

3.6.1 Continuity of monotone functions

One-sided limits for monotone functions are computed by computing infima and suprema.

Proposition 3.6.2. Let SC R, c € R, f: S — R be increasing, and g: S — R be decreasing. If
¢ is a cluster point of S N (—oo, c), then

xli_)rg_ f(x) =sup{f(x):x <c,x €S} and xli_)rrcl_ g(x) =inf{g(x): x <c,x € S}.
If c is a cluster point of S N (¢, o), then
xli_)rrcl+ f(x)=inf{f(x):x >c,x €S} and xli_)rrcl+ g(x) =sup{g(x):x >c,x € S}.
If oo is a cluster point of S, then
xli_r)r.}of(x) =sup{f(x):x e S} and xlg]go g(x) =inf{g(x) : x € S}.
If —co is a cluster point of S, then
xl_i)rpoof(x) =inf{f(x):x € S} and xl—i>r£100 g(x) =sup{g(x): x € S}.

Namely, all the one-sided limits exist whenever they make sense. For monotone
functions therefore, when we say the left-hand limit x — ¢~ exists, we mean that c is a
cluster point of S N (=00, ¢), and same for the right-hand limit.

Proof. Let us assume f is increasing, and we will show the first equality. The rest of the
proof is very similar and is left as an exercise.

Leta := sup{f(x):x <c,x € S}. If a = oo, then givenan M € R, there existsan xps € S,
xm < ¢, such that f(xp) > M. As f is increasing, f(x) > f(xp) > M for all x € S with
x > xp. Take 6 := ¢ — xp); > 0 to obtain the definition of the limit going to infinity.
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Next suppose a < co. Let € > 0 be given. Because 4 is the supremum and S N (=0, ¢)
is nonempty, 2 € R and there exists an x. € S, xc < ¢, such that f(x;) > a —€. As f is
increasing, if x € Sand x < x < c,wehavea —e < f(x¢) < f(x) < a. Let 0 := ¢ — x. Then
for x € SN (—o0, c) with |x — ¢| < 6, we have |f(x) - a| <e. O

Suppose f: S — R is increasing, ¢ € S, and that both one-sided limits exist. Since
f(x) < f(c) £ f(y) whenever x < ¢ < y, taking the limits we obtain

xli_)n} f(x) < f(e) < lim f(x).

Then f is continuous at c if and only if both limits are equal to each other (and hence equal
to f(c)). See also Proposition 3.1.17. See Figure 3.11 to get an idea of what a discontinuity
looks like.

Corollary 3.6.3. IfI C R is an interval and f: I — R is monotone and not constant, then f(I) is
an interval if and only if f is continuous.

Assuming f is not constant is to avoid the technicality that f(I) is a single point: f(I) is
a single point if and only if f is constant. A constant function is continuous.

Proof. Without loss of generality, suppose f is increasing.

First suppose f is continuous. Take two points f(x1), f(x2) in f(I) and suppose
f(x1) < f(x2). As f is increasing, then x1 < x2. By the intermediate value theorem, given
y with f(x1) <y < f(x2), we find a ¢ € (x1,x2) C I such that f(c) = y,so y € f(I). Hence,
f(I) is an interval.

Let us prove the reverse direction by contrapositive. Suppose f is not continuous at
c € I, and that ¢ is not an endpoint of I. Let

a:= xli_)rrc1_f(x) = sup{f(x) cxel,x< c}, b= lim+f(x) = inf{f(x) cxel, x> c}.

As c is a discontinuity, a < b. If x < ¢, then f(x) < a, and if x > ¢, then f(x) > b. Therefore
no pointin (a,b) \ {f(c)} isin f(I). There exists x1 € I with x1 < ¢, so f(x1) < a, and there
exists xp € I with x > ¢, so f(x2) > b. Both f(x1) and f(x2) are in f(I), but there are points
in between them that are not in f(I). So f(I) is not an interval. See Figure 3.11.

When c € [ is an endpoint, the proof is similar and is left as an exercise. m|

A striking property of monotone functions is that they cannot have too many disconti-
nuities.

Corollary 3.6.4. Let I C R be an interval and f: 1 — R be monotone. Then f has at most
countably many discontinuities.

Proof. Let E C I be the set of all discontinuities that are not endpoints of I. As there are
only two endpoints, it is enough to show that E is countable. Without loss of generality,
suppose f is increasing. We will define an injection h: E — Q. For each c € E, both
one-sided limits of f exist as c is not an endpoint. Let

a:= xli_)rrC[f(x) = sup{f(x) xel,x< c}, b= lim+f(x) = inf{f(x) cxel, x> c}.
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Figure 3.11: Increasing function f: I — R discontinuity at c.

As c is a discontinuity, a < b. There exists a rational number g € (a,b), so let h(c) = g.
Suppose d € E is another discontinuity. If 4 > ¢, there existan x € [ with c < x < d, and so
lim,_,4- f(x) > b. Hence the rational number we choose for h(d) is different from g, since
g = h(c) < band h(d) > b. Similarly if d < c. After making such a choice for every element
of E, we have a one-to-one (injective) function into Q. Therefore, E is countable. O

Example 3.6.5: By | x| denote the largest integer less than or equal to x. Define f: [0,1] —» R
by
L1/(1-x)]
flx):=x+ Z 277,
n=0

for x < 1and f(1) := 3. It is an exercise to show that f is strictly increasing, bounded, and
has a discontinuity at all points 1 — 1/k for k € N. In particular, there are countably many
discontinuities, but the function is bounded and defined on a closed bounded interval. See
Figure 3.12.

3+ -
2.5+ -
—
2+
15_/ ...... |
0 1

Figure 3.12: Strictly increasing function on [0, 1] with countably many discontinuities.

Similarly, one can find an example of a monotone function discontinuous on a dense set
such as the rational numbers. See the exercises.
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3.6.2 Continuity of inverse functions

A strictly monotone function f is one-to-one (injective). To see this fact, notice that if x # v,
then we can assume x < y. Either f(x) < f(y) if f is strictly increasing or f(x) > f(y)if f is
strictly decreasing, so f(x) # f(y). Hence, f must have an inverse f ! defined on its range.

Proposition 3.6.6. If I C R is an interval and f: I — R is strictly monotone, then the inverse

f_lt f(I) — I is continuous.

Proof. Suppose f is strictly increasing. The proof is almost identical for a strictly decreasing
function. Since f is strictly increasing, so is f 1. That is, if f(x) < f(y), then we must have

x < y and therefore f~!(f(x)) < f~1(f(y)).
Take ¢ € f(I). If ¢ is not a cluster point of f(I), then f~! is continuous at ¢ automatically.

So let ¢ be a cluster point of f(I). Suppose both of the following one-sided limits exist:
xo = lim ) =sup{f7(y) iy <c,y e fD} = sup{x e I: f(x) <},
xp = lim f N y) =inf{f ' (y):y >c,ye f(D} =inf{x €I : f(x) > c}.
y—et

We have xg < x7 as f~! is increasing. For all x € [ where x > xo, we have f(x) > c. As f is
strictly increasing, we must have f(x) > c for all x € I where x > xg. Therefore,

{er:x>x0}C{x€I:f(x)>c}.

The infimum of the left-hand set is xo, and the infimum of the right-hand set is x1, so we
obtain xp > x1. So x1 = x¢, and f -1 is continuous at c.

If one of the one-sided limits does not exist, the argument is similar and is left as an
exercise. O

Example 3.6.7: The proposition does not require f itself to be continuous. Let f: R — R

be defined by
X if x <0,
fx) = {x+1 if x > 0.

The function f is not continuous at 0. The image of I = R is the set (-0, 0) U [1, ), not an
interval. Then f~1: (—o0,0) U [1,00) — R can be written as

ify <0,
f—1<y>:{y Y
y—-1 ity >1.

It is not difficult to see that f~! is a continuous function. See Figure 3.13 for the graphs.

Notice what happens with the proposition if f(I) is an interval. In that case, we
could simply apply Corollary 3.6.3 to both f and f~'. That is, if f: I — ] is an onto
strictly monotone function and I and | are intervals, then both f and f~! are continuous.
Furthermore, f(I) is an interval precisely when f is continuous.
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Figure 3.13: Graph of f on the left and f~! on the right.

3.6.3 Exercises
Exercise 3.6.1: Suppose f: [0,1] — R is monotone. Prove f is bounded.

Exercise 3.6.2: Finish the proof of Proposition 3.6.2. Hint: You can halve your work by noticing that if g is
decreasing, then — g is increasing.

Exercise 3.6.3: Finish the proof of Corollary 3.6.3.
Exercise 3.6.4: Prove the claims in Example 3.6.5.
Exercise 3.6.5: Finish the proof of Proposition 3.6.6.
Exercise 3.6.6: Suppose S C R, and f: S — R is an increasing function. Prove:
a) If ¢ is a cluster point of S N (c, o), then xli_)ng f(x) < oo.
b) If c is a cluster point of S N (=00, c) and xli_)ncl_ f(x) =00, then S C (=00, ).
Exercise 3.6.7: Let I C R be an interval and f: I — R a function. Suppose that for each ¢ € I, there exist

a,b € Rwith a > 0 such that f(x) > ax +b forall x € I and f(c) = ac +b. Show that f is strictly
increasing.

Exercise 3.6.8: Suppose I and | are intervals and f: I — ] is a continuous, bijective (one-to-one and onto)
function. Show that f is strictly monotone.

Exercise 3.6.9: Consider a monotone function f: 1 — R on an interval I. Prove that there exists a function
g: I — Rsuch that lim g(x) = g(c) for all c in I except the smaller (left) endpoint of I, and such that
X—Cc™

g(x) = f(x) for all but countably many x € I.

Exercise 3.6.10:

a) Let S C R beasubset. If f: S — R is increasing and bounded, then show that there exists an increasing
F: R — Rsuch that f(x) = F(x) forall x € S.

b) Find an example of a strictly increasing bounded f: S — R such that an increasing F as above is never
strictly increasing.
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Exercise 3.6.11 (Challenging): Find an example of an increasing function f: [0,1] — R that has a
discontinuity at each rational number. Then show that the image f([0,1]) contains no interval. Hint:
Enumerate the rational numbers and define the function with a series.

Exercise 3.6.12: Suppose I is an interval and f: I — R is monotone. Show that R \ f(I) is a countable
union of disjoint intervals.

Exercise 3.6.13: Suppose f: [0,1] — (0, 1) is increasing. Show that for every € > 0, there exists a strictly
increasing g: [0,1] — (0, 1) such that g(0) = f(0), f(x) < g(x) forall x, and g(1) — f(1) <e.

Exercise 3.6.14: Prove that the Dirichlet function f: [0,1] — R, defined by f(x) := 1 if x is rational and
f(x) = 0 otherwise, cannot be written as a difference of two increasing functions. That is, there do not exist
increasing g and h such that, f(x) = g(x) — h(x).

Exercise 3.6.15: Suppose f: (a,b) — (c, d) is a strictly increasing onto function. Prove that there exists a
g: (a,b) = (c,d), which is also strictly increasing and onto, and g(x) < f(x) for all x € (a, b).



Chapter 4

The Derivative

4,1 The derivative

Note: 1 lecture

The idea of a derivative is the following. If the graph of a function looks locally like
a straight line, then we can talk about the slope of this line. The slope tells us the rate at
which the value of the function is changing at that particular point. Of course, we are
leaving out any function that has corners or discontinuities. Let us be precise.

4.1.1 Definition and basic properties

Definition 4.1.1. Let I be an interval, let f: | — R be a function, and let ¢ € I. If the limit

| fE = £©

X—cC X —C

exists, then we say f is differentiable at c, we call L the derivative of f at c, and we write
f'(c) = L.

If f is differentiable at all ¢ € I, then we simply say that f is differentiable, and then we
obtain a function f’: I — R. The derivative is sometimes written as % or % (f (x)).

f)-f(0) ) f(C)

The expression is called the difference quotient.

The graphical interpretation of the derivative is depicted in Figure 4.1. The left-hand

plot gives the line through (c, f(c)) and (x, f(x)) with slope L=/ = ) f © that is, the so-called
secant line. When we take the limit as x goes to ¢, we get the rlght hand plot, where we see
that the derivative of the function at the point c is the slope of the line tangent to the graph
of f at the point (c, f(c)).

We allow [ to be a closed interval and we allow ¢ to be an endpoint of I. Some calculus
books do not allow c to be an endpoint of an interval, but all the theory still works by
allowing it, and it makes our work easier.
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slope = % slope = f'(c)

aF — — — —

[

[

[

[
[ [
[ [
[ [
[ [
1 1
c X

Figure 4.1: Graphical interpretation of the derivative.

Example 4.1.2: Let f(x) := x> defined on the whole real line. Let ¢ € R be arbitrary. We
find that if x # ¢,
x>—c? _ (x+o)(x—c)
x—-c X—c

=(x+0).

Therefore,
2_ 2

f/(e) = lim =

= lim(x +¢) =
c X—¢C xX—cC

Example 4.1.3: Let f(x) := ax + b for numbers a,b € R. Let ¢ € R be arbitrary. For x # c,

fo) - fle) _alx-¢) _

x—-¢ = x-c¢

Therefore,
f( ) f(c) =lima=a

X—C

fle) =

In fact, every differentiable function * 1nf1mtes1mally behaves like the affine function ax +b.
You can guess many results and formulas for derivatives if you work them out for affine
functions first.

Example 4.1.4: The function f(x) = +/x is differentiable for x > 0. To see this fact, fix ¢ > 0,
and suppose x # ¢ and x > 0. Compute

Vi-VE__ NE-NE 1
r0 T VDGR VD | VEEVE

Therefore,

Vx—+c . 1 1
¢c) =lim ———— =lim = .
f() x—c X —°C XHC\/E+\/E 2\/E
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Example 4.1.5: The function f(x) := |x| is not differentiable at the origin. When x > 0,

=10l _x=0 _,
x-0 x-0

When x <0,
|x| — |0 _—x—O__1

x-0  x-0
A famous example of Weierstrass shows that there exists a continuous function that is

not differentiable at any point. The construction of this function is beyond the scope of this
chapter. On the other hand, a differentiable function is always continuous.

Proposition 4.1.6. Let f: I — R be differentiable at c € I, then it is continuous at c.

Proof. We know the limits

f( ) f(C) = f'(c) and 31(11)1’2(3( —-c)=

X—>C

exist. Furthermore,
flx) = fle) =
Therefore, the limit of f(x) — f(c) exists and

( f(x) f(C))(

(f() f())( o

lim (£(x) - £(0)) = lim(x - ¢)) = f(c) -0 =0.

Hence lim f(x) = f(c), and f is continuous at c. O
X—C

An important property of the derivative is linearity. The derivative is the approximation
of a function by a straight line. The slope of a line through two points changes linearly
when the y-coordinates are changed linearly. Taking the limit, it makes sense that the
derivative is linear.

Proposition 4.1.7 (Linearity). Let I be an interval, let f: 1 — Rand g: I — R be differentiable
atc € I, and let o € R.

(i) Define h: I — R by h(x) = af(x). Then h is differentiable at c and h'(c) = af’(c).
(ii) Define h: I — R by h(x) = f(x)+ g(x). Then h is differentiable at ¢ and h’(c) =
f'(e) + &'(c).
Proof. First, let h(x) = af(x). Forx € I, x #c,
W) = hle) _ afx)=af©) _ fx)=fc)

X—cC X—=c X—cC

The limit as x goes to ¢ exists on the right-hand side by Corollary 3.1.12. We get
G (G (O {0
im ———= = alim ————.

xX—c X —cC x—c X —cC
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Therefore, h is differentiable at ¢, and the derivative is computed as given.
Next, define h(x) := f(x) + g(x). For x € I, x # ¢, we have

h(x) = h(e) _ (f(x)+8(x)) = (f(e) +8(c)) _ f(x) = () L8 -8l

X—=cC X—=cC X —=cC X —=cC

The limit as x goes to c exists on the right-hand side by Corollary 3.1.12. We get

. h(x)—h(e) _ . f@)=-flo) . 8(x) —gle)
lim —— = lim ————— + lim ———.
x—c xX—=cC x—c X—=cC x—c X—=c
Therefore, h is differentiable at ¢, and the derivative is computed as given. O

It is not true that the derivative of a product of two functions is the product of the
derivatives. Instead we get the so-called product rule or the Leibniz rule*.

Proposition 4.1.8 (Product rule). Let I be an interval, let f: I — Rand g: I — R be functions
differentiable at c. If h: I — R is defined by

h(x) = f(x)g(x),
then h is differentiable at c and
h'(c) = fe)g'(c) + f(c)g(c).

The proof of the product rule is left as an exercise. The key to the proof is the identity
f(x)g(x)=f(c)g(c) = f(x)(g(x)—g(c)) + (f(x) = f(c)) g(c), which is illustrated in Figure 4.2.

g(x)

f(x)(g(x) = g(c))
g(c)

f(e)g(c)

(08(()f - ()

0
0 fle) f(x)

Figure 4.2: The idea of product rule. The area of the entire rectangle f(x)g(x) differs from the
area of the white rectangle f(c)g(c) by the area of the lightly shaded rectangle f(x)(g(x) - g(c))
plus the darker rectangle (f(x) — f(c))g(c). In other words, A(f - §) = f - Ag + Af - g.

*Named for the German mathematician Gottfried Wilhelm Leibniz (1646-1716).


https://en.wikipedia.org/wiki/Leibniz
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Proposition 4.1.9 (Quotient rule). Let I be an interval, let f: 1 — Rand g: 1 — R be
differentiable at ¢ and g(x) # 0 forall x € I. If h: I — R is defined by

_f®

h(x) = <)’

then h is differentiable at ¢ and

f'(c)g(c) - f(C)g'(C).
(8(0))°

h'(c) =
Again, the proof is left as an exercise.

4.1.2 Chain rule

More complicated functions are often obtained by composition, which is differentiated via
the chain rule. The rule also tells us how a derivative changes if we change variables.

Proposition 4.1.10 (Chain rule). Let Iy, I; be intervals, let g: Iy — I, be differentiable at c € I,
and f: I — R be differentiable at g(c). If h: I; — R is defined by
h(x) = (f o &)x) = f(8(x)),
then h is differentiable at c and
h'(c) = f'(g(c)g’(c)-
Proof. Letd = g(c). Defineu: I - Rand v: Iy = R by

fW)-fd) ¢ d gx)-gle) .
u(y) = y—d ity +ad, o(x) = o %fx *c,
f'(d) ify=d, <’(c) ifx =c.

Because f is differentiable at d = g(c), we find that u is continuous at 4. Similarly, v is
continuous at c. For any x and v,

fy) = fld)=u(y)y-d) and  g(x)=g(c) = v(x)(x = c).

Plug in to obtain

h(x) = h(c) = f(g(x) = f(g(e)) = u(g(x)) (g(x) = g(c)) = u(g(x)) (v(x)(x - c)).

Therefore, if x # c,
h(x) — h(c
% = u(g(x))o(x). 4.1)
By continuity of u and v at d and ¢ respectively, we find lim, s u(y) = f'(d) = f d g(c)) and
lim,_,. v(x) = g’(c). The function g is continuous at ¢, and so lim,_,. g(x) = g(c). Hence
the limit of the right-hand side of (4.1) as x goes to ¢ exists and is equal to f’(g(c))g’(c).

Thus h is differentiable at ¢ and h'(c) = f'(g(c))g’(c). O
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4.1.3 Exercises

Exercise 4.1.1: Prove the product rule. Hint: Prove and use f(x)g(x) — f(c)g(c) = f(x)(g(x) — g(c)) +
(f(x) = f(0) g (o).

Exercise 4.1.2: Prove the quotient rule. Hint: You can do this directly, but it may be easier to find the
derivative of 1/x and then use the chain rule and the product rule.

Exercise 4.1.3: For n € Z, prove that x" is differentiable and find the derivative, unless, of course, n < 0
and x = 0. Hint: Use the product rule.

Exercise 4.1.4: Prove that a polynomial is differentiable, and find the derivative. Hint: Use the previous
exercise.

Exercise 4.1.5: Define f: R — R by

0  otherwise.

flx) = {xZ fxeq,

Prove that f is differentiable at 0, but discontinuous at all points except 0.

Exercise 4.1.6: Assume the inequality |x — sin(x)| < x2. Prove that sin is differentiable at 0, and find the
derivative at 0.

Exercise 4.1.7: Using the previous exercise, prove that sin is differentiable at all x and that the derivative is
cos(x). Hint: Use the sum-to-product trigonometric identity as we did before.

Exercised4.1.8: Let f: I — Rbedifferentiable. Forn € Z, let f" be the function defined by f"(x) = (f(x))".
Ifn < 0, assume f(x) # 0 for all x € I. Prove that (f")'(x) = n(f(x))n_lf’(x).

Exercise 4.1.9: Suppose f: R — R is a differentiable Lipschitz continuous function. Prove that f’ is a
bounded function.

Exercise 4.1.10: Let Iy, I, be intervals. Let f: Iy — I be a bijective function and g: I, — Iy be the inverse.
Suppose that both f is differentiable at ¢ € Iy and f'(c) # 0 and g is differentiable at f(c). Use the chain rule

to find a formula for ¢’ (f(c)) (in terms of f'(c)).

Exercise 4.1.11: Suppose f: 1 — R is bounded, g: I — R is differentiable at ¢ € I, and g(c) = g’(c) = 0.
Show that h(x) = f(x)g(x) is differentiable at c. Hint: You cannot apply the product rule.

Exercise 4.1.12: Suppose f: 1 — R, g: I — R, and h: I — R, are functions. Suppose ¢ € I is
such that f(c) = g(c) = h(c), g and h are differentiable at ¢, and §’(c) = h’(c). Furthermore, suppose
h(x) < f(x) < g(x) forall x € I. Prove f is differentiable at ¢ and f’(c) = g’(c) = h’(c).

Exercise 4.1.13: Suppose f: (=1,1) — R is a function such that f(x) = xh(x) for a bounded function h.
a) Show that g(x) = (f (x))2 is differentiable at the origin and g’(0) = 0.

b) Find an example of a continuous function f: (—1,1) — R with f(0) = 0, but such that g(x) = (f(x))2
is not differentiable at the origin.
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Exercise 4.1.14: Suppose f : I — R is differentiable at c € I. Prove that there exist numbers a and b with the
property that for every € > 0, there is a & > 0, such that |a +b(x—c)— f(x)| < €|x — c|, whenever x € I
and |x — c| < 6. In other words, show that there exists a function g: I — R such that lim,_,. g(x) = 0 and

|a +b(x — c)—f(x)| =g(x)|x —c|.

Exercise 4.1.15: Prove the following simple version of L'Hopital’s rule. Suppose f: (a,b) — R and
g: (a,b) — R are differentiable functions whose derivatives f’ and g’ are continuous functions. Suppose
thatat c € (a,b), f(c) =0, g(c) =0, g'(x) # 0 forall x € (a,b), and g(x) # 0 whenever x # c. Note that
the limit of f'(¥)/g'(x) as x goes to c exists. Show that

lim @ = lim w
x—c g(x)  x—c g'(x)
Exercise 4.1.16: Suppose f: (a,b) — R is differentiable at c € (a,b), f(c) =0, and f'(c) > 0. Prove that
there is a & > 0 such that f(x) < 0 whenever c — 6 < x < c and f(x) > 0 whenever ¢ < x < c + 0.
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4,2 Mean value theorem

Note: 2 lectures (some applications may be skipped)

42,1 Relative minima and maxima

We previously talked about absolute maxima and minima. These are the tallest peaks and
the lowest valleys in the entire mountain range. What about peaks of individual mountains
and bottoms of individual valleys? The derivative, being a local concept, is like walking
around in a fog; it cannot tell you if you are on the highest peak, but it can tell you whether
you are at the top of some peak.

Definition 4.2.1. Let S C Rbe asetand let f: S — R be a function. The function f is said
to have a relative maximum at ¢ € S if there exists a 6 > 0 such that for all x € S where
|x —c| < 6, we have f(x) < f(c). The definition of relative minimum is analogous.

Lemma4.2.2. Suppose f: (a,b) — R is differentiable at c € (a,b), and f has a relative minimum
or a relative maximum at c. Then f'(c) = 0.

Proof. Suppose c is a relative maximum of f. That is, there is a 6 > 0 such that for every
x € (a,b) where |x — c| < 6, we have f(x) — f(c) < 0. Consider the difference quotient. If

¢ <x<c+0,then
fx) = f(o) <0,
X—c
andifc -6 <y <c, then
fw-1© _,
y—c
See Figure 4.3 for an illustration.

slope = f—(yy):f © >0 fO-119) <

slope =

|
\ \
\ \
| |
| |
| |
I 1
y c x

Figure 4.3: Slopes of secants at a relative maximum.

Asa < ¢ < b, there exist sequences {x,,} >, and {y,},_, in(a,b) suchthatc < x, <c+06
and c — 0 < y, < cforall n € N, and such that lim;, e X, = lim, e ¥4 = ¢. Since f is
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differentiable at c,

0 = tim T SO

n—oo yn —C

02 tim L0 @

n—oo Xn
We are done with a maximum. For a minimum, consider the function —f. O

For a differentiable function, a point where f’(c) = 0 is called a critical point. When f is
not differentiable at some points, it is common to also say that c is a critical point if f’(c)
does not exist. The theorem says that a relative minimum or maximum at an interior point
of an interval must be a critical point. As you remember from calculus, one finds minima
and maxima of a function by finding all the critical points together with the endpoints of
the interval and simply checking at which of these points is the function biggest or smallest.

4.2.2 Rolle’s theorem

Suppose a function has the same value at both endpoints of an interval. Intuitively, it ought
to attain a minimum or a maximum in the interior of the interval, then at such a minimum
or a maximum, the derivative should be zero. See Figure 4.4 for the geometric idea. This is
the content of the so-called Rolle’s theorem®.

Figure 4.4: Point where the tangent line is horizontal, that is f’(c) = 0.

Theorem 4.2.3 (Rolle). Let f: [a,b] — R be a continuous function differentiable on (a, b) such
that f(a) = f(b). Then there exists a c € (a,b) such that f’(c) = 0.

Proof. As f is continuous on [a,b], it attains an absolute minimum and an absolute
maximum in [a, b]. We wish to apply Lemma 4.2.2, and so we need to find some ¢ € (a, )
where f attains a minimum or a maximum. Write K := f(a) = f(b). If there exists an
x such that f(x) > K, then the absolute maximum is larger than K and hence occurs at
some ¢ € (a,b), and therefore f’(c) = 0. On the other hand, if there exists an x such that

*Named after the French mathematician Michel Rolle (1652-1719).


https://en.wikipedia.org/wiki/Michel_Rolle
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f(x) < K, then the absolute minimum occurs at some c € (a,b), and so f’(c) = 0. If there
is no x such that f(x) > K or f(x) < K, then f(x) = K for all x and then f’(x) = 0 for all
x € [a,b],soany c € (a,b) works. O

It is absolutely necessary that the derivative exists for all x € (a,b). Consider the
function f(x) := |x| on[-1,1]. Clearly f(-1) = f(1), but there is no point ¢ where f’(c) = 0

4.2.3 Mean value theorem

We extend Rolle’s theorem to functions that attain different values at the endpoints.

Theorem 4.2.4 (Mean value theorem). Let f: [a, b] — R be a continuous function differentiable
on (a,b). Then there exists a point ¢ € (a, b) such that

f(0) = fla) = f'(e)b - a).
For a geometric interpretation of the mean value theorem, see Figure 4.5. The idea is
that the value £&=/@) (b) f @) is the slope of the line between the points (2 (a, f(a)) and (b, f(1)).

Then c is the pomt such that f'(c) = b) f @) that is, the tangent line at the point (c, f(c))
has the same slope as the line between ( ,f (a)) and (b, f(b)). The name comes from the
fact that the slope of the secant line is the mean value of the derivative, so the average
derivative is achieved in the interior of the interval.

The theorem follows from Rolle’s theorem by subtracting from f the affine linear

function with the derivative £L2=/(2) (b) f @ \yith the same values at 2 and b as f. That is, we
subtract the function whose graph is the straight line (a, f(a)) and (b, f(b)). Then we are
looking for a point where this new function has derivative zero.

(a, f(a))

Figure 4.5: Graphical interpretation of the mean value theorem.

Proof. Define the function g: [4,b] — R by

f (b) f (a)

§(x) = f(x) = f(b) - ————(x—b).
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The function g is differentiable on (a, b), continuous on [a, b], such that g(a) = 0 and
g(b) = 0. Thus there exists a ¢ € (a,b) such that g’(c) = 0, that is,

) (b) ()
0=g() = (o) - LI
In other words, f(b) — f(a) = f'(c)(b — a). O

The proof generalizes. By considering g(x) = f(x) — f(b) — (]; Ezgi (('Z)) (p(x) = (b)), one
can prove the following version. We leave the proof as an exercise.

Theorem 4.2.5 (Cauchy’s mean value theorem). Let f: [a,b] — Rand ¢: [a,b] — R be
continuous functions differentiable on (a, b). Then there exists a point c € (a, b) such that

(f(b) = F(@)@’(c) = f(c)(p(b) - p(a)).

The mean value theorem has the distinction of being one of the few theorems cited in
court. That is, when police measure the speed of cars by aircraft, or via cameras reading
license plates, they measure the time the car takes to go between two points. The mean
value theorem then says that the car must have somewhere attained the speed you get by
dividing the difference in distance by the difference in time.

4.2.4 Applications

Let us look at a few applications of the mean value theorem. The applications show the
typical use of the theorem, which is to get rid of a limit by finding the right sort of points
where the derivative is not just close to some difference quotient, but actually equal to one.
First, we solve our very first differential equation.

Proposition 4.2.6. Let I be an interval and let f: I — R be a differentiable function such that
f'(x) =0 forall x € I. Then f is constant.

Proof. Take arbitrary x,y €  with x < y. As [ isaninterval, [x, y] C I. Then f restricted to
[x, y] satisfies the hypotheses of the mean value theorem. Therefore, thereisa c € (x, y)
such that

fy) = f(x) = f(e)y - x).
As f’(c) =0, we have f(y) = f(x). Hence, the function is constant. O
Now that we know what it means for the function to stay constant, we look at increasing
and decreasing functions. We say f: I — R is increasing (resp. strictly increasing) if x <y

implies f(x) < f(y) (resp. f(x) < f(y)). We define decreasing and strictly decreasing in the
same way by switching the inequalities for f.

Proposition 4.2.7. Let I be an interval and let f: I — R be a differentiable function.
(i) f isincreasing if and only if f'(x) > O for all x € I.
(if) f is decreasing if and only if f'(x) < 0 forall x € I.
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Proof. Let us prove the first item. Suppose f is increasing. For all x,c € I with x # ¢,
[0 -F©)
x-c
Taking a limit as x goes to ¢, we see that f’(c) > 0.

For the other direction, suppose f’(x) > 0 for all x € I. Take any x,y € I where x < y,
and note that [x, y] C I. By the mean value theorem, there is some ¢ € (x, y) such that

fy) = f(x) = f(e)y - x).

As f'(c) 2 0and y —x > 0, then f(y) — f(x) > 0 or f(x) < f(y), and so f is increasing.
We leave the second item, decreasing f, to the reader as an exercise. O

A similar but weaker statement is true for strictly increasing and decreasing functions.
Proposition 4.2.8. Let I be an interval and let f: I — R be a differentiable function.
(@) If f'(x) > O forall x € 1, then f is strictly increasing.
(ii) If f'(x) < O forall x € I, then f is strictly decreasing.

The proof of (i) is left as an exercise. Then (ii) follows from (i) by considering — f instead.
The converse of this proposition is not true. The function f(x) := x2 is strictly increasing,
but f'(0) = 0.

Another application of the mean value theorem is the following result about the location
of extrema, sometimes called the first derivative test. The result is stated for an absolute
minimum and maximum. To apply it to find relative minima and maxima, restrict f to an
interval (¢ — 0, c + 0).

Proposition 4.2.9. Let f: (a,b) — R be continuous. Let ¢ € (a, b) and suppose f is differentiable
on (a,c)and (c,b).

(i) If f'(x) < 0 whenever x € (a,c) and f'(x) > 0 whenever x € (c,b), then f has an absolute
minimum at c.

(ii) If f'(x) > 0 whenever x € (a,c)and f'(x) < 0 whenever x € (c,b), then f has an absolute
maximum at c.

Proof. We prove the first item and leave the second to the reader. Take x € (a,c) and a
sequence {y,} ., such that x < y, < c¢ for all n and lim, e ¥, = c. By the preceding
proposition, f is decreasing on (a, ¢) so f(x) > f(y,) for all n. As f is continuous at c, we
take the limit to get f(x) > f(c).

Similarly, take x € (¢, b) and {y,} " ; asequence such thatc < y, < xand lim,—c yx = c.
The function is increasing on (c, b) so f(x) > f(y,) for all n. By continuity of f, we get
f(x) = f(c). Thus f(x) > f(c) forall x € (a, b). |

The converse of the proposition does not hold. See Example 4.2.12 below.

Another often used application of the mean value theorem you have possibly seen in
calculus is the following result on differentiability at the end points of an interval. The
proof is Exercise 4.2.13.
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Proposition 4.2.10.

(i) Suppose f: [a,b) — R is continuous, differentiable in (a,b), and lim,_,, f'(x) = L. Then
f is differentiable at a and f’(a) = L.

(i) Suppose f: (a,b] — R is continuous, differentiable in (a,b), and lim,_,p, f'(x) = L. Then
f is differentiable at b and f’(b) = L.

In fact, using the extension result Proposition 3.4.6, you do not need to assume that f is
defined at the end point. See Exercise 4.2.14.

4.2.5 Continuity of derivatives and the intermediate value theorem

Derivatives of functions satisfy an intermediate value property.

Theorem 4.2.11 (Darboux). Let f: [a,b] — R be differentiable. Suppose y € R is such that
f'(a) <y < f'(b)or f'(a) >y > f'(b). Then there exists a c € (a, ) such that f'(c) = y.

The proof follows by subtracting f and a linear function with derivative y. The new
function ¢ reduces the problem to the case y = 0, where g’(a) > 0 > ¢’(b). That s, g is
increasing at a and decreasing at b, so it must attain a maximum inside (a, b), where the
derivative is zero. See Figure 4.6.

g'(c)=0

Figure 4.6: Idea of the proof of Darboux theorem.

Proof. Suppose f’(a) <y < f’(b). Define

g(x) = yx - f(x).

The function g is continuous on [a, b], and so g attains a maximum at some ¢ € [a, b].

The function g is also differentiable on [, b]. Compute ¢’(x) = y — f’(x). Thus g’(a) > 0.
As the derivative is the limit of difference quotients and is positive, there must be some
difference quotient that is positive. That is, there must exist an x > a such that

g(x) — g(a) .

X —a

0,
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or g(x) > g(a). Thus g cannot possibly have a maximum at 4. Similarly, as g’(b) < 0,

we find an x < b (a different x) such that % < 0 or that g(x) > g(b), thus g cannot
possibly have a maximum at b. Therefore, c € (a,b), and Lemma 4.2.2 applies: As g attains
a maximum at ¢, we find ¢’(c) = 0 and so f’(c) = y.

Similarly, if f'(a) > y > f’(b), consider g(x) := f(x) — yx. O

We have seen already that there exist discontinuous functions that have the intermediate
value property. While it is hard to imagine at first, there also exist functions that are
differentiable everywhere and the derivative is not continuous.

Example 4.2.12: Let f: R — R be the function defined by

£ (xsin(/x))” ifx #0,
x) =

0 if x =0.
We claim that f is differentiable everywhere, but f': R — R is not continuous at the origin.
Furthermore, f has a minimum at 0, but the derivative changes sign infinitely often near
the origin. See Figure 4.7.

Figure 4.7: A function with a discontinuous derivative. The function f is on the left and f” is
on the right. Notice that f(x) < x? on the left graph.

Proof: It is immediate from the definition that f has an absolute minimum at 0; we
know f(x) > 0 for all x and f(0) = 0.

For x # 0, f is differentiable and the derivative is 2 sin(1/x)(x sin(1/x) — cos(1/x)). As an
exercise, show that for x, = m, we have lim, . f'(x,) = =1, and for y,, = m, we
have lim, e f'(yx) = 1. So f’ cannot be continuous at 0 no matter what f’(0) is.

Let us show that f is differentiable at 0 and f’(0) = 0. For x # 0,

f) - £0)
x—-0

x2 sin?(1/x)

" = |x sin?(1/x)| < x| .

-
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f)- f(0)

And, of course, as x tends to zero, | x| tends to zero, and hence | O) goes to zero.

Therefore, f is differentiable at 0 and the derivative at 0 is 0. A key pomt in the calculation
above is that |f(x)| < x?, see also Exercises 4.1.11 and 4.1.12.

It is sometimes useful to assume the derivative of a differentiable function is continuous.
If f: 1 — R is differentiable and the derivative f’ is continuous on I, then we say f
is continuously differentiable. Tt is common to write C!(I) for the set of continuously
differentiable functions on I.

4.2.6 Exercises
Exercise 4.2.1: Finish the proof of Proposition 4.2.7.
Exercise 4.2.2: Finish the proof of Proposition 4.2.9.

Exercise 4.2.3: Suppose f: R — R is a differentiable function such that f’ is a bounded function. Prove
that f is a Lipschitz continuous function.

Exercise 4.2.4: Suppose f: [a,b] — R is differentiable and c € [a, b]. Show there exists a sequence {x, }
converging to ¢, x, # c for all n, such that

f1(©) = lim f'(x,).
Do note this does not imply that f’ is continuous (why?).

Exercise 4.2.5: Suppose f: R — R is a function such that |f(x) - f(y)| < |x - y|2f0r all x and y. Show
that f(x) = C for some constant C. Hint: Show that f is differentiable at all points and compute the
derivative.

Exercise 4.2.6: Finish the proof of Proposition 4.2.8. That is, suppose I is an interval and f: I — Risa
differentiable function such that f’(x) > 0 for all x € 1. Show that f is strictly increasing.

Exercise 4.2.7: Suppose f: (a,b) — R is a differentiable function such that f'(x) # 0 for all x € (a, b).
Suppose there exists a point ¢ € (a,b) such that f'(c) > 0. Prove f'(x) > 0 for all x € (a, b).

Exercise 4.2.8: Suppose f: (a,b) — Rand g: (a,b) — R are differentiable functions such that f'(x) =
Q’(x) for all x € (a,b), then show that there exists a constant C such that f(x) = g(x) + C.

Exercise 4.2.9: Prove the following version of L'Hopital’s rule. Suppose f: (a,b) — Rand g: (a,b) - R
are differentiable functions and c € (a, b). Suppose that f(c) =0, g(c) =0, g’(x) # 0 when x # c, and that
the limit of f'(¥)/g'(x) as x goes to c exists. Show that

@S
im
x—>c g(x) x—c g (x)
Compare to Exercise 4.1.15. Note: Before you do anything else, prove that g(x) # 0 when x # c.

Exercise 4.2.10: Let f: (a,b) — R be an unbounded differentiable function. Show f’: (a,b) — R is
unbounded.
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Exercise 4.2.11: Prove the theorem Rolle actually proved in 1691: If f is a polynomial, f’(a) = f’(b) =0
for some a < b, and there is no c € (a, b) such that f’(c) = 0, then there is at most one root of f in
(a,b), that is at most one x € (a,b) such that f(x) = 0. In other words, between any two consecutive
roots of f’ is at most one root of f. Hint: Suppose there are two roots and see what happens.

Exercise 4.2.12: Suppose a,b € R and f: R — R is differentiable, f'(x) = a for all x, and f(0) = b. Find
f and prove that it is the unique differentiable function with this property.

Exercise 4.2.13:
a) Prove Proposition 4.2.10.
b) Suppose f: (a,b) — R is continuous, and suppose f is differentiable everywhere except at ¢ € (a, b)
and limy_,¢ f'(x) = L. Prove that f is differentiable at c and f’(c) = L.
Exercise 4.2.14: Suppose f: (0,1) — R is differentiable and f’ is bounded.

a) Show that there exists a continuous function g: [0,1) — R such that f(x) = g(x) forall x # 0.
Hint: Proposition 3.4.6 and Exercise 4.2.3.

b) Find an example where the g is not differentiable at x = 0.
Hint: Consider something based on sin(In x), and assume you know basic properties of sin and In from
calculus.

c) Instead of assuming that f’ is bounded, assume that limy_, f'(x) = L. Prove that not only does g exist
but it is differentiable at 0 and g’'(0) = L.

Exercise 4.2.15: Prove Theorem 4.2.5.
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4.3 Taylor’s theorem

Note: less than a lecture (optional section)

4.3.1 Derivatives of higher orders

When f: I — R is differentiable, we obtain a function f’: I — R. The function f’ is called
the first derivative of f. If f’ is differentiable, we denote by f”: I — R the derivative of f’.
The function f” is called the second derivative of f. We similarly obtain f"”, f””, and so on.
With a larger number of derivatives the notation would get out of hand; we denote by (")
the nth derivative of f. When f possesses n derivatives, we say f is n times differentiable.

4.3.2 Taylor’s theorem

Taylor’s theorem® is a generalization of the mean value theorem. Mean value theorem says
that up to a small error f(x) for x near xo can be approximated by f(xo), that is

f(x) = fxo) + f'(c)(x — x0),

where the “error” is measured in terms of the first derivative at some point ¢ between x
and xg. Taylor’s theorem generalizes this result to higher derivatives. It tells us that up to
a small error, any n times differentiable function can be approximated at a point x¢ by a
polynomial. The error of this approximation behaves like (x — x()" near the point xo. To
see why this is a good approximation, notice that for a big 1, (x — x¢)" is very small in a
small interval around x.

Definition 4.3.1. For an n times differentiable function f defined near a point xy € R,
define the nth order Taylor polynomial for f at x¢ as

o g(k)
PG = 3 L0y

k!
k=0

O (x0)
6

f" (xo)

> (x = x0)°

(x — xo)2 +

= f(xo) + f'(x0)(x — x0) +
£ (xo)

n
LA (x —xp)".

See Figure 4.8 for the odd-degree Taylor polynomials for the sine function at x¢ = 0.
The even-degree terms are all zero, as even derivatives of sine are again sines, which are
zero at the origin.

Taylor’s theorem says a function behaves like its nth Taylor polynomial. The mean
value theorem is really Taylor’s theorem for n = 0.

*Named for the English mathematician Brook Taylor (1685-1731). It was first found by the Scottish

mathematician James Gregory (1638-1675). The statement we give was proved by Joseph-Louis Lagrange
(1736-1813).


https://en.wikipedia.org/wiki/Brook_Taylor
https://en.wikipedia.org/wiki/James_Gregory_(mathematician)
https://en.wikipedia.org/wiki/Lagrange
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y=sinn | [VTRE ] r=re

/

y = PJ(x) 1 y = P)(x)

Figure 4.8: The odd degree Taylor polynomials for the sine function.

Theorem 4.3.2 (Taylor). Suppose f: [a,b] — R is a function with n continuous derivatives on
la, b] and such that f (n+1) exists on (a,b). Given distinct points xo and x in [a, b], we can find a
point c between xo and x such that

£

1) X"

flx) =P0(x) +

(n+1)
The term R}’(x) = f " +1(;) (x — x0)"*! is called the remainder term. This form of the

remainder term is called the Lagrange form of the remainder. There are other ways to write
the remainder term, but we skip those. Note that c depends on both x and xo.

Proof. Find a number M, ,, (depending on x and x¢) solving the equation
F(@) = Py () + Mgy = 20)"".
Define a function g(s) by
g(s) = f(s) = Pi(s) = Mu,xys = x0)" "™

We compute the kth derivative at x¢ of the Taylor polynomial (P,’fo)(k)(xo) = f®)(x) for
k=0,1,2,...,n (the zeroth derivative of a function is the function itself). Therefore,

g(xo) = g'(x0) = g"(x0) = --- = g(”)(xo) =0.

In particular, g(xp) = 0. On the other hand g(x) = 0. By the mean value theorem, there
exists an x1 between xo and x such that g’(x1) = 0. Applying the mean value theorem to g’,
we obtain that there exists x; between xy and x; (and therefore between x(y and x) such
that g”(x2) = 0. We repeat the argument »n + 1 times to obtain a number x,.; between xg
and x, (and therefore between xo and x) such that ¢"**1)(x,,,1) = 0.
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Let ¢ := x,41. We compute the (n + 1)th derivative of g to find
g (s) = FD(s) — (n + 1)! My .

Plugging in c for s we obtain My y, = %, and we are done. m|

In the proof, we found (P,’fo)(k)(xo) = f®)(xp) for k =0,1,2,...,n. Therefore, the Taylor
polynomial has the same derivatives as f at xo up to the nth derivative. That is why the
Taylor polynomial is a good approximation to f. Notice how in Figure 4.8 the Taylor
polynomials are reasonably good approximations to the sine near x = 0.

We do not necessarily get good approximations by the Taylor polynomial everywhere.
Consider expanding the function f(x) := 7%; around 0, for x < 1, we get the graphs in
Figure 4.9. The dotted lines are the first, second, and third degree approximations. The
dashed line is the 20th degree polynomial. The approximation does seem to get better as
the degree rises for x > —1. For x < —1, it in fact gets visibly worse. The polynomials are

the partial sums of the geometric series )" ; x"*, and the series only converges on (-1, 1).
See the discussion of power series §2.6.

Figure 4.9: The function 1, and the Taylor polynomials P, Pg, Pg (all dotted), and the
polynomial P o (dashed).

If f is infinitely differentiable, that is, if f can be differentiated any number of times, then
we define the Taylor series:
f (k)(xo) k
Z ~x0)".

There is no guarantee that this series converges for any x # xo. Even where it does converge,
there is no guarantee that it converges to the function f. Functions f whose Taylor series
at every point xo converges to f in some open interval containing xg are called analytic
functions. Many functions one tends to see in practice are analytic. See Exercise 5.4.11, for
an example of a non-analytic function.
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The definition of derivative says that a function is differentiable if it is locally approxi-
mated by a line. We mention in passing that there exists a converse to Taylor’s theorem,
which we will neither state nor prove, saying that if a function is locally approximated in a
certain way by a polynomial of degree d, then it has d derivatives.

Taylor’s theorem gives us a quick proof of a version of the second derivative test. By a
strict relative minimum of f at c, we mean that there exists a 6 > 0 such that f(x) > f(c) for
all x € (¢ — 0,c + 6) where x # c. A strict relative maximum is defined similarly. Continuity
of the second derivative is not needed, but the proof is more difficult and is left as an
exercise. The proof also generalizes immediately into the nth derivative test, which is also
left as an exercise.

Proposition 4.3.3 (Second derivative test). Suppose f: (a,b) — R is twice continuously
differentiable, xo € (a,b), f'(xo) = 0and f”(xo) > 0. Then f has a strict relative minimum at x.

Proof. As f” is continuous, there exists a 6 > 0 such that f”(c) > Oforall c € (xo—0,x0+9),
see Exercise 3.2.11. Take x € (xo — 0, xo + 0), x # x¢. Taylor’s theorem says that for some ¢
between x( and x,

£ = Fx0) + ) = x0) + LD =0 = ) + 0D i

As f”(c) > 0 and (x — x0)* > 0, we have f(x) > f(xo). O

4.3.3 Exercises
Exercise 4.3.1: Compute the nth Taylor polynomial at O for the exponential function.

Exercise 4.3.2: Suppose p is a polynomial of degree d. Given xo € R, show that the dth Taylor polynomial
for p at xq is equal to p.

Exercise 4.3.3: Let f(x) = x| Compute f'(x) and f"(x) for all x, but show that f®(0) does not exist.

Exercise 4.3.4: Suppose f: R — R has n continuous derivatives. Show that for every xo € R, there exist
polynomials P and Q of degree n and an € > 0 such that P(x) < f(x) < Q(x) for all x € [xo, xo + €] and
Q(x) = P(x) = A(x — x0)" for some A > 0.

X0
Exercise 4.3.5: If f: [a,b] — R has n + 1 continuous derivatives and xo € [a,b], prove lim R @) _ .
X

—Xx0 (x=x0)" —
Exercise 4.3.6: Suppose f: [a,b] — R has n+1 continuous derivatives and xo € (a,b). Prove: f®(x) =0
forallk =0,1,2,...,nif and only if lim f(x))n“ exists.
X

—xp (x=x0

Exercise 4.3.7: Suppose a,b,c € Rand f: R — R is differentiable, f”'(x) = a for all x, f’(0) = b, and
f(0) = c. Find f and prove that it is the unique differentiable function with this property.

Exercise 4.3.8 (Challenging): Show that a simple converse to Taylor’s theorem does not hold. Find a
function f: R — R with no second derivative at x = 0 such that |f(x)| < |x3 , that is, f goes to zero at 0
faster than x?, and while f'(0) exists, f”(0) does not.
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Exercise 4.3.9: Suppose f: (0,1) — R is differentiable and f” is bounded.

a) Show that there exists a once differentiable function g: [0,1) — R such that f(x) = g(x) for all x # 0.
Hint: See Exercise 4.2.14.

b) Find an example where the g is not twice differentiable at x = 0.
Exercise 4.3.10: Prove the nth derivative test. Suppose n € N, xg € (a,b), and f: (a,b) — R is n times
continuously differentiable, with f ®)(x0) =0 fork=1,2,...,n—1,and f ()(xg) # 0. Prove:

a) If nis odd, then f has neither a relative minimum, nor a maximum at xo.

b) If n is even, then f has a strict relative minimum at xq if £ (xo) > 0 and a strict relative maximum at

xo if f™(x0) < 0.

Exercise 4.3.11: Prove the more general version of the second derivative test. Suppose f: (a,b) — R is
differentiable and xo € (a, b) is such that, f'(xo) = 0, f”(xo) exists, and f"(xo) > 0. Prove that f has a
strict relative minimum at xo. Hint: Consider the limit definition of f"(xo).
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4.4 Inverse function theorem

Note: less than 1 lecture (optional section, needed for §5.4, requires §3.6)

44.1 Inverse function theorem

We start with a simple example. Consider the function f(x) := ax for a number a # 0.
Then f: R — R is bijective, and the inverse is f71(y) = 1y. In particular, f’(x) = a and
(FY(y) = % As differentiable functions are “infinitesimally like” linear functions, we
expect the same sort of behavior from the inverse of a differentiable function. The main
idea of differentiating inverse functions is the following lemma.

Lemma 4.4.1. Let I,] C R be intervals. If f: 1 — ] is strictly monotone (hence one-to-one),
onto (f(I) = J), differentiable at xo € I, and f’(xo) # 0, then the inverse f~ is differentiable at
Yo = f(xo) and

1 1

=1y _ — )
(f ) (yo) = f'(f_l(]/o)) f’(xo)

If f is continuously differentiable and f' is never zero, then =" is continuously differentiable.

Proof. By Proposition 3.6.6, f has a continuous inverse. For convenience, call the inverse
g: ] — I. Let xq, yo be as in the statement. For x € I, write y = f(x). If x # xo, and so
y # Yo, we find

g —go)  g(f(®)—g(f(x0))  x-xp

y=y  f@)-f(x) f(x) = flxo)

See Figure 4.10 for the geometric idea.

_ f@f0) _ __y=wo T
slope X—x0 sW)-s(yo) = slope = =X — gW=g(0)
fxo)=yot - -~ ~-- -~ PEe= oo = vw
|
| Xo=8yo)f —————-—-— -
| |
T T |
fx)=yt-- ‘ : |
\ ! \
| |
: | X = g(y) iiiiii ‘
[ \ | \

F@) =y f(xo) = o

Figure 4.10: Interpretation of the derivative of the inverse function.
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Let

_x=x g
Ox) = { TS0 if x # x,
f'(aco) if x = xg (notice that f’(xo) # 0).

As f is differentiable at x,

lim Q(x) = lim el !

xX— X0 xX—Xg f(X) - f(xo) - f’(xO)

that is, Q is continuous at xo. As g(y) is continuous at yo, the composition Q(g(y)) =

% is continuous at yo by Proposition 3.2.7. Therefore,

= Q(xo),

_1 _ _ lim $¥) = 8W0)
f(8(o)) = Qlz00)) = Jim Qlsly) = i, y=yo

So g is differentiable at yo, and g’(yo) = m.
If f” is continuous and nonzero at all x € I, then the lemma appliesatall x € I. As g is
also continuous (it is differentiable), the derivative g’(y) = m must be continuous. O

What is usually called the inverse function theorem is the following result.

Theorem 4.4.2 (Inverse function theorem). Let f: (a,b) — R be a continuously differentiable
function, xo € (a,b) a point where f'(xg) # 0. Then there exists an open interval I C (a, b) with
xo € I, the restriction f|1 is injective with a continuously differentiable inverse g: | — I defined
on an interval | = f(I), and

1

V)= ———= orally € ].

g'(y) i) forally €]
Proof. Without loss of generality, suppose f’(xo) > 0. As f’ is continuous, there must exist

an open interval I = (xo — 0, x9 + 0) such that f’(x) > 0 for all x € I. See Exercise 3.2.11.

By Proposition 4.2.8, f is strictly increasing on I, and hence the restriction f|; is bijective
onto | := f(I). As f is continuous, Corollary 3.6.3 (or directly via the intermediate value
theorem) implies that f(I) is an interval. Now apply Lemma 4.4.1. O

In Example 1.2.3, we saw how difficult an endeavor was proving the existence of V2
without any tools. With the intermediate value theorem, the the existence of roots is almost
trivial, and with the machinery of this section, we will prove far more than mere existence.

Corollary 4.4.3. Given n € N and x > 0, there exists a unique number y > 0 (denoted x'/" = y),
such that y" = x. Furthermore, the function g: (0,00) — (0, ) defined by g(x) = x'/" is
continuously differentiable and
1 1
g/(x) - - x(l—n)/n/

nx(”—l)/” n

using the convention xmin = (xl/”)m.



178 CHAPTER 4. THE DERIVATIVE

Proof. For x = 0, the existence of a unique root is trivial.

Let f: (0,00) — (0, ) be defined by f(y) := y". The function f is continuously
differentiable, and f’(y) = ny"~!, see Exercise 4.1.3. For y > 0, the derivative f’ is strictly
positive, and so again by Proposition 4.2.8, f is strictly increasing (this can also be proved
directly) and hence injective. Suppose M and € are such that M > 1and 1 > € > 0. Then
f(M) = M" > M and f(e) = €" < €. For every x with € < x < M, we have, by the
intermediate value theorem, that x € f([e, M]) c f((0, 0)). As M and € were arbitrary, f
is onto (0, o), and hence f is bijective. Let g be the inverse of f, and we obtain the existence
and uniqueness of positive nth roots. Lemma 4.4.1 says that g has a continuous derivative

’ _ 1 _ 1
andg (x) - f’(g(x)) - n(xl/n)n—l' O

Example 4.4.4: The corollary provides a good example of where the inverse function
theorem gives us an interval smaller than (a,b). Take f: R — R defined by f(x) := x2.
Then f’(xp) # 0 as long as xg # 0. If xo > 0, we can take I = (0, o), but no larger.

Example 4.4.5: Another useful example is f(x) := x3. The function f: R — R is one-to-one
and onto, so f1(y) = y'/3 exists on the entire real line, including zero and negative y. The
function f has a continuous derivative, but f ! has no derivative at the origin. The point is
that f/(0) = 0. See Figure 4.11 for a graph. Notice the vertical tangent on the cube root at
the origin. See also Exercise 4.4.4.

Figure 4.11: Graphs of x® and x!/3.

4.4.2 Exercises

Exercise 4.4.1: Suppose f: R — R is continuously differentiable and f’(x) > 0 for all x. Show that f
is invertible on the interval | = f(R), the inverse is continuously differentiable, and (f~1)'(y) > 0 for all

y € f(R).
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Exercise 4.4.2: Suppose I, ] are intervals and a monotone onto f: I — | has an inverse g: | — I. Suppose
you already know that both f and g are differentiable everywhere and f’ is never zero. Using chain rule but
not Lemma 4.4.1, prove the formula g'(y) = m. Remark: This exercise is the same as Exercise 4.1.10,

no need to do it again if you have solved it already.

Exercise 4.4.3: Let n € N be even. Prove that every x > 0 has a unique negative nth root. That is, there
exists a negative number y such that y" = x. Compute the derivative of the function g(x) = y.

Exercise 4.4.4: Let n € N be odd and n > 3. Prove that every x has a unique nth root. That is, there exists a
number y such that y" = x. Prove that the function defined by g(x) := y is differentiable except at x = 0
and compute the derivative. Prove that g is not differentiable at x = 0.

Exercise 4.4.5 (requires §4.3): Show that if in the inverse function theorem f has k continuous derivatives,
then the inverse function g also has k continuous derivatives.

Exercise 4.4.6: Let f(x) = x + 2x?sin(1/x) for x # 0 and f(0) := 0. Show that f is differentiable at all x,
that f'(0) > 0, but that f is not invertible on any open interval containing the origin.
Exercise 4.4.7:

a) Let f: R — R be a continuously differentiable function and k > 0 be a number such that f'(x) > k for
all x € R. Show f is one-to-one and onto, and has a continuously differentiable inverse f~': R — R.

b) Find an example f: R — R where f’(x) > 0 for all x, but f is not onto.
Exercise 4.4.8: Suppose I, | are intervals and a monotone onto f: I — | has an inverse g: | — I. Suppose
x €landy = f(x) €], and that g is differentiable at y. Prove:

a) If g’(y) # 0, then f is differentiable at x.

b) If ¢'(y) = 0, then f is not differentiable at x.



180 CHAPTER 4. THE DERIVATIVE



Chapter 5

The Riemann Integral

5.1 The Riemann integral

Note: 1.5 lectures

An integral is a way to “sum” the values of a function. There is sometimes confusion
among students of calculus between the integral and the antiderivative. The integral is
(informally) the area under the curve, nothing else. That we can compute an antiderivative
using the integral is a nontrivial result we must prove. We will define the Riemann integral*
using the Darboux integral®, an equivalent but technically simpler definition.

5.1.1 Partitions and lower and upper integrals

We want to integrate a bounded function defined on an interval [a, b]. We first define two
auxiliary integrals that are defined for all bounded functions. Only then can we talk about
the Riemann integral and the functions which it can integrate, the Riemann integrable
functions.

Definition 5.1.1. A partition P of [a, b] is a finite set of numbers {xo, x1, x2, ..., x,} such
that
A=x0<x1<xXp2<-++<xp_1<x,=">.

We write
sz‘ =X —Xi-1.

Suppose f: [a,b] — R is bounded and P is a partition of [a, b]. Define

m; = inf {f(x) txis1 < x < xi}, M; = sup {f(x) txis1 < x < xi},
L(P, f) = Z miAx;, U, f) = Z MiAx;.
i=1 i=1

We call L(P, f) the lower Darboux sum and U (P, f) the upper Darboux sum.

*Named after the German mathematician Georg Friedrich Bernhard Riemann (1826-1866).
tNamed after the French mathematician Jean-Gaston Darboux (1842-1917).


https://en.wikipedia.org/wiki/Riemann
https://en.wikipedia.org/wiki/Darboux
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The geometric idea of Darboux sums is indicated in Figure 5.1. The lower sum is
the area of the shaded rectangles, and the upper sum is the area of the entire rectangles,
shaded plus unshaded parts. The width of the ith rectangle is Ax;, the height of the shaded
rectangle is m;, and the height of the entire rectangle is M;.

Ms-|- \1-------

ms-{— — —+ - - =

X0 X1 X2 X3 X4 X5 X6 X7 X8

Figure 5.1: Sample Darboux sums.

Proposition 5.1.2. Let f: [a,b] — R be a bounded function. Let m, M € R be such that for all
x € [a,b], we have m < f(x) < M. Then for every partition P of [a, ],

m(b—a) < L(P, f) < U(P, f) < M(b — a). (5.1)

Proof. Let P be a partition of [a, b]. Note that m < m; for all i and M; < M for all i. Also,
m; < M; for all i. Finally, 3}, Ax; = (b — a). Therefore,

Zn:Axi) = z”: mAx; < z’l: miAx; <
i=1 i=1 i=1
< Zn: M;Ax; < i MAx; =M (i Axi) = M(b - a).
i=1 i=1 i=1

Hence we get (5.1). In particular, the sets of lower and upper sums are bounded sets. O

mb—a)=m

Definition 5.1.3. As the sets of lower and upper Darboux sums are bounded, we define

b
/ f(x)dx :=sup {L(P,f) : P a partition of [a, b]},

b
/ f(x)dx :=inf {U(P,f) : P a partition of [a, b]}.

We call f the lower Darboux integral and 7 the upper Darboux integral. To avoid worrying
about the variable of integration, we often simply write

£f = £f(x)dx and ff = ff(x)dx.
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If integration is to make sense, then the lower and upper Darboux integrals should
be the same number, as we want a single number to call the integral. However, these two
integrals may differ for some functions.

Example 5.1.4: Take the Dirichlet function f: [0,1] — R, where f(x) := 1if x € Q and

f an f .

The reason is that for any partition P and every i, we have m; = inf{f(x) cx € [xi-1, xi]} =0
and M; = sup{f(x) (X E [xi_1,xi]} = 1. Thus

n n n
L(P,f):ZO-Axi:O, and U(P,f)=21-Axi:ZAxi:1.
i=1 i=1 i=1

Remark 5.1.5. The same definition of fa ’ f and fa ’ f is used when f is defined on a larger set

S such that [, b] c S. In that case, we use the restriction of f to [a,b] and we must ensure
that the restriction is bounded on [a, b].

To compute the integral, we often take a partition P and make it finer. That is, we cut
intervals in the partition into yet smaller pieces.

Definition 5.1.6. Let P = {xo,x1,...,X,} and P = {x0,x1,...,x¢} be partitions of [a, b].
We say P is a refinement of P if as sets P C P.

That is, P is a refinement of a partition if it contains all the numbers in P and perhaps
some other numbers in between. For example, {0,0.5,1,2} is a partition of [0,2] and
{0,0.2,0.5,1,1.5,1.75, 2} is a refinement. The main reason for introducing refinements is
the following proposition.

Proposition 5.1.7. Let f: [a,b] — R be a bounded function, and let P be a partition of [a, b].
Let P be a refinement of P. Then

L(P,f)< L, f) and U, f)<UP,f).

Proof. The tricky part of this proof is to get the notation correct. Let P = {%p, X1, ..., X¢} be
a refinement of P = {x¢, x1,...,x,}. Then xo = xg and x,, = Xy. In fact, there are integers
ko < ki <--- < ky such that x; = xi, fori =0,1,2,...,n.

Let Ax; = x;, —x;-1forq=0,1,2,...,{. See Figure 5.2. We get

ki ki

Axi =i = Xi-1 = Xg; = X,y = Z Xg—Xg-1 = Z AXxy.
g=ki_1+1 g=ki_1+1
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Xkig Xki
Il [l
| |
1 1
Xi-1 Axi X

Figure 5.2: Refinement of a subinterval. Notice Ax; = AXx; »+AX, 1+AX;,and also k;_1+1 = q—2
and k; = g.

Let m; be as before and correspond to the partition P. Let 1, = inf{ flx):x;1<x <
Yq}. Now, m; < m, for ki_1 < g < k;. Therefore,

ki ki ki
m;Ax; = m; Z qu: Z miquS Z ﬂ?quq.

q=k1'_1+1 q=ki_1+1 q=k,‘_1+1
So
n n ki { _
LP,f)= Y mAxi < > > iigATy = ) iigAT, = L(P, f).
i=1 i=1 g=ki1+1 g=1
The proof of U(l3 , f) < U(P, f)is left as an exercise. O

Armed with refinements, we prove the following. The key point of this next proposition
is that the lower Darboux integral is less than or equal to the upper Darboux integral.

Proposition 5.1.8. Let f: [a,b] — R be a bounded function. Let m, M € R be such that for all
x € [a,b], we have m < f(x) < M. Then

b )
m(b—a)ﬁ/fﬁ/fSM(b—a). (5.2)

Proof. By Proposition 5.1.2, for every partition P,
m(b—a) < L(P, f)<UP, f) < M(b —a).

The inequality m(b—a) < L(P, f) implies m(b—a) < /abf The inequality U(P, f) < M(b—a)

implies /abf < M(b —a).

The middle inequality in (5.2) is the main point of the proposition. Let Py, P, be
partitions of [a,b]. Define P = Py U P,. The set Pisa partition of [a,b], which is a
refinement of P; and a refinement of P,. By Proposition 5.1.7, L(Py, f) < L(13, f) and
U(P, f) < U(Py, f). So

L(P1, f) < L(P, f) < U(P, f) < U(Py, f).
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In other words, for two arbitrary partitions P and P,, we have L(Py, f) < U(P, f). Recall
Proposition 1.2.7, and take the supremum and infimum over all partitions:

b
/ f =sup {L(P, f) : P a partition of [a, b]}

b
< inf {U(P,f) : P a partition of [a,b]} = / f. O

5.1.2 Riemann integral

We can finally define the Riemann integral. However, the Riemann integral is only defined
on a certain class of functions, called the Riemann integrable functions.

Definition 5.1.9. Let f: [4,b] — R be a bounded function such that

/abf(x) dx = ff(x) dx.

Then f is said to be Riemann integrable. The set of Riemann integrable functions on [a, b] is
denoted by % ([a,b]). When f € %([a, b]), we define

/abf(x)dx = /ubf(x)dx:/abf(x)dx.

As before, we often write
b b
/ f = / f(x)dx.
a a

The number fa ’ f is called the Riemann integral of f, or sometimes simply the integral of f.

By definition, a Riemann integrable function is bounded. Appealing to Proposition 5.1.8,
we immediately obtain the following proposition. See also Figure 5.3.

Proposition 5.1.10. Let f: [a,b] — R be a Riemann integrable function. Let m, M € R be such
that m < f(x) < M forall x € [a,b]. Then

b
m(b—a)é/ f<M(b—-a).
a
A weaker form of this proposition is often useful: If | f (x)| < M forall x € [a, b], then

[

< M(b —a).
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/

a b

Figure 5.3: The area under the curve is bounded from above by the area of the entire rectangle,
M(b — a), and from below by the area of the shaded part, m(b — a).

Example 5.1.11: We integrate constant functions using Proposition 5.1.8. If f(x) := c for
some constant ¢, then we take m = M = c. In inequality (5.2) all the inequalities must be

equalities. Thus f is integrable on [a, b] and fa ’ f=c-a).
Example 5.1.12: Let f: [0,2] — R be defined by

1 ifx<l1,
f(x) =312 ifx=1,
0 ifx>1.

We claim f is Riemann integrable and f02 f=1
Proof: Let 0 < € < 1 be arbitrary. Let P := {0,1 — €,1 + €,2} be a partition. We use the
notation from the definition of the Darboux sums. Then

my :inf{f(x):x € [O,l—e]} =1, M, :sup{f(x) 1 X E [O,l—e]} =1,
mzzinf{f(x):xe [1—e,l+e]} =0, Mzzsup{f(x):xe [1—e,1+e]} =1,
ms :inf{f(x):x € [1+€,2]} =0, M3 :sup{f(x) 1Xx € [1+€,2]} =0.

Furthermore, Ax; =1 —¢, Axp = 26, and Ax3 = 1 — €. See Figure 5.4.
We compute

3
L(P,f)=2m1'Axi=1'(1—€)+0'2€+0'(1—€):1_‘5'
i=1

3
UP,f) =Y MiAxj=1-(1-€)+1:2¢+0-(1-€)=1+e.
i=1

Thus, L
2 2
/f—/ f<UP,f)-LP,f)=(1+e)—(1—¢€) =2e.
0 J0
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M1=M2=TI11=1

Mz =mp=m3=0 6 |
0 1-¢ 1+e¢ 2

Axi1=1-€¢ Axp=2¢ Axz=1-¢

Figure 5.4: Darboux sums for the step function. L(P, f) is the area of the shaded rectangle,
U(P, f)is the area of both rectangles, and U (P, f)—L(P, f) is the area of the unshaded rectangle.

By Proposition 5.1.8, foz f < f02 f. As e was arbitrary, /02 f = /02 f. So f is Riemann
integrable. Finally, o

2
1—e:L(P,f)§/ f<UP,f)=1+e€.
0

foz f- 1| < €. As € was arbitrary, we conclude foz f=1L

Hence,

It may be worthwhile to extract part of the technique of the example into a proposition.
Note that U(P, f) — L(P, f) is exactly the total area of the white part of the rectangles in
Figure 5.1.

Proposition 5.1.13. Let f: [a,b] — R be a bounded function. Then f is Riemann integrable if
for every € > 0, there exists a partition P of [a, b] such that

U(P, f) - L(P, f) < e.

Proof. If for every € > 0 such a P exists, then

b b
Os/f—/fsu(P,f)—L(P,f)<e.

Therefore, fa ’ f= fa ’ f,and f is integrable. O

Example 5.1.14: Let us show ﬁ is integrable on [0, b] for all b > 0. We will see later that
continuous functions are integrable, but let us demonstrate how we do it directly.

Let € > 0 be given. Take n € N and let x; := it/n form the partition P := {xo, x1,..., X, }
of [0, b]. Then Ax; = b/n for all i. As f is decreasing, for every subinterval [x;_1, x;],

1 B 1
1+ x; S l4xiq

) 1 1
m; = 1nf{m ix € [xi_l,xi]} = ,  M;=sup {m (X € [xi_l,xi]}
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Then

n b n 1 1
uw, f)-Le, f) = ZA’”(MZ' —mi) =g Z (1 +GDbfn 1+ ib/n) )
i=1

i=1

b1 1 Y b
T \1+0/n 14nb/n)  nb+1)

The sum telescopes, the terms successively cancel each other, something we have seen

before. Picking 7 to be such that b—21) < €, the proposition is satisfied, and the function is

n(b+
integrable.

Remark 5.1.15. A way of thinking of the integral is that it adds up (integrates) lots of local
information—it sums f(x)dx over all x. The integral sign was chosen by Leibniz to be
the long S to mean summation. Unlike derivatives, which are “local,” integrals show
up in applications when one wants a “global” answer: total distance travelled, average
temperature, total charge, etc.

5.1.3 More notation

When f: S — Risdefined onalargersetSand [a,b] C S, wesay f is Riemann integrable on
[a, b] if the restriction of f to [a, b] is Riemann integrable. In this case, we say f € ®([a, b]),

. b . . .
and we write fu f to mean the Riemann integral of the restriction of f to [a, b].

It is useful to define the integral fa ’ fevenifa £ b. Suppose b < aand f € R([b, a]),

then define , .
[r-fs
/;f =0.

At times, the variable x may already have some other meaning. When we need to write
down the variable of integration, we may simply use a different letter. For example,

/abf(s)ds = /abf(x)dx.

Exercise 5.1.1: Define f: [0,1] — R by f(x) := x3 and let P = {0,0.1,0.4,1}. Compute L(P, f) and
u(p, f).

For any function f, define

5.1.4 Exercises

Exercise 5.1.2: Let f: [0,1] — R be defined by f(x) := x. Show that f € R([0,1]) and compute folf
using the definition of the integral (but feel free to use the propositions of this section).
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Exercise 5.1.3: Let f: [a,b] — R be a bounded function. Suppose there exists a sequence of partitions
{Pr}y2, of [a, b] such that
klgilo(U(Pk’f) - L(Pk/f)) =0

Show that f is Riemann integrable and that

b
/ f= klim U(Px, f) = klim L(Py, f).
a —00 —00
Exercise 5.1.4: Finish the proof of Proposition 5.1.7.

Exercise 5.1.5: Suppose f: [-1,1] — R is defined as

Prove that f € R([-1,1]) and compute /_11 f using the definition of the integral (but feel free to use the
propositions of this section).

Exercise 5.1.6: Let ¢ € (a,b) and let d € R. Define f: [a,b] — R as

_jd ifx=g
f) = {0 ifx #c.

Prove that f € R ([a,b]) and compute fu ’ f using the definition of the integral (but feel free to use the
propositions of this section).

Exercise 5.1.7: Suppose f: [a,b] — R is Riemann integrable. Let € > 0 be given. Then show that
there exists a partition P = {xo,x1,...,X,} such that for every set of numbers {c1,ca,...,cn} with

Ck € [xk—1, xx] for all k, we have
b n
[ 1= rteomx,
a k=1

Exercise 5.1.8: Let f: [a,b] — R be a Riemann integrable function. Let « > 0 and € R. Then define
g(x) == f(ax + p) on the interval I = [=£ B b ﬁ]. Show that g is Riemann integrable on I.

a’ «a

< E.

Exercise 5.1.9: Suppose f:[0,1] — R and g: [0,1] — R are such that for all x € (0,1], we have
f(x) = g(x). Suppose f is Riemann integrable. Prove g is Riemann integrable and /01 f= /01 g

Exercise 5.1.10: Let f: [0,1] — R be a bounded function. Let P, = {xq, X1, ..., Xy} be a uniform partition
of [0, 1], that is, x; = i/n. Is {L(Pn, f )}n=1 always monotone? Yes/No: Prove or find a counterexample.

Exercise 5.1.11 (Challenging): For a bounded function f: [0,1] — R, let R, = (1/n) X.i_; f (i/n) (the
uniform right-hand rule).
a) If f is Riemann integrable show /01 f = lim R,.

n—oo

b) Find an f that is not Riemann integrable, but lim R, exists.

n—oo
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Exercise 5.1.12 (Challenging): Generalize the previous exercise. Show that f € R([a,b]) if and only if
there exists an I € R, such that for every € > O there exists a 0 > 0 such that if P is a partition with Ax; <

forall i, then |L(P, f) - I| < e and [U(P, f) - 1| < e. If f € R([a,]]), then I = fabf-

Exercise 5.1.13: Using Exercise 5.1.12 and the idea of the proof in Exercise 5.1.7, show that Darboux integral
is the same as the standard definition of Riemann integral, which you have most likely seen in calculus. That
is, show that f € R ([a,b]) if and only if there exists an I € R, such that for every € > 0 there exists a 6 > 0
such that if P = {xo, x1, ..., Xn} is a partition with Ax; < 0 for all i, then |Z?:1 fci)Ax; — I| < € for every

set {c1,c2,...,cn} with ¢ € [xi—1, x;). If f € R([a,b]), then I = /ab f.

Exercise 5.1.14 (Challenging): Construct functions f and g, where f: [0,1] — R is Riemann integrable,
g:[0,1] — [0, 1] is one-to-one and onto, and such that the composition f o g is not Riemann integrable.

Exercise 5.1.15: Suppose that f: [a,b] — R is a bounded function, and P is a partition of [a, b] such that
L(P, f) = U(P, f). Prove that f is a constant function.
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5.2 Properties of the integral

Note: 2 lectures, integrability of functions with discontinuities can safely be skipped

5.2.1 Additivity

Adding a bunch of things in two parts and then adding those two parts should be the same
as adding everything all at once. The corresponding property for integrals is called the
additive property of the integral. First, we prove the additivity property for the lower and
upper Darboux integrals.

Lemma 5.2.1. Supposea <b < cand f: [a,c] — R is a bounded function. Then

c b c Yl T ab Y
[r=f s f s ma [i=[se ][5
a a b a a b
Proof. If we have partitions P; = {xo, x1,...,xx} of [a,b] and P> = {x, Xk41,..., X, } of
[b, c], then the set P := P; U P, = {xq, x1, ..., X} is a partition of [a, c]. We find

L(P, f) = Zm Ax; = Zm Ax; + Z miAx; = L(Py, f) + L(P2, f).

i=k+1

When we take the supremum of the right-hand side over all P; and P,, we are taking
a supremum of the left-hand side over all partitions P of [4, c] that contain b. If Q is a
partition of [4, c] and P = Q U {b}, then P is a refinement of Q and so L(Q, f) < L(P, f).
Therefore, taking a supremum only over the P that contain b is sufficient to find the
supremum of L(P, f) over all partitions P, see Exercise 1.1.9. Finally, recall Exercise 1.2.9 to
compute

/Cf = sup {L(P, f) : P a partition of [a, c]}

= sup {L(P,f) : P a partition of [a,c], b € P}
sup {L(Pl,f) + L(Py, f) : Py a partition of [a, b], P, a partition of [b, c]}
sup {L(Pl,f) : Py a partition of [a, b]} + sup {L(Pz,f) : P a partition of [b, c]}

[rfr

Similarly, for P, P1, and P, as above, we obtain

U(P, f) = ZM Ax;j = ZM Ax;j + Z M;Ax; = U(Py, f) + U(Py, f).

i=k+1
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We wish to take the infimum on the right over all P; and P,, and so we are taking the
infimum over all partitions P of [a, c] that contain b. If Q is a partition of [a, c] and
P = Q U {b}, then P is a refinement of Q and so U(Q, f) > U(P, f). Therefore, taking an
infimum only over the P that contain b is sufficient to find the infimum of U(P, f) for all P.

We obtain =
/acf:/a f+/bcf. -

Proposition 5.2.2. Let a < b < c. A function f: [a,c] — R is Riemann integrable if and only if
f is Riemann integrable on [a,b] and [b, c]. If f is Riemann integrable, then

NS R
Proof. Suppose f € % ([a, c]), then it is bounded and ff = ficf = LC f. The lemma gives
e[ e e [ [ = [
a a a b a b a a
Thus the inequality is an equality,
£f+£f=ff+ff-

As we also know /abf < /abf and /bcf < ff, we conclude

/abf=ff and /ch=/bcf-

Thus f is Riemann integrable on [a, b] and [b, c] and the desired formula holds.
Now assume f is Riemann integrable on [a, b] and on [b, c]. Again it is bounded, and
the lemma gives

Lr=Lrfor= e[ o= Lo [o=]r

Therefore, f is Riemann integrable on [a, c], and the integral is computed as indicated. O

An easy consequence of the additivity is the following corollary. We leave the details to
the reader as an exercise.

Corollary 5.2.3. If f € & ([a,b]) and [c,d] C [a, b], then the restriction f| a4 is in R([c, d]).
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5.2.2 Linearity and monotonicity

A sum is a linear function of the summands. So is the integral.

Proposition 5.2.4 (Linearity). Let f and g be in R ([a, b]) and a € R.

(i) afisin R([a,b]) and
b b
/ af(x)dx:oc/ f(x)dx.

b b b
/ (f(x) +g(x)) dx = / f(x)dx + / g(x) dx.

(i) f+gisin R([a,b]) and

Proof. Let us prove the first item for @ > 0. Let P be a partition of [a, b], and m; = inf{f(x) :
X € |xi-1, xi]} as usual. As a > 0, the multiplication by a moves past the infimum,

inf{af(x) 1Xx € [xi_l,xi]} = ainf{f(x) ix € [xi_l,xi]} = am;.

Therefore,
n

L(P,af) = Z amiAx; = o Z m;Ax; = aL(P, f).

i=1 i=1
Similarly,
U(P,af)=al(P, f).

Again, as a > 0, we may move multiplication by a past the supremum. Hence,

b
/ af(x)dx = sup {L(P, af) : P a partition of [a, b]}

= sup {aL(P,f) : P a partition of [a, b]}
= a sup {L(P, f) : P a partition of [a, b]}

= a/abf(x)dx.

/{faf(x) dx = aff(x)dx.

The conclusion now follows for a > 0.
To finish the proof of the first item (for a < 0), we need to show that —f is Riemann

integrable and fa - flx)dx = - fa ’ f(x)dx. The proof of this fact is left as Exercise 5.2.1.
The proof of the second item is left as Exercise 5.2.2. It is not difficult, but it is not as
trivial as it may appear at first glance. O

Similarly, we show
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The second item in the proposition does not hold with equality for the Darboux integrals,
but we do obtain inequalities. The proof of the following proposition is Exercise 5.2.16. It
follows for upper and lower sums on a fixed partition by Exercise 1.3.7, that is, supremum
of a sum is less than or equal to the sum of suprema and similarly for infima.

Proposition 5.2.5. Let f: [a,b] — Rand g: [a,b] — R be bounded functions. Then

f(f+g)sff+fg, and /Lb(f+g)2/Lbf+/ng.

Adding up smaller numbers should give us a smaller result. That is true for an integral
as well.

Proposition 5.2.6 (Monotonicity). Let f: [a,b] — R and g: [a,b] — R be bounded, and
f(x) < g(x) forall x € [a,b]. Then

/abfﬁ /abg and ffsfg.

Moreover, if f and g are in R ([a, b)), then

/abe[jg-

Proof. Let P = {xo, x1,...,Xx,} be a partition of [a, b]. Then let

m; = inf {f(x) i x € [xi_l,xi]} and m; = inf {g(x) (X € [xi_l,xi]}.

As f(x) < g(x), then m; < m;. Therefore,
n n
L(P, f)= ) mihx; < Y fitihx; = L(P, g).
i=1 i=1
We take the supremum over all P (see Proposition 1.3.7) to obtain

/abe/abg-

Similarly, we obtain the same conclusion for the upper integrals. Finally, if f and g are
Riemann integrable all the integrals are equal, and the conclusion follows. |

5.2.3 Continuous functions

Let us show that continuous functions are Riemann integrable. We can even allow some
discontinuities. We start with a function continuous on the whole closed interval [a, b].
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Lemma 5.2.7. If f: [a,b] — R is a continuous function, then f € R ([a,b]).

Proof. As f is continuous on a closed bounded interval, it is bounded and uniformly
continuous. Given € > 0, find a 6 > 0 such that |x - y| < 6 implies |f(x) - f(y)| < 7=

Let P = {x0, x1,...,x,} be a partition of [a,b] such that Ax; < 6 foralli =1,2,...,n
For example, take n such that bn;” < d,and letx; = %(b —a)+a. Thenforall x, y € [xi—1, x;],
we have |x - y| < Ax; < 6, and so

f) = fy) < |f(0) = fF(y)] <3

As f is continuous on [x;_1, x;], it attains a maximum and a minimum on this interval. Let
x be a point where f attains the maximum and y be a point where f attains the minimum.
Then f(x) = M; and f(y) = m; in the notation from the definition of the integral. Therefore,

€
—mz:f(x)—f(y)<m-

b b

/ f—/ f=UP, f)-LP,f)

= iMiAxi) - (Zn: miAxi
i=1 i=1

And so

n
= Z(Mi — m;)Ax;
i=1
€ n
< b2 Z Axi
i=1
=3 i —a)=¢e.
As € > 0 was arbitrary,
b b
[r=ls
a a
and f is Riemann integrable on [a, b]. m|

The second lemma says that we need the function to only be “Riemann integrable inside
the interval,” as long as it is bounded. It also tells us how to compute the integral.

Lemma 5.2.8. Let f: [a,b] — R be a bounded function, {a,}}_, and {b,} " _, be sequences
such that a < a, < b, < b for all n, with lim,_,.a, = a and im0 bn = b. Suppose
f € R([an, by]) forall n. Then f € R ([a,b]) and

/f—nlgr;o ¥,
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Proof. Let M > 0 be a real number such that |f(x)| <M. As(b—-a)= (b, —ay),
by
-M(b —a)< -M(b, —a,) < / f < M(b, —a,) < M(b—a).
an

Therefore, the sequence of numbers { /a O f }:;1 is bounded and by Bolzano—Weierstrass
has a convergent subsequence indexed by 7. Let us call L the limit of the subsequence

U e

Lemma 5.2.1 says that the lower and upper integral are additive and the hypothesis
says that f is integrable on [a,,, b,,]. Therefore

/ / f+/ f+/f> —M(an, — a)+/n f—=M(b—by,).

We take the limit as k goes to oo on the right-hand side,

b
/fZ—M-0+L—M-O:L.
a

Next we use additivity of the upper integral,

ff :7f+./anbnkf+/b_nbfﬁ M(ay,, —a)+/a:]nkf+M(b_b”")'

buy oo . .
We take the same subsequence { fa “ f};., and take the limit to obtain
n -

b
/fSM-O+L+M-0:L.
a

Thus L ’ f= /a ’ f =L and hence f is Riemann integrable and /a ’ f = L. In particular, no

matter what subsequence we chose, the L is the same number.
To prove the final statement of the lemma we use Proposition 2.3.7. We have shown that

b, b
every convergent subsequence { fa L f };0_ | converges to L= fa f. Therefore, the sequence
ﬂk -
by . .
{ fan f }:’:1 1s convergent and converges to fa f . O

We say a function f: [a,b] — R has finitely many discontinuities if there exists a finite set
S ={x1,x2,...,x,} C [a,b],and f is continuous at all points of [a, b] \ S.

Theorem 5.2.9. Let f: [a,b] — R be a bounded function with finitely many discontinuities.
Then f € R([a, b]).

Proof. We divide the interval into finitely many intervals [a;, b;] so that f is continuous on
the interior (a;, b;). If f is continuous on (a;, b;), then it is continuous and hence integrable
on [c;, d;] whenever a; < ¢; < d; < b;. By Lemma 5.2.8, the restriction of f to [a;, ;] is
integrable. By additivity of the integral (and induction), f is integrable on the union of the
intervals. O
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5.2.4 More on integrable functions

Sometimes it is convenient (or necessary) to change certain values of a function and then
integrate. The next result says that if we change the values at finitely many points, the
integral does not change.

Proposition 5.2.10. Let f: [a,b] — R be Riemann integrable. Let g: [a,b] — R be such that
f(x)=g(x)forall x € [a,b] \ S, where S is a finite set. Then g is Riemann integrable and

[ ]

Sketch of proof. Using additivity of the integral, split the interval [a, b] into smaller intervals
such that f(x) = g(x) holds for all x except at the endpoints (details are left to the reader).

Therefore, without loss of generality suppose f(x) = g(x) for all x € (a,b). The proof
follows by Lemma 5.2.8, and is left as Exercise 5.2.3. O

Finally, monotone (increasing or decreasing) functions are always Riemann integrable.
The proof is left to the reader as part of Exercise 5.2.14.

Proposition 5.2.11. Let f: [a,b] — R be a monotone function. Then f € R ([a, b]).

5.2.5 Exercises

Exercise 5.2.1: Finish the proof of the first part of Proposition 5.2.4. Let f be in R ([a, b]). Prove that —f is

in R ([a, b]) and
b b
/ —f(x)dx:—/ f(x)dx.

Exercise 5.2.2: Prove the second part of Proposition 5.2.4. Let f and g be in R ([a, b]). Prove, without
using Proposition 5.2.5, that f + g is in R ([a, b]) and

b b b
/ (f (x) + g(x)) dx:/ f(x)dx+/ g(x)dx.

Hint: One way to do it is to use Proposition 5.1.7 to find a single partition P such that U(P, f)—L(P, f) < ¢/2
and U(P,g)— L(P, g) < ¢/

Exercise 5.2.3: Let f: [a,b] — R be Riemann integrable, and g: [a,b] — R be such that f(x) = g(x) for
all x € (a, b). Prove that g is Riemann integrable and that

b b
[s=fs
a a
Exercise 5.2.4: Prove the mean value theorem for integrals: If f: [a,b] — R is continuous, then there

exists a c € [a,b] such that fubf = f(c)(b —a).

Exercise 5.2.5: Let f: [a,b] — R be a continuous function such that f(x) > 0 for all x € [a,b] and
fabf = 0. Prove that f(x) = 0 for all x.
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Exercise 5.2.6: Let f: [a,b] — R be a continuous function and fa ’ f = 0. Prove that there exists a
c € [a,b] such that f(c) = 0. (Compare with the previous exercise.)

Exercise 5.2.7: Let f: [a,b] — Rand g: [a,b] — R be continuous functions such that [be = fah g
Show that there exists a ¢ € [a, b] such that f(c) = g(c).

Exercise 5.2.8: Let f € R([a,b]). Let a, B, y be arbitrary numbers in [a, b] (not necessarily ordered in any

way). Prove ’
/ayf=/aﬁf+/ﬁ}f-

Recall what /ahf means if b < a.
Exercise 5.2.9: Prove Corollary 5.2.3.

Exercise 5.2.10: Suppose f: [a,b] — R is bounded and has finitely many discontinuities. Show that as
a function of x the expression | f (x)| is bounded with finitely many discontinuities and is thus Riemann

integrable. Then show
b b
/ f(x)dx| < / |f ()| dx.
a a

Exercise 5.2.11 (Hard): Show that the Thomae or popcorn function (see Example 3.2.12) is Riemann
integrable. Therefore, there exists a function discontinuous at all rational numbers (a dense set) that is
Riemann integrable.

That is, define f: [0,1] — R by

fx) {1/k if x = m/k where m, k € N and m and k have no common divisors,
x) =

0  if x isirrational.

Show /01 f=0.

If I ¢ R is a bounded interval, then the function

1 ifxel,
p1(x) = {

0 otherwise,
is called an elementary step function.

Exercise 5.2.12: Let I be an arbitrary bounded interval (you should consider all types of intervals: closed,
open, half-open) and a < b, then using only the definition of the integral show that the elementary step
function @i is integrable on [a, b], and find the integral in terms of a, b, and the endpoints of I.

A function f is called a step function if it can be written as

fx) =) arpi(x)
k=1

for some real numbers a1, as, ..., a, and some bounded intervals I, I», ..., I,.
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Exercise 5.2.13: Using Exercise 5.2.12, show that a step function (see above) is integrable on every interval
[a,b]. Furthermore, find the integral in terms of a, b, the endpoints of Iy and the a.

Exercise 5.2.14: Let f: [a,b] — R be a function.

a) Show that if f is increasing, then it is Riemann integrable. Hint: Use a uniform partition; each subinterval
of same length.

b) Use part a) to show that if f is decreasing, then it is Riemann integrable.

c) Suppose* h = f — g where f and g are increasing functions on [a, b]. Show that h is Riemann integrable.

Exercise 5.2.15 (Challenging): Suppose f € R ([a,b]), then the function that takes x to | f (x)| is also
Riemann integrable on [a, b]. Then show the same inequality as Exercise 5.2.10.

Exercise 5.2.16: Suppose f: [a,b] — Rand g: [a,b] — R are bounded.

a) Showfa(f+g)$faf+fugandfi(wag)Zbewafibg.

b) Find example f and g where the inequality is strict. Hint: f and g should not be Riemann integrable.

Exercise 5.2.17: Suppose f: [a,b] — R is continuous and g: R — R is Lipschitz continuous. Define

b
h(x) ::/ gt —x)f(t)dt.

Prove that h is Lipschitz continuous.

Exercise 5.2.18: Prove a version of the so-called Riemann—Lebesgue Lemma (one of several so named):
Suppose f: [a,b] — R is continuous and define the sequence {x,}

b
Xp ::/ f(t)sin(nt) dt.

Prove that lim x, = 0.

n—00

*Such an 4 is said to be of bounded variation.
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5.3 Fundamental theorem of calculus

Note: 1.5 lectures

In this section we discuss and prove the fundamental theorem of calculus. The entirety
of integral calculus is built upon this theorem, ergo the name. The theorem relates the
seemingly unrelated concepts of integral and derivative. It tells us how to compute the
antiderivative of a function using the integral and vice versa.

5.3.1 First form of the theorem

Theorem 5.3.1. Let F: [a,b] — R be a continuous function, differentiable on (a,b). Let
f € R([a,b]) be such that f(x) = F'(x) for x € (a, b). Then

b
/ f =F(b) - F(a).

It is not hard to generalize the theorem to allow a finite number of points in [a, b] where
F is not differentiable, as long as it is continuous. This generalization is left as an exercise.

Proof. Let P = {x¢, x1,...,x,} be a partition of [a, b]. For each interval [x;_1, x;], use the
mean value theorem to find a ¢; € (x;_1, x;) such that

flei)Ax; = F'(ci)(x; — xi—1) = F(x;) — F(xi-1).

See Figure 5.5, and notice that the area of the ith rectangle is F(x;,+1) — F(x;—2) for all three
rectangles. The idea is that by taking smaller and smaller subintervals we prove that this
area is the integral of f.

f(ci-1) '__/ y=f)=F® el fleiv1)Axip

fle)4==5-=-=----~- \ = F(xis1) = F(xi)
area = f(ci_1)Axi_1 area = f(c;)Ax; \K
f(ci+1) |

= F(xj-1) — F(xi-2) = F(x;) — F(xi-1)" 2
Xii2  Cicl Xio1 ci X Cit1 Xisl
Axi-1 Ax; Axi

Figure 5.5: Mean value theorem on subintervals of a partition approximating the area under
the curve.
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Using the notation from the definition of the integral, m; < f(c;) < M;, and multiplying
by Ax; gets
miAx; < F(x;) — F(x;-1) < M;Ax;.

Wesumoveri=1,2,...,n to get

n n n
miAx; < (F(x,') - F(xi_l)) < Z M;Ax;.
i=1 i=1 i=1

In the middle sum, all the terms except the first and last cancel and we end up with
F(xn) — F(x0) = F(b) — F(a). The sums on the left and on the right are the lower and the
upper sum respectively. So

L(P, f) < E(b) - F(a) < U(P, f).

We take the supremum of L(P, f) over all partitions P and the left inequality yields

b
/ f < F(b) - F(a).

Similarly, taking the infimum of U(P, f) over all partitions P yields

7
F(b) - F(a) < / f.

As f is Riemann integrable, we have

[r=[rrorrms [r=['s

The inequalities must be equalities and we are done. |

The theorem is used to compute integrals. Suppose we know that the function f(x) is a

derivative of some other function F(x), then we can find an explicit expression for fa f.

1
/ x2dx,
0

we notice x? is the derivative of %3 The fundamental theorem says

1 3 3
¥ 0 1
2
dy=— — > =2
/Ox T3 7373

Example 5.3.2: To compute
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5.3.2 Second form of the theorem

The second form of the fundamental theorem gives us a way to solve the differential
equation F’(x) = f(x), where f is a known function and we are trying to find an F that
satisfies the equation.

Theorem 5.3.3. Let f: [a,b] — R be a Riemann integrable function. Define

F(x) := /axf

First, F is continuous on [a, b]. Second, if f is continuous at ¢ € [a, b], then F is differentiable at

cand F'(c) = f(c).

Proof. As f is bounded, there is an M > 0 such that | f (x)| < M for all x € [a,b]. Suppose

x,y € [a,b] with x > y. Then
x y x
[
a a Y

By symmetry, the same also holds if x < y. So F is Lipschitz continuous and hence
continuous.

Now suppose f is continuous at c. Let € > 0 be given. Let 6 > 0 be such that for
x € [a,b], |x —c| < 0 implies |f(x) - f(c)| < €. In particular, for such x, we have

flc)—€e < f(x) < f(c) +e.

[F(x) - F(y)| = < Mlx—y).

Thus if x > ¢, then

X
(f(c)—€)(x—c) < / f<(fle)+e)(x—o).
c
When ¢ > x, then the inequalities are reversed. Therefore, assuming x # ¢, we get

f(c)—esﬁ<f(c)+e.

X—c
As X Cc X
F@)-Fe) _ L f-Lf [ f
x—-c X—c S x-c’
we have
w—f@) <e.

The result follows. It is left to the reader to see why is it OK that we just have a non-strict
inequality. O
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Of course, if f is continuous on [4, b], then it is automatically Riemann integrable, F is
differentiable on all of [a, b] and F'(x) = f(x) for all x € [a, b].

Remark 5.3.4. The second form of the fundamental theorem of calculus still holds if we let

d € [a,b] and define
F(x) = / f.
d

That is, we can use any point of [a, b] as our base point. The proof is left as an exercise.

Let us look at what a simple discontinuity can do. Take f(x) := -1 if x < 0, and
f(x):=1if x > 0. Let F(x) = fox f. Itis not difficult to see that F(x) = |x|. Notice that f is
discontinuous at 0 and F is not differentiable at 0. However, the converse in the theorem
does not hold. Let g(x) := 0if x # 0, and g(0) := 1. Letting G(x) := fox g, we find that
G(x) =0 for all x. So g is discontinuous at 0, but G’(0) exists and is equal to 0.

A common misunderstanding of the integral for calculus students is to think of integrals
whose solution cannot be given in closed-form as somehow deficient. This is not the case.
Most integrals we write down are not computable in closed-form. Even some integrals
that we consider in closed-form are not really such. We define the natural logarithm as the
antiderivative of 1/x such that In1 = 0:

X
lnx::/ 1chs.
1 S

How does a computer find the value of In x? One way to do it is to numerically approximate
this integral. Morally, we did not really “simplify” /1x 1 ds by writing down Inx. We
simply gave the integral a name. If we require numerical answers, it is possible we end up
doing the calculation by approximating an integral anyway. In the next section, we even
define the exponential using the logarithm, which we define in terms of the integral.

Another common function defined by an integral that cannot be evaluated symbolically
in terms of elementary functions is the erf function, defined as

2 Y
erf(x) = ﬁfo e™* ds.

This function comes up often in applied mathematics. It is simply the antiderivative of
(2/vm) e~ that is zero at zero. The second form of the fundamental theorem tells us that
we can write the function as an integral. If we wish to compute any particular value, we
numerically approximate the integral.

5.3.3 Change of variables

A theorem often used in calculus to solve integrals is the change of variables theorem, you
may have called it u-substitution. Let us prove it now. Recall a function is continuously
differentiable if it is differentiable and the derivative is continuous.
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Theorem 5.3.5 (Change of variables). Let g: [a,b] — R be a continuously differentiable
function, let f: [c,d] — R be continuous, and suppose g([a,b]) € [c,d]. Then

g(b)

b
[ slsngea= [ s

g(a)

Proof. As g, ¢’, and f are continuous, f(g(x)) ¢’(x) is a continuous function of [a,b],
therefore it is Riemann integrable. Similarly, f is integrable on every subinterval of [c, d].
Define F: [c,d] — R by

y
F(y) = f(s)ds.
8(a)
By the second form of the fundamental theorem of calculus (see Remark 5.3.4 and
Exercise 5.3.4), F is a differentiable function and F’(y) = f(y). Apply the chain rule,

(Fog)'(x) =F(g(x))8'(x) = f(§(x)) ' (x).
Note that F ( g(a)) = 0 and use the first form of the fundamental theorem to obtain

g(b)

f(s)ds = F(g(b)) = F(g(b)) - F(g(a))

g(a)

b , b
:/ (Fog)(x)dx :/ fg(x))g’(x)dx. O

The change of variables theorem is often used to solve integrals by changing them to
integrals that we know or that we can solve using the fundamental theorem of calculus.

Example 5.3.6: The derivative of sin(x) is cos(x). Using g(x) := x2, we solve
v n n . o
/ x cos(x?) dx = / cos(s) ds = 1/ cos(s)ds = sin(r0)  sin(0) =0.
0 0o 2 2 Jo 2

However, beware that we must satisfy the hypotheses of the theorem. The following
example demonstrates why we should not just move symbols around mindlessly. We must
be careful that those symbols really make sense.

1
/ In | x| ir.
-1 X

It may be tempting to take g(x) := In|x|. Compute ¢’(x) = /x and try to write

g(1) 0
/ sds = / sds =0.
g(=1) 0

This “solution” is incorrect, and it does not say that we can solve the given integral. First
Injx|
X

Example 5.3.7: Consider

is not continuous on [—1, 1]. It is not defined at 0, and cannot be made
continuous by defining a value at 0. Second, % is not even Riemann integrable on [-1, 1]
(it is unbounded). The integral we wrote down simply does not make sense. Finally, g is

not continuous on [-1, 1], let alone continuously differentiable.

problem is that
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5.3.4 Exercises

X

d
Exercise 5.3.1: Compute %( /

—X

e’ ds).

x2
Exercise 5.3.2: Compute %( / sin(s?) ds).
0

Exercise 5.3.3: Suppose F: [a,b] — R is continuous and differentiable on [a,b] \ S, where S is a finite set.
Suppose there exists an f € R ([a, b)) such that f(x) = F'(x) for x € [a, b]\S. Show that fub f = F(b)-F(a).

Exercise 5.3.4: Let f: [a,b] — R be a continuous function. Let c € [a, b] be arbitrary. Define

F(x) = /fo.

Prove that F is differentiable and that F'(x) = f(x) for all x € [a, b].

Exercise 5.3.5: Prove integration by parts. That is, suppose F and G are continuously differentiable
functions on [a,b]. Then prove

b b
/ F(x)G'(x)dx = F(b)G(b) — F(a)G(a) — / F'(x)G(x) dx.

Exercise 5.3.6: Suppose F and G are continuously* differentiable functions defined on [a, b] such that
F'(x) = G'(x) for all x € [a,b]. Using the fundamental theorem of calculus, show that F and G differ by a
constant. That is, show that there exists a C € R such that F(x) — G(x) = C.

The next exercise shows how we can use the integral to “smooth out” a non-differentiable
function.

Exercise 5.3.7: Let f: [a,b] — R be a continuous function. Let € > 0 be a constant so that a + € < b — €.

For x € [a +€,b — €], define
1 X+€
g(x) -=£/x€ f-

a) Show that g is differentiable and find the derivative.

b) Let f be differentiable and fix x € (a, b) (let € be small enough). What happens to g’(x) as € gets smaller?
c) Find g for f(x) = |x|, € = 1 (you can assume [a, b] is large enough).
Exercise 5.3.8: Suppose f: [a,b] — R is continuous and /axf = fxbffor all x € [a,b]. Show that
f(x)=0forall x € [a,b].

Exercise 5.3.9: Suppose f: [a,b] — R is continuous and fax f =0 for all rational x in [a, b]. Show that
f(x)=0forall x € [a,b].

Exercise 5.3.10: A function f is an odd function if f(x) = —f(—x), and f is an even function if
f(x) = f(=x). Let a > 0. Assume f is continuous. Prove:

a) If f is odd, then [* f = 0.
b) Iffiseven,then/_zf:Z/OQf.

*Compare this hypothesis to Exercise 4.2.8.
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Exercise 5.3.11:
a) Show that f(x) := sin(1/x) is integrable on every interval (you can define f(0) to be anything).

b) Compute /_ 11 sin(1/x) dx (mind the discontinuity).

Exercise 5.3.12 (uses §3.6):

a) Suppose f: [a,b] — R is increasing, by Proposition 5.2.11, f is Riemann integrable. Suppose f has a
discontinuity at ¢ € (a,b), show that F(x) := fax f is not differentiable at c.

b) In Exercise 3.6.11, you constructed an increasing function f: [0,1] — R that is discontinuous at every
x € [0,1]N Q. Use this f to construct a function F(x) that is continuous on [0, 1], but not differentiable
at every x € [0,1] N Q.

Exercise 5.3.13: For any { € N, show that the following limit exists and find what it is:

n

kﬁ
lim —_—
n—oo nl+l
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5.4 The logarithm and the exponential

Note: 1 lecture (optional, requires the optional sections §3.5, §3.6, §4.4)

We now have the tools required to properly define the exponential and the logarithm
that you know from calculus so well. We start with exponentiation. If 7 is a positive integer,
it is obvious to define

n times

It makes sense to define x° := 1. For negative integers, let x™" := 1/x". If x > 0, define x/"
as the unique positive nth root. Finally, for a rational number #/m (in lowest terms), define

X"/ = (xl/m)n.
It is not difficult to show we get the same number no matter what representation of #/m we

use, so we do not need to use lowest terms.

V2 . . .
However, what do we mean by V2" ? Or xV in general? In particular, what is e* for
all x? And how do we solve y = e* for x? This section answers these questions and more.

5.4.1 The logarithm

It is convenient to define the logarithm first. Let us show that a unique function with the
right properties exists, and only then will we call it the logarithm.

Proposition 5.4.1. There exists a unique function L: (0, o) — R such that
(i) L(1) =0.
(ii) L is differentiable and L'(x) = 1/x.

(iii) L is strictly increasing, bijective, and

lim L(x) = —oo, and lim L(x) = oo.

x—0 X—00

(iv) L(xy) = L(x) + L(y) forall x,y € (0, ).
(v) If q is a rational number and x > 0, then L(x7) = gL(x).

Proof. To prove existence, we define a candidate and show it satisfies all the properties. Let

L(x) ::/1 %dt.

Obviously, (i) holds. Property (ii) holds via the second form of the fundamental theorem
of calculus (Theorem 5.3.3).
To prove property (iv), we change variables u = yt to obtain

L(x)—‘/xldt—/xyldu—/xyldu—/yldu—L(x ) —L(y)
B 1 t B y u B 1 u 1 U B Y Y-
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Let us prove (iii). Property (ii) together with the fact that L’(x) = 1/x > 0 for x > 0,
implies that L is strictly increasing and hence one-to-one. Let us show L is onto. As 1/t > 1/2
when't € [1,2],

21
L(2) = / —dt > 1/2.
1t
By induction, (iv) implies that for n € N,
L") =LQ2)+L(2)+---+L(2) =nL(2).

Given y > 0, by the Archimedean property of the real numbers (notice L(2) > 0), there is
an n € N such that L(2") > y. The intermediate value theorem gives an x; € (1,2") such
that L(x1) = y. Thus (0, o0) is in the image of L. As L is increasing, L(x) > y for all x > 2",
and so

xh_r)r(}o L(x) = oo.

Next 0 = L(¥/x) = L(x) + L(1/x), and so L(x) = —L(1/x). Using x = 27", we obtain as above
that L achieves all negative numbers. And

lim L(x) = lim —L(/x) = lim —L(x) = —co.
x—0 x—0 X—00

In the limits, note that only x > 0 are in the domain of L.
Let us prove (v). Fix x > 0. As above, (iv) implies L(x") = nL(x) for all n € N. We
already found that L(x) = —L(1/x), so L(x™") = —L(x") = —nL(x). Then for m € N

L(x) = L((xl/m)’”) = mL(x}/m).

Putting everything together for n € Z and m € N, we have L(x"/™) = nL(x/"™) = (n/m)L(x).
Uniqueness follows using properties (i) and (ii). Via the first form of the fundamental
theorem of calculus (Theorem 5.3.1),

L(x) = /1 %dt

is the unique function such that L(1) = 0 and L’(x) = /x. O

Having proved that there is a unique function with these properties, we simply define
the logarithm or sometimes called the natural logarithm:

In(x) := L(x).

See Figure 5.6. Mathematicians usually write log(x) instead of In(x), which is more familiar
to calculus students. For all practical purposes, there is only one logarithm: the natural
logarithm. See Exercise 5.4.2.
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Figure 5.6: Plot of In(x) together with 1/x, showing the value In(4).

5.4.2 The exponential

Just as with the logarithm we define the exponential via a list of properties.
Proposition 5.4.2. There exists a unique function E: R — (0, co) such that
(i) E(0) =1.
(ii) E is differentiable and E’(x) = E(x).
(1ii) E is strictly increasing, bijective, and

lim E(x)=0, and lim E(x) = co.

(iv) E(x +y) = E(x)E(y) forall x,y € R.
(v) If g € Q, then E(qx) = E(x)".

Proof. Again, we prove existence of such a function by defining a candidate and proving
that it satisfies all the properties. The L = In defined above is invertible. Let E be the
inverse function of L. Property (i) is immediate.

Property (ii) follows via the inverse function theorem, in particular via Lemma 4.4.1:
L satisfies all the hypotheses of the lemma, and hence

E'(x) = ——— = E(x).
L’(E(x))

Let us look at property (iii). The function E is strictly increasing since E’(x) = E(x) > 0.
As E is the inverse of L, it must also be bijective. To find the limits, we use that E is strictly
increasing and onto (0, ). For every M > 0, there is an xo such that E(xp) = M and
E(x) > M for all x > xg. Similarly, for every e > 0, there is an x( such that E(x() = € and
E(x) < € for all x < xg. Therefore,

lim E(x) =0, and lim E(x) = oo.

n——0oo n—oo



210 CHAPTER 5. THE RIEMANN INTEGRAL

To prove property (iv), we use the corresponding property for the logarithm. Take
x,y € R. As L is bijective, find a and b such that x = L(a) and y = L(b). Then

E(x +vy) = E(L(a) + L(b)) = E(L(ab)) = ab = E(x)E(y).

Property (v) also follows from the corresponding property of L. Given x € R, let a be
such that x = L(a) and

E(gx) = E(qL(a)) = E(L(a%)) = a7 = E(x)".

Uniqueness follows from (i) and (ii). Let E and F be two functions satisfying (i) and (ii).

%(F(X)E(—x)) — F/(x)E(=x) = E'(=x)F(x) = F(x)E(=x) — E(=x)F(x) = 0.

Therefore, by Proposition 4.2.6, F(x)E(—x) = F(0)E(—0) = 1 for all x € R. Next, 1 = E(0) =
E(x — x) = E(x)E(=x). Then

0=1-1=F(x)E(-x) — E(x)E(-x) = (F(x) — E(x))E(-x).
Finally, E(—x) # 0* for all x € R. So F(x) — E(x) = 0 for all x, and we are done. O

Having proved E is unique, we define the exponential function (see Figure 5.7) as

exp(x) = E(x).

Figure 5.7: Plot of e*, together with a slope field giving slope y at every point (x,y). The

equation L e* = ¢¥ means that y = e* follows these slopes.
q dx y P

*E is a function into (0, o) after all. However, E(—x) # 0 also follows from E(x)E(—x) = 1. Therefore, we
can prove uniqueness of E given (i) and (ii), even for functions E: R — R.
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If y € Qand x > 0, then
x¥ = exp(In(x¥)) = exp(y In(x)).

We can now make sense of exponentiation x¥ for arbitrary y € R;if x > 0 and y is irrational,
define
x¥ = exp(y In(x)).
As exp is continuous, then x¥ is a continuous function of y. Therefore, we would obtain
the same result had we taken a sequence of rational numbers {y,} _, approaching y and
defined x¥ = lim,, 00 x¥n.
Define the number ¢, called Euler’s number or the base of the natural logarithm, as

e :=exp(l).
Let us justify the notation e* for exp(x):
e* = exp(xIn(e)) = exp(x).
The properties of the logarithm and the exponential extend to irrational powers. The

proof is immediate.
Proposition 5.4.3. Let x,y € R.

(i) exp(xy) = (exp(x))’.

(i) If x > 0, then In(x¥) = y In(x).

Remark 5.4.4. There are other equivalent ways to define the exponential and the logarithm.
A common way is to define E as the solution to the differential equation E’(x) = E(x),
E(0) = 1. See Example 6.3.3, for a sketch of that approach. Yet another approach is to
define the exponential function by power series, see Example 6.2.14.

Remark 5.4.5. We proved the uniqueness of the functions L and E from just the properties
L(1) =0, L’(x) = 1/x and the equivalent condition for the exponential E’(x) = E(x), E(0) = 1.
Existence also follows from just these properties. Alternatively, uniqueness also follows
from the laws of exponents, see the exercises.

5.4.3 Exercises

Exercise 5.4.1: Given a real number y and b > 0, define f: (0,00) = Rand g: R — Ras f(x) := x¥ and
g(x) := b*. Show that f and g are differentiable and find their derivative.

Exercise 5.4.2: Letb > 0, b # 1 be given.

a) Show that for every y > 0, there exists a unique number x such that y = b*. Define the logarithm base
b,log,: (0,00) = R, by log, (y) = x.

b) Show that log,(x) = %
j log. (x)
c) Prove that if ¢ > 0, ¢ # 1, then log,(x) = -

d) Prove log,(xy) = log,(x) +log,(y), and log,(x¥) = y log, (x).
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Exercise 5.4.3 (requires §4.3): Use Taylor’s theorem to study the remainder term and show that for all

xeR
(o]
-
n!
n=0

Hint: Do not differentiate the series term by term (unless you would prove that it works).

Exercise 5.4.4: Use the geometric sum formula to show (for t # —1)

1 (_1)ﬂ+1tn+1

T—t+t2— 4 (=)'t = -~
1) 1+t 1+t

Using this fact show

n+l

In(1+x) = Z = 1)
forall x € (—=1,1] (note that x = 1 is included). Finally, find the limit of the alternating harmonic series

& _11’l+1
S

+

NI —
Q| =
I

n
n=1

Exercise 5.4.5: Show ;
X:hm(1+f).
n—oo n

Hint: Take the logarithm.

Note: The expression (1 + %)n arises in compound interest calculations. It is the amount of money in a bank
account after 1 year if 1 dollar was deposited initially at interest x and the interest was compounded n times
during the year. The exponential e* is the result of continuous compounding.

Exercise 5.4.6:

a) Prove that for n € N,

b) Prove that the limit

exists. This constant is known as the Euler-Mascheroni constant®. It is not known if this constant is
rational or not. It is approximately y = 0.5772.

Exercise 5.4.7: Show

. In(x)
lim

x—oo X

=0.

Exercise 5.4.8: Show that e* is convex, in other words, show that ifa < x < b, then e* < e"2=x + ¢b2=0,

*Named for the Swiss mathematician Leonhard Paul Euler (1707-1783) and the Italian mathematician
Lorenzo Mascheroni (1750-1800).


https://en.wikipedia.org/wiki/Leonhard_Euler
https://en.wikipedia.org/wiki/Lorenzo_Mascheroni

5.4. THE LOGARITHM AND THE EXPONENTIAL

Exercise 5.4.9: Using the logarithm find
lim n'/",

n—o0

Exercise 5.4.10: Show that E(x) = e* is the unique continuous function such that E(x + y) = E(x)E(y)
and E(1) = e. Similarly, prove that L(x) = In(x) is the unique continuous function defined on positive x

such that L(xy) = L(x) + L(y) and L(e) = 1.

Exercise 5.4.11 (requires §4.3): Since (e*) = e*, it is easy to see that e* is infinitely differentiable (has

derivatives of all orders). Define the function f: R — R.

_ e V* ifx >0,
fx) = {0 ifx < 0.

a) Prove that for every m € N,

b) Prove that f is infinitely differentiable.
c) Compute the Taylor series for f at the origin, that is,

Show that it converges, but show that it does not converge to f(x) for any given x > 0.
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5.5 Improper integrals

Note: 2-3 lectures (optional section, can safely be skipped, requires the optional §3.5)

Often it is necessary to integrate over the entire real line, or an unbounded interval of
the form [a, o0) or (—co, b]. We may also wish to integrate unbounded functions defined
on an open bounded interval (a, b). For such intervals or functions, the Riemann integral
is not defined, but we will write down the integral anyway in the spirit of Lemma 5.2.8.
These integrals are called improper integrals and are limits of integrals rather than integrals
themselves.

Definition 5.5.1. Suppose f: [4,b) — R is a function (not necessarily bounded) that is
Riemann integrable on [4, c] for all ¢ < b. We define

b c
/ f = lim / f
a c=b= Jy
if the limit exists.

Suppose f: [a,0) — R is a function such that f is Riemann integrable on [a, c] for all
¢ < co. We define - .
/ f = lim f
a €7 Ja
if the limit exists.
If the limit exists, we say the improper integral converges. If the limit does not exist, we
say the improper integral diverges.

We similarly define improper integrals for the left-hand endpoint, we leave this to the
reader.

For a finite endpoint b, if f is bounded, then Lemma 5.2.8 says that we defined nothing
new. What is new is that we can apply this definition to unbounded functions. The
following set of examples is so useful that we state it as a proposition.

Proposition 5.5.2 (p-test for integrals). The improper integral

*1
/ — dx
1 xP

converges to plj if p > 1and diverges if 0 < p < 1.
The improper integral
1
1
/ —dx
o XxF

converges to ﬁ if 0 < p < 1anddivergesif p > 1.

Proof. The proof follows by application of the fundamental theorem of calculus. Let us do
the proof for p > 1 for the infinite right endpoint and leave the rest to the reader. Hint:
You should handle p = 1 separately.
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Suppose p > 1. Then using the fundamental theorem,

1 ’ pr+l 17p -1 1
/ —dx = / xPdx = - = + .
1 xP 1 -p+1 —-p+1 (p-1pr1 p-1
Asp >1,thenp —1 > 0. Take the limit as b — oo to obtain that bpl—_l goes to 0. The result
follows. =

We state the following proposition on “tails” for just one type of improper integral,
though the proof is straightforward and the same for other types of improper integrals.

Proposition 5.5.3. Let f: [a,00) — R be a function that is Riemann integrable on [a, b] for all
b > a. For every b > a, the integral fbm f converges if and only if [Z ~ f converges, in which case

[r=fr ]
[r-fr ]

Taking the limit ¢ — oo finishes the proof. O

Proof. Let ¢ > b. Then

Nonnegative functions are easier to work with as the following proposition demon-
strates. The exercises will show that this proposition holds only for nonnegative functions.
Analogues of this proposition exist for all the other types of improper limits and are left to
the student.

Proposition 5.5.4. Suppose f: [a, ) — R is nonnegative (f(x) > 0 for all x) and f is Riemann

integrable on [a,b] for all b > a.
(o] X
/ f:sup{/f:xZa}.
a a

(i)
(if) Suppose {x,};,_, is a sequence with limy e x, = 00. Then fa a f converges if and only if
limy e [, " f exists, in which case

[ st [

In the first item we allow for the value of co in the supremum indicating that the integral
diverges to infinity.
Proof. We start with the first item. As f is nonnegative, fa T fis increasing as a function of

x. If the supremum is infinite, then for every M € R we find N such that /a N f =M. As
/a “fis increasing, /a "f>Mforallx > N. So fa ~ f diverges to infinity.
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Next suppose the supremum is finite, say A := sup { fa * fix> a}. For every € > 0, we

find an N such that A — LNf <e€. As /axf is increasing, then A —/axf <eforallx > N
and hence /a * f converges to A.

Let us look at the second item. If fa * f converges, then every sequence {xn})_, going
to infinity works. The trick is proving the other direction. Suppose {x,})_; is such that

lim;, 00 x;; = 00 and
Xn

lim f=A

a
converges. Given € > 0, pick N such that for all n > N, we have A — € < fx" f<A+e.
X . . . . a
Because fa f is increasing as a function of x, we have that for all x > xy

A—e</afos/axf.

As {xn};"=1 goes to oo, then for any given x, there is an x,, such that m > N and x < x,,.

Then
X Xm
/ fS/ f<A+e.
a a

In particular, for all x > xx, we have ‘faxf - A‘ <e€. O

Proposition 5.5.5 (Comparison test for improper integrals). Let f: [a,00) — R and
g: [a,00) — R be functions that are Riemann integrable on [a,b] for all b > a. Suppose
that for all x > a,

[fG] < g0
@) If fa . g converges, then fa OO f converges, and in this case ‘ fa - f ‘ < fa ” g
(1) If L  f diverges, then /a * ¢ diverges.

Proof. We start with the first item. For every b and c, such that a < b < ¢, we have
—g(x) < f(x) < g(x), and so
Cc Cc C
[esfrefs
b b b
In other words, ) AC f ‘ < AC g.
Let € > 0 be given. Because of Proposition 5.5.3,

00 b 00
L[] ¢
a a b

As fa ’ g goes to /a ™ ¢ as b goes to infinity, fboo g goes to 0 as b goes to infinity. Choose B

such that .
/ g<e.
B
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As g is nonnegative, if B < b < ¢, then fbc g < easwell. Let {x,}_, be a sequence going
to infinity. Let M be such that x,, > B for all n > M. Take n,m > M, with x,, < x,,

[ [ /f S/x;mg“'

Therefore, the sequence { fu E f }Zozl is Cauchy and hence converges.
We need to show that the limit is unique. Suppose {x,} ", is a sequence converging

to infinity such that { fa o f }Zzl converges to L1, and {y,}_; is a sequence converging
to infinity such that { [1 o f }nzl converges to L. Then there must be some n such that
|fax”f —Li| < eand |fay”f — Lo| < €. We can also suppose x,, > B and y,, > B. Then

am [ [ /x”ynf

As € > 0 was arbitrary, L1 = L, and hence fa * f converges. Above we have shown that

|L1 — Lo < + + <e+ +€ < 3e.

fa ‘ f | < fa ‘ g for all ¢ > a. By taking the limit ¢ — oo, the first item is proved.
The second item is simply a contrapositive of the first item. O

Example 5.5.6: The improper integral
[o I 2
/ sm(x3)(x +2) »
0 x> +1

converges.
Proof: Observe we simply need to show that the integral converges when going from 1
to infinity. For x > 1 we obtain

sin(x?)(x + 2) X+2  x+2  x+2x
< < <
x3+1 x3+1 x3

—dx =3 — dx =3.
Joat= ) e

So using the comparison test and the tail test, the original integral converges.

3
< —.
x3 x?

Then

Example 5.5.7: You should be careful when doing formal manipulations with improper
integrals. The integral
® 2
/ dx
2 x2 -1

converges via the comparison test using 1/x? again. However, if you succumb to the
temptation to write

x2-1 x-1 x+1
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and try to integrate each part separately, you will not succeed. It is not true that you can
split the improper integral in two; you cannot split the limit.

) b
/ 5 dx = lim 5 dx
2 x-—1 b—o0 2 X°— 1

b b
) 1 1
=gim ([ e [
1 1
¢/2 x_ldx—/2 x+1dx.

The last line in the computation does not even make sense. Both of the integrals diverge to
infinity, since we can apply the comparison test appropriately with 1/x. We get co — co.

Now suppose we need to take limits at both endpoints.

Definition 5.5.8. Suppose f: (a,b) — R is a function that is Riemann integrable on [c, d]
for all ¢, d such thata < ¢ < d < b, then we define

b d
/f::lim lim/f
a c—at d—b- c
if the limits exist.

Suppose f: R — R is a function such that f is Riemann integrable on all bounded
intervals [a, b]. Then we define

00 d
= lim lim
[m f c——00 d—>ooA/c f
if the limits exist.

We similarly define improper integrals with one infinite and one finite improper
endpoint, we leave this to the reader.

One ought to always be careful about double limits. The definition given above says
that we first take the limit as d goes to b or oo for a fixed c, and then we take the limit in c.
We will have to prove that in this case it does not matter which limit we compute first.

Example 5.5.9:

00 b
/ L dx = lim lim ! dx = lim lim (arctan(b) — arctan(a)) = 7.

o 1+ x2 a—-c0 pooo J; 1+ x2 a——00 h—co

In the definition, the order of the limits can always be switched if they exist. Let us
state and prove this fact only for the limits at infinity.
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Proposition 5.5.10. Suppose f: R — R is integrable on every bounded interval [a, b]. Then

b b
lim lim / f  converges if and only if lim lim / f  converges,
a a

a——00 h—00 b—oo0 a——00

in which case the two expressions are equal. If either of the expressions converges, then the improper

integral converges and
a (o)
lim / f= / f.
a—oo J_, oo

Proof. Without loss of generality, assume a < 0 and b > 0. Suppose the first expression
converges. Then

o [ =g g ([ 1) [ 1) o )
:l’lg((“g@m[z f)+/o f)‘JEE‘MEwa(/ f+/ 7):

Similar computation shows the other direction. Therefore, if either expression converges,
then the improper integral converges and

[t n r=(on f )i )
0 a
- (s /1) (s 1) = [+ [ 1) =t [

O

Example 5.5.11: On the other hand, you must be careful to take the limits independently
before you know convergence. Let f(x) = 57 for x # 0and f(0) = 0. If 2 <O and b > 0,

hen
t /abf:/aof+/0bf:a+b.

For every fixed a < 0, the limit as b — oo is infinite. So even the first limit does not exist,
and the improper integral f_ 0; f does not converge. On the other hand, if 2 > 0, then

[:f:(—a)+a:O
im [ =0

Therefore,
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Example 5.5.12: An example to keep in mind for improper integrals is the so-called sinc
function®. This function comes up quite often in both pure and applied mathematics. Define

sin(x)

sinc(x) = {1 x

ifx#0,
if x =0.

21 4m

Figure 5.8: The sinc function.

It is not difficult to show that the sinc function is continuous at zero, but that is not
important right now. What is important is that

/ sinc(x)dx = 7, while / |sinc(x)| dx = oo.
—00 —00

The integral of the sinc function is a continuous analogue of the alternating harmonic
series )., (-1)"/n, while the absolute value is like the regular harmonic series }; ; 1/x.
In particular, the fact that the integral converges must be done directly rather than using
comparison test.

We will not prove the first statement exactly. Let us simply prove that the integral of the
sin(—x) — sin(x)

sinc function converges, but we will not worry about the exact limit. Because — =

it is enough to show that
* sin(x
/ () 4.
2m X

converges. We also avoid x = 0 this way to make our life simpler.
For every n € N, we have that for x € [n2n, n(2n + 1)],

sin(x) < sin(x) < sin(x)
n2n+1) -~ x T m2n

7

*Shortened from Latin: sinus cardinalis
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as sin(x) > 0. For x € [n(2n + 1), n(2n + 2)],

sin(x) sin(x) sin(x)
nn+1) - x T n@n+2)

as sin(x) < 0.
Via the fundamental theorem of calculus,

n(2n+1) . n(2n+1) . n(2n+1) .
2 :/ sin(x) de/ sin(x) dXS/ sin(x) dxzi.

n(2n + 1) on n(2n +1) on x on Ti2n Tn
Similarly,
_ n(2n+2) . _
2 < / sin(x) dy < 1 .
7'((27’1 + 1) n(2n+1) X 7'((7’1 + 1)
Adding the two together we find
2 -2 /ZR(”“) sin(x) 1 -1 1
= + < dx < — + = .
n2n+1) 7nR2n+1) omn X mn mn+1) nnn+1)

See Figure 5.9.

sin(x) sin(x)

) n(2n+1) ) n(2n+2)

n(2n + 2)I

.. sin(x) _ _ sin(x)
X n(2n+1) n2n

Figure 5.9: Bound of fzf:q(nﬂ) %(x) dx using the shaded integral (signed area 77 + —= +1))

For k € N,

k-1

2k sm(x) 2n(n+1) sm(x) - 1
’ Z o dx < Z n(n +1)
n=1

Tt

1

We find the partial sums of a series with positive terms. The series convergesas )., 4 e CES))

is a convergent series. Thus as a sequence,

, 2k sin(x)
lim

N s
k—oo Jon X o nin(n +1)
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Let M > 2 be arbitrary, and let k € N be the largest integer such that 2kt < M. For
x € [2km, M], we have 7=+ < S8 < L 314 so

2kn =~ x = 2km’
M .
/ sin(x) il < M - 2kmn < 1
2k7 X 2kmt k

As k is the largest k such that 2k < M, then as M € R goes to infinity, so does k € N.

Then y o y
. n . .
/ sin(x) Iy = / sin(x) x4 / sin(x) ir.
21 X 21 X 2kmt X

As M goes to infinity, the first term on the right-hand side goes to L, and the second term
on the right-hand side goes to zero. Hence

/ sin(x) gy = L
21 X

The double-sided integral of sinc also exists as noted above. We leave the other
statement—that the integral of the absolute value of the sinc function diverges—as an
exercise.

5.5.1 Integral test for series

The fundamental theorem of calculus can be used in proving a series is summable and to
estimate its sum.

Proposition 5.5.13 (Integral test). Suppose f: [k, c0) — R is a decreasing nonnegative function
where k € Z. Then

Z f(n) converges if and only if / f  converges.
n=k k

In this case . - N
| fs IWOE s+ [,

See Figure 5.10, for an illustration with k = 1. By Proposition 5.2.11, f is integrable on
every interval [k, b] for all b > k, so the statement of the theorem makes sense without
additional hypotheses of integrability.

Proof. Let ¢{,m € Z be such that m > ¢ > k. Because f is decreasing, we have fnn+1 f<
f(n) < fn n_l f. Therefore,

m—1

m m=1 an+l m-1 m=1 n
/ f:;/n EDWUEICEDY [ reros [T 69

n={+1
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o 1 2 3 4 5 6 7 8 9 10

Figure 5.10: The area under the curve, floo f, is bounded below by the area of the shaded
rectangles, f(2) + f(3) + f(4) + - - -, and bounded above by the area entire rectangles, f(1) +

@)+ @)+

Suppose first that fkoo f converges and let € > 0 be given. As before, since f is positive,

then there exists an L € N such thatif £ > L, then fem f <¢/2for all m > ¢. The function f
must decrease to zero (why?), so make L large enough so that for { > L, we have f({) < ¢/2.
Thus, for m > ¢ > L, we have via (5.3),

Zﬂmsﬂﬁﬂ/f<%+%=a
n={( ¢

The series is therefore Cauchy and thus converges. The estimate in the proposition is
obtained by letting m go to infinity in (5.3) with ¢ = k.

Conversely, suppose fkoo f diverges. As f is positive, then by Proposition 5.5.4, the
sequence { fkm f}5_, diverges to infinity. Using (5.3) with ¢ = k, we find

m m—1
[ ey s
k n=k
As the left-hand side goes to infinity as m — oo, so does the right-hand side. m|

Example 5.5.14: The integral test can be used not only to show that a series converges, but
to estimate its sum to arbitrary precision. Let us show ), % exists and estimate its sum
to within 0.01. As this series is the p-series for p = 2, we already proved it converges (let us
pretend we do not know that), but we only roughly estimated its sum.

The fundamental theorem of calculus says that for all k € N,

| 1
~dx =,
/kx2x k

In particular, the series must converge. But we also have

1 ® q 1 1 ® q 1 1
- = —dx< ) — < —+ —dx=— + ~.
k /k x2 x_nz_knz_ k2 /k 2T
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Adding the partial sum up to k — 1 we get
k-1 00
1 1 1 1 1

+ ) — —<—=+-+ ) —=.
nz -~ Z 25tk n?

n=1 n=1 n=1

=

In other words, 1/k + Zﬁ;ll 1/n? is an estimate for the sum to within 1/k2. Therefore, if we
wish to find the sum to within 0.01, we note 1/10> = 0.01. We obtain

9

— i lz1.6497....

1 w1 91
16397, .~ —+ 5 — —
10 an an o 07

n=1 n=1 n=1

The actual sum is 7°/6 ~ 1.6449 . . ..

5.5.2 Exercises

Exercise 5.5.1: Finish the proof of Proposition 5.5.2.

Exercise 5.5.2: Find out for which a € R does ;" e™" converge. When the series converges, find an upper
bound for the sum.

Exercise 5.5.3:
a) Estimate Y 4 n(n1+1)

b) Compute the limit of the series exactly and compare. Hint: The sum telescopes.

/ |sinc(x)| dx = oo

(o]

correct to within 0.01 using the integral test.

Exercise 5.5.4: Prove

Hint: Again, it is enough to show this on just one side.

[
—aXx
-1 4/]x|

as an improper integral? If so, compute its value.

Exercise 5.5.5: Can you interpret

Exercise 5.5.6: Take f: [0, 0) — R, Riemann integrable on every interval [0, b], and such that there exist
M, a, and T, such that |f(t)| < Me" forall t > T. Show that the Laplace transform of f exists. That is,
for every s > a the following integral converges:

F(s) == /Ooof(t)e_“ dt.

Exercise 5.5.7: Let f: R — R be a Riemann integrable function on every interval [a,b], and such that
f_ o:o | f (x)| dx < co. Show that the Fourier sine and cosine transforms exist. That is, for every w > 0 the
following integrals converge

F(w) = % [ ) f(t)sin(wt)dt,  F(w) = % [ B F(t) cos(wt) dt.

Furthermore, show that F* and F¢ are bounded functions.
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Exercise 5.5.8: Suppose f: [0, 00) — R is Riemann integrable on every interval [0,b]. Show that /000 f
converges if and only if for every € > 0 there exists an M such that if M < a < b, then | ﬁ ’ f | <e.

Exercise 5.5.9: Suppose f: [0, 00) — R is nonnegative and decreasing. Prove:
a) Iffooof < oo, then lim f(x) =0.

X—00
b) The converse does not hold.

Exercise 5.5.10: Find an example of an unbounded continuous function f : [0, co) — R that is nonnegative
and such that /OOO f < oo. Note that limy_,« f(x) will not exist; compare previous exercise. Hint: On each
interval [k, k + 1], k € N, define a function whose integral over this interval is less than say 27,

Exercise 5.5.11 (More challenging): Find an example of a function f: [0, 00) — R integrable on all
intervals such that lim,, e /On f converges as a limit of a sequence (so n € N), but such that /Ooo f does not
exist. Hint: For all n € N, divide [n, n + 1] into two halves. On one half make the function negative, on the
other make the function positive.
Exercise 5.5.12: Suppose f: [1,00) — R is such that ¢(x) = x?f(x) is a bounded function. Prove that
floo f converges.

It is sometimes desirable to assign a value to integrals that normally cannot be interpreted even

as improper integrals, e.g. f_ 11 I/xdx. Suppose f: [a,b] — R is a function and a < ¢ < b, where f is
Riemann integrable on the intervals [a, c — €] and [c + €, b] for all € > 0. Define the Cauchy principal

value of fabf as
b c—€ b
p.v./f::hm(/ f+/ f),
a e—=0% \J, c+e

if the limit exists.

Exercise 5.5.13:
a) Compute p.v./_ll 1/xdx.

b) Compute lim_,q+( f_ _16 xdx + /21: 1/x dx) and show it is not equal to the principal value.

c) Show that if f is integrable on [a, b], then p.v.fab f= fab f (for an arbitrary c € (a, b)).
d) Suppose f: [-1,1] — R is an odd function (f(—x) = —f(x)) that is integrable on [-1, —€] and [€, 1]
for all € > 0. Prove that p.v./_llf =0

e) Suppose f: [-1,1] — R is continuous and differentiable at 0. Show that p.v. f_ 11 L) g exists.

X
Exercise 5.5.14: Let f: R — Rand g: R — R be continuous functions, where g(x) = 0 for all x ¢ [a, b]
for some interval [a, b].

a) Show that the convolution

(o]

(g% F)x) = / F(Og(x 1) dt

is well-defined for all x € R.
b) Suppose f_O:o |f(x)| dx < co. Prove that

Jim (g+f)(x) =0, and  lim(g+f)(x) =0.
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Chapter 6

Sequences of Functions

6.1 Pointwise and uniform convergence

Note: 1-1.5 lecture

Up till now, when we talked about limits of sequences we talked about sequences
of numbers. A very useful concept in analysis is a sequence of functions. For example,
a solution to some differential equation might be found by finding only approximate
solutions. Then the actual solution is some sort of limit of those approximate solutions.

When talking about sequences of functions, the tricky part is that there are multiple
notions of a limit. Let us describe two common notions of a limit of a sequence of functions.

6.1.1 Pointwise convergence

Definition 6.1.1. For every n € N, let f,: S — R be a function. The sequence { f, el
converges pointwise* to f: S — R if for every x € S, we have

f() = lim fi(x).

Limits of sequences of numbers are unique, and so if a sequence {f,} ", converges
pointwise, the limit function f is unique. It is common to say that f,: S — R converges
pointwise to f on T C S for some f: T — R. In that case we mean f(x) = lim, .« fu(x) for
every x € T. In other words, the restrictions of f, to T converge pointwise to f.

Example 6.1.2: On [-1, 1], the sequence of functions defined by f,,(x) := x*" converges
pointwise to f: [-1,1] — R, where

f(x):{l ifx=-lorx=1,

0 otherwise.

See Figure 6.1.

“Unless otherwise specified, converges generally means converges pointwise.
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Figure 6.1: Graphs of f1, f», f3, and fs for f,(x) := x?".

To see this is so, first take x € (=1,1). Then 0 < x? < 1. We have seen before that
|x2” —O| =(x»)" >0 as n— .

Therefore, lim,, ,c fu(x) = 0.
When x = 1 or x = —1, then x?" = 1 for all n and hence lim;_c f;(x) = 1. For all other
x, the sequence { fn(x)}:;1 does not converge.

Often, functions are given as a series. In this case, we use the notion of pointwise
convergence to find the values of the function.

Example 6.1.3: We write
2.
k=0

to denote the limit of the functions

n

fulx) = )" aF,

k=0
When studying series, we saw that for (-1, 1) the f, converge pointwise to

1
1-—x"

The subtle point here is that while ﬁ is defined for all x # 1, and f, are defined for all
x (even at x = 1), convergence only happens on (-1, 1). Therefore, when we write

f(x) = i xk

k=0

we mean that f is defined on (-1, 1) and is the pointwise limit of the partial sums.
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Example 6.1.4: Let f,(x) := sin(nx). Then f,, does not converge pointwise to any function
on any interval. It may converge at certain points, such as when x = 0 or x = 7. Itis left as
an exercise that in any interval [a, b], there exists an x such that sin(x7n) does not have a
limit as n goes to infinity. See Figure 6.2.

Figure 6.2: Graphs of sin(nx) forn =1,2,...,10, with higher n in lighter gray.

Before we move to uniform convergence, let us reformulate pointwise convergence in a
different way. We leave the proof to the reader—it is a simple application of the definition
of convergence of a sequence of real numbers.

Proposition 6.1.5. Let f,: S — Rand f: S — R be functions. Then {f,}°°_, converges

n=1
pointwise to f if and only if for every x € S and every € > 0, there exists an N € N such that

[fu(x) = f(x)| < e foralln >N,

The key point is that N can depend on x, not just on €. For each x, we can pick a different
N. If we could pick one N for all x, we would have what is called uniform convergence.

6.1.2 Uniform convergence

Definition 6.1.6. Let f,,: S — Rand f: S — Rbe functions. The sequence { f,,})_, converges
uniformly to f if for every € > 0, there exists an N € N such that foralln > N,

|fu(x) - f(x)| <e  forallxes.

In uniform convergence, N cannot depend on x. Given € > 0, we must find an N
that works for all x € S. See Figure 6.3 for an illustration. Uniform convergence implies
pointwise convergence, and the proof follows by Proposition 6.1.5:

Proposition 6.1.7. Let {f,} ", be a sequence of functions f,: S — R. If {f,} , converges
uniformly to f: S — R, then {f,,}}_, converges pointwise to f.

The converse does not hold.
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Figure 6.3: In uniform convergence, for n > N, the functions f,, are within a strip of +¢ from f.

Example 6.1.8: The functions f,(x) = x2" do not converge uniformly on [-1, 1], even
though they converge pointwise. To see this, suppose for contradiction that the convergence
is uniform. For € := 1/2, there would have to exist an N such that x?N = |x2N — O| < 1/2 for
all x € (-1,1) (as fu(x) converges to 0 on (-1, 1)). But that means that for every sequence
{xk};2, in (-1, 1) such that limj . x¢ = 1, we have x2N' < 1/2 for all k. On the other hand,

k
x?N is a continuous function of x (it is a polynomial). Therefore, we obtain a contradiction

1=12N = lim x?N < 12,

k—o0 k

However, if we restrict our domain to [—a,a] where 0 < a < 1, then {f,}>_, converges
uniformly to 0 on [—a, a]. Note that a*” — 0 as n — oo. Given € > 0, pick N € N such that
a*" <eforalln > N.If x € [-a,a], then |x| < a.Soforalln > N and all x € [-a, a],

|x2”| = x| <a?¥ <e.

6.1.3 Convergence in uniform norm

For bounded functions, there is another more abstract way to think of uniform convergence.
To every bounded function we assign a certain nonnegative number that measures the
“distance” of the function from the constant function 0. This number allows us to “measure”
how far two functions are from each other. We then translate a statement about uniform
convergence into a statement about a certain sequence of real numbers converging to zero.

Definition 6.1.9. Let f : S — R be a bounded function. Define

Iflls = sup{|f(x)| : x € S}.

We call ||-|| s the uniform norm. Sometimes other notation* is used, such as || /|-

*The notation nor terminology is not completely standardized. The norm is also called the sup norm or
infinity norm, and in addition to || f||,, and || f|| s it is sometimes written as || f||« OF || f]|co,s-
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The subscript is the set over which the supremum is taken. So if K C S then

I fllk = sup{|f(x)|: x € K}.

Proposition 6.1.10. A sequence of bounded functions f,: S — R converges uniformly to f: S —
R if and only if
Tim || f, = flls = 0.

Proof. First suppose lim; e || fo—f || s = 0. Let € > 0 be given. There exists an N such that
forn > N,wehave || f, — f|ls < €. As ||fn —f||5 is the supremum of |fn(x) - f(x)
that for all x € S, we have |fn(x) —f(X)| <|lfu—flls <e.

On the other hand, suppose {f,};_; converges uniformly to f. Let € > 0 be given.
Then find N such that for all n > N, we have | fa(x) = f (x)| < € for all x € S. Taking the
supremum over x € S, we see that || f, — f||s < €. Hence lim,, || f» — flls = 0. O

, We see

Sometimes it is said that {f,}>_, converges to f in uniform norm instead of converges
uniformly if || f, — f||s — 0. The proposition says that the two notions are the same thing
for bounded functions.

Example 6.1.11: Let f,: [0,1] — R be defined by f,(x) = %n(nxz) We claim {f,,}
converges uniformly to f(x) := x. Let us compute:

fo = fllio1 = Sup{ M T ExE [0’1]}
: 2
=sup {|Sln(nl)| X € [0,1]}
< sup{l/n: x € [0,1]}
=1/n.

Using the uniform norm, we define Cauchy sequences in a similar way as we define
Cauchy sequences of real numbers.

Definition 6.1.12. Let f,: S — R be bounded functions. The sequence is Cauchy in the
uniform norm or uniformly Cauchy if for every € > 0, there exists an N € N such that for all
m,k >N,

1fin = fills < e.

Proposition 6.1.13. Let f,: S — R be bounded functions. Then {f,}_, is Cauchy in the uniform
norm if and only if there exists an f: S — R and { f,})_, converges uniformly to f.

Proof. First suppose {f,}_, is Cauchy in the uniform norm. Let us define f. Fix x. The
sequence { fn(x)}:lo:1 is Cauchy because

fn () = fic)| < || fon = fills -
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Thus {f, (x)}:;1 converges to some real number. Define f: S — R by
f) = lim fu(x).

The sequence {f,})_, converges pointwise to f. To show that the convergence is uniform,
let € > 0 be given. Find an N such that for all m, kK > N, we have ||fm - fk”s < €/2. In other
words, for all x, we have | fm(x) — fk(x)| < ¢/2. For any fixed x, take the limit as k goes to
infinity. Then |fu(x) — fi(x)| goes to |fin(x) — f(x)|. Consequently for all x,

|fn(x) = f(x)| < ¢f2 < €.

Hence, {f,},_, converges uniformly.

Next, we prove the other direction. Suppose {f,};_; converges uniformly to f. Given
€ > 0, find N such that for all n > N, we have | fa(x) = f (x)| < €¢/sfor all x € S. Therefore,
forall m,k > N and all x,

| fin(x) = fi(x)| = | fin(x) = f(x) + f(x) = fi(x)|
< |fu(x) = FO)] + [f() = fi(x)| < efa+¢/a = ¢fa.

Take the supremum over all x to obtain

| fn = fillg < ¢2 < e O

6.1.4 Exercises
Exercise 6.1.1: Let f and g be bounded functions on [a,b]. Prove

If + g”[a,b] = ||f||[a,b] + ”g”[a,b]'

Exercise 6.1.2:
x/n

a) Find the pointwise limit forx € R.

n
b) Is the limit uniform on R?

c) Is the limit uniform on [0,1]?

Exercise 6.1.3: Suppose f,: S — R are functions that converge uniformly to f: S — R. Suppose A C S.
Show that the sequence of restrictions { fu|a};_, converges uniformly to f|a.

Exercise 6.1.4: Suppose {fu},_, and {gn}, _, defined on some set A converge to f and g respectively
pointwise. Show that {f, + g} | converges pointwise to f + g.

Exercise 6.1.5: Suppose {fu},_, and {gn},_, defined on some set A converge to f and g respectively
uniformly on A. Show that {f, + gn},"_, converges uniformly to f + g on A.

Exercise 6.1.6: Find an example of a sequence of functions { f,} > | and {gn};_, that converge uniformly to
some f and g on some set A, but such that { f,gn}'"_, (the multiple) does not converge uniformly to f g on A.
Hint: Let A == R, let f(x) = g(x) := x. You can even pick f, = gn.
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Exercise 6.1.7: Suppose there exists a sequence of functions {g, } ", uniformly converging to 0 on A. Now
suppose we have a sequence of functions {f,} | and a function f on A such that

fu() = f(0)] < gn(2)
forall x € A. Show that { f,},;_, converges uniformly to f on A.

Exercise 6.1.8: Let {fu} ;, {gn} ., and {hy,},_, be sequences of functions on [a,b]. Suppose {f,} ",
and {h,} " | converge uniformly to some function f: [a,b] — R and suppose f,(x) < gu(x) < hy(x) for
all x € [a,b]. Show that {gn},;_, converges uniformly to f.

Exercise 6.1.9: Let f,,: [0,1] — R be a sequence of increasing functions (that is, f,(x) > fu(y) whenever
x > y). Suppose f,(0) = 0and lim f,(1) = 0. Show that {f,} | converges uniformly to 0.
n—oo

Exercise 6.1.10: Consider a sequence of functions f,: [0,1] — R so that there is a sequence of distinct
numbers x,, € [0, 1] such that for all n,

fu(xn) = 1.
Prove or disprove the following statements:
a) True or false: There exists { f,},;_, as above that converges pointwise to 0.
b) True or false: There exists { f,},_, as above that converges uniformly to 0.
Exercise 6.1.11: Fix a continuous h: [a,b] — R. Let f(x) := h(x) for x € [a,b], f(x) := h(a) forx < a

and f(x) = h(b) for all x > b. First show that f: R — R is continuous. Now let f, be the function g from
Exercise 5.3.7 with € = 1/n, defined on the interval [a, b]. That is,

x+1/n
fulx) = g / f.

-1/n

Show that { f,}>_, converges uniformly to h on [a, b].

Exercise 6.1.12: Prove that if a sequence of functions f,: S — R converge uniformly to a bounded function
f:S — R, then there exists an N such that for all n > N, the f,, are bounded.

Exercise 6.1.13: Suppose there is a single constant B and a sequence of functions f,: S — R that are
bounded by B, that is |fn(x)| < B forall x € S. Suppose that { f,},_, converges pointwise to f: S — R.
Prove that f is bounded.

Exercise 6.1.14 (requires §2.6): In Example 6.1.3 we saw Y7, xk converges pointwise to ﬁ on(-1,1).
a) Show that whenever 0 < ¢ < 1, the series Y7o x* converges uniformly on [—c, c].

b) Show that the series Y., x* does not converge uniformly on (-1,1).
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6.2 Interchange of limits

Note: 1-2.5 lectures, subsections on derivatives and power series (which requires §2.6) optional.

Large parts of modern analysis deal mainly with the question of the interchange of two
limiting operations. When we have a chain of two limits, we cannot always just swap the
limits. For instance,

O:Iim(lim )ilim(hm ):
n—oo \k—ooo 11 + k k—o0 \n—>oo 11 +

When talking about sequences of functions, interchange of limits comes up quite often.
We look at several instances: continuity of the limit, the integral of the limit, the derivative
of the limit, and the convergence of power series.

6.2.1 Continuity of the limit

If we have a sequence {f,}_, of continuous functions, is the limit continuous? Suppose
f is the (pointwise) limit of {f,}"_ ;. If limy—c X = x, we are interested in the following
interchange of limits, where the equality to prove is marked with a question mark. Equality
is not always true, in fact, the limits to the left of the question mark might not even exist.

lim f(xi) = lim (lim f,(x)) £ Tim (lim £,(x0) = lim £,(2) = f()

We wish to find conditions on the sequence {f,} " ; so that the equation above holds. If we
only require pointwise convergence, then the limit of a sequence of functions need not be
continuous, and the equation above need not hold.

Example 6.2.1: Define f,: [0,1] — R as

1—nx ifx <1/n,
x) =
ful®) {O if x > 1/n.
See Figure 6.4.

Each function f, is continuous. Fix an x € (0, 1]. If n > 1/x, then x > 1/n. Therefore for
n > 1/x, we have f,(x) =0, and so

lim f,(x) = 0.
n—o0oo
On the other hand, if x = 0, then
lim £,(0) = lim 1=1.

Thus the pointwise limit of f, is the function f: [0, 1] — R defined by

1 ifx=0,
fx) = {0 if x > 0.

The function f is not continuous at 0.
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Figure 6.4: Graph of f,(x).

If we, however, require the convergence to be uniform, the limits can be interchanged.

Theorem 6.2.2. Suppose S C R. Let {f,})_, be a sequence of continuous functions f,: S — R
converging uniformly to f: S — R. Then f is continuous.

Proof. Let x € S be fixed. Let {x,} _, be a sequence in S converging to x.
Let € > O be given. As {f¢}} ; converges uniformly to f, we find a k € N such that

[fc(y) - f(y)| < ¢f3

forall y € S. As fi is continuous at x, we find an N € N such that for all m > N,

| ficCem) = filx)| < ¢/3.
Thus for all m > N,
[f(em) = FOO] = [f(xm) = fiCem) + fieloem) = fielx) + fi(x) = f(x)]
< [f (o) = fiCoom)| + [fi(xm) = filx)] + [ fi(x) = £ ()]

<€f3+e€f3+ez=¢€.

Therefore, { f (xm)}:;:l converges to f(x), and consequently f is continuous at x. As x was
arbitrary, f is continuous everywhere. O

6.2.2 Integral of the limit

Again, if we simply require pointwise convergence, then the integral of a limit of a sequence
of functions need not be equal to the limit of the integrals.



236 CHAPTER 6. SEQUENCES OF FUNCTIONS

Example 6.2.3: Define f,: [0,1] — R as

0 ifx=0,
fu(x) :=3n—-n?x if0<x<1/n,
0 if x > 1/n.
See Figure 6.5.
n
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Figure 6.5: Graph of f,(x).

Each f, is Riemann integrable (it is continuous on (0,1] and bounded), and the
fundamental theorem of calculus says that

/olfn = /Ol/n(” —n’x)dx =1/2.

Let us compute the pointwise limit of {f,} " ,. Fixan x € (0,1]. For n > 1/x, we have
x > 1/nand so f,(x) = 0. Hence,

lim f,(x) = 0.
n—oo

We also have f,(0) = 0 for all n. So the pointwise limit of {f,}>_; is the zero function. In
summary,

1/2:”11530/01fn(x)dx¢/Ol(nlgr;ofn(x)) dx:/olodx:O.

But if we require the convergence to be uniform, the limits can be interchanged.”

“Weaker conditions are sufficient for this kind of theorem, but to prove such a generalization requires
more sophisticated machinery than we cover here: the Lebesgue integral. In particular, the theorem holds
with pointwise convergence as long as f is integrable and there is an M such that || f,||[s,5) < M for all n.
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Theorem 6.2.4. Let {f,} | be a sequence of Riemann integrable functions f,: [a,b] — R
converging uniformly to f: [a,b] — R. Then f is Riemann integrable, and

[r=pm [

Proof. Let € > 0 be given. As f, goes to f uniformly, we find an M € N such that for all

n > M, we have | fa(x) = f (x)| < ﬁ for all x € [a, b]. In particular, by reverse triangle

inequality, |f (x)| <zt | fn(x)| for all x. Hence f is bounded, as f, is bounded. Note
that f, is integrable and compute

ff [ :f(f 0~ )+ i) s~ [ (70~ i)+ )

b b b b
/ (f(x) = fulx)) dx+/ fn(x)dx—/ (f(x) = fulx)) dx—/ fu(x) dx

a

IA

b b b b
- [ew-pw)ars [ fwa- [(0-fw)a- [ fwas

a

b b
- [ @) ax- [ (0 fiw) i

b-a)+— (b—a)=e.

<_ £
~2(b-a) 2(b —a)

The first inequality is Proposition 5.2.5. The second inequality follows by Proposition 5.1.8
and the fact that for all x € [a, b], we have 2(1?—:1) < f(x) = fulx) < m. As € > 0 was
arbitrary, f is Riemann integrable.

Finally, we compute [Z ’ f. We apply Proposition 5.1.10 in the calculation. Again, for all
n > M (where M is the same as above),

[r-[#

b
/ (F(x) - fu(x)) dx

. _E€
~ 2(b-a)

w—@:§<a

Therefore, { fa ’ fn}:)=1 converges to /a ’ f. m|

Example 6.2.5: Suppose we wish to compute

1 . 2
. nx + sminx
lim [ XFsnG)
n—oo 0 n

It is impossible to compute the integrals for any particular 7 using calculus as sin(nx?) has
no closed-form antiderivative. However, we can compute the limit. We have shown before



238 CHAPTER 6. SEQUENCES OF FUNCTIONS

that %ﬂwﬁ) converges uniformly on [0, 1] to x. By Theorem 6.2.4, the limit exists and

, L ix + sin(nx?)
lim

1
—dx = xdx =1/2.
n—oo 0 n 0

Example 6.2.6: If convergence is only pointwise, the limit need not even be Riemann
integrable. On [0, 1] define

1 if x =p/qin lowest terms and g < n,

fulx) = {

0 otherwise.

Each function f, differs from the zero function at finitely many points; there are only
finitely many fractions in [0, 1] with denominator less than or equal to n1. So f,, is integrable

and fol fn = /01 0 = 0. Itis an easy exercise to show that {f,} , converges pointwise to the
Dirichlet function
1 ifxeq,
flx) = .
0 otherwise,

which is not Riemann integrable.

Example 6.2.7: In fact, if the convergence is only pointwise, the limit of bounded functions
is not even necessarily bounded. Define f,,: [0,1] — R by

fn(x) - {0 if x < 1/n,

1/x else.

For every n we get that | fn (x)| < n for all x € [0, 1] so the functions are bounded. However,
{fn};_, converges pointwise to the unbounded function

£ = {o ifx =0,

1/x else.

6.2.3 Derivative of the limit

While uniform convergence is enough to swap limits with integrals, it is not, however,
enough to swap limits with derivatives, unless you also have uniform convergence of the
derivatives themselves.

Example 6.2.8: Let f,(x) := % Then f,, converges uniformly to 0. See Figure 6.6. The
derivative of the limit is 0. But f,/(x) = cos(nx), which does not converge even pointwise,
for example f/(n1) = (=1)". Moreover, f,/(0) = 1 for all n, which does converge, but not to 0.
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Figure 6.6: Graphs of % forn =1,2,...,10, with higher n in lighter gray.

Example 6.2.9: Let f,(x) := —L . If x # 0, then lim, fa(x) =0, but limy, e f,(0) = 1.

1+nx2"
Hence, {f,} _, converges pointwise to a function that is not continuous at 0. We compute

—2nx
’
X)= ———=.
fal®) (1+ nx2)?
For every x, lim,, f,(x) = 0, so the derivatives converge pointwise to 0, but the reader
can check that the convergence is not uniform on any interval containing 0. The limit of f,
is not differentiable at 0—it is not even continuous at 0. See Figure 6.7.

Figure 6.7: Graphs of % and its derivative for n = 1,2, ..., 10, with higher n in lighter gray.

nx2

See the exercises for more examples. Using the fundamental theorem of calculus, we
find an answer for continuously differentiable functions. The following theorem is true
even if we do not assume continuity of the derivatives, but the proof is more difficult.

Theorem 6.2.10. Let I be a bounded interval and let f,: I — R be continuously differentiable
functions.  Suppose {f,;}_, converges uniformly to g: I — R, and suppose { fn(c)}:)=1 is
a convergent sequence for some ¢ € I. Then {f,}> | converges uniformly to a continuously
differentiable function f: I — R, and f' = g.
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Proof. Define f(c) = lim,_ fu(c). As f, are continuous and hence Riemann integrable,
then via the fundamental theorem of calculus, we find that for x € I,

£al) = ful0) + / £,

As {f,},>_| converges uniformly on I, it converges uniformly on [c, x] (or [x, c] if x < ¢).
Thus, the limit as 7 — oo on the right-hand side exists. Define f at the remaining points
(where x # c) by this limit:

f6) = fim fe)+ lim [ =@+ [ g

The function g is continuous, being the uniform limit of continuous functions. Hence f is
differentiable and f’(x) = g(x) for all x € I by the second form of the fundamental theorem.

It remains to prove uniform convergence. Suppose I has a lower bound a and upper
bound b. Let € > 0 be g1ven Take M such that for all n > M, we have |f(c) fn (c)| < €2
and |g(x) fn(x)| 2(b for all x € I. Then

@) - ful)| = ‘(f(c) - [ xg) - (fn<c> - [ xfn’)

< [f(e) = fulo)] + f,:

- f(0) - fn(C)| / (g(s) - fn(S))

€

2 Z(b )(b—a)—e O

The proof goes through without boundedness of I, except for the uniform convergence
of f, to f. As an example suppose I = R and let f,(x) := ¥/n. Then f,(x) = 1/n, which
converges uniformly to 0. However, {f,}_, converges to 0 only pointwise.

6.2.4 Convergence of power series

In §2.6 we saw that a power series converges absolutely inside its radius of convergence, so
it converges pointwise. Let us show that it (and all its derivatives) also converges uniformly.
This fact allows us to swap several types of limits. Not only is the limit continuous, we can
integrate and even differentiate convergent power series term by term.

Proposition 6.2.11. Let 3, ¢, (x — a)" be a convergent power series with a radius of convergence
p, where 0 < p < oo. Then the series converges uniformly in [a — r,a + r] whenever 0 < r < p.

In particular, the series converges (pointwise) to a continuous function on (a — p,a + p) if
p < oo, 0ronRif p=oco.
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Proof. Let] :=(a—p,a+p)if p < oo,orlet] := Rif p = co. Take 0 < r < p. The series
converges absolutely for every x € I, in particular if x = a + . So )} |c| 1" converges.
Given € > 0, find M such that for all k > M,

o

Z lcnl "t < e.

n=k+1

Forallx € [a—r,a+r]and all m > k,

m k

D enlx=a)" = ) en(x —a)’

n=0 n=0

m

Z cn(x —a)”

n=k+1
m m o0

< Z [c] |x —a]” < Z lcn| ¥t < Z lcn| " < e.

n=k+1 n=k+1 n=k+1

The partial sums are therefore uniformly Cauchy on [a — 7,4 + r] and hence converge
uniformly on that set.

Moreover, the partial sums are polynomials, which are continuous, and so their uniform
limit on [a — r,a + r] is a continuous function. As r < p was arbitrary, the limit function is
continuous on all of I. m]

As we said, we will show that power series can be differentiated and integrated term
by term. The differentiated or integrated series is again a power series, and we will show
it has the same radius of convergence. Therefore, any power series defines an infinitely
differentiable function.

We first prove that we can antidifferentiate, as integration only needs uniform limits.

Corollary 6.2.12. Let Y, ¢, (x — a)" be a convergent power series with a radius of convergence
O<p<oo lLetl:=(a—p,a+p)ifp<ocoorl:=Rifp=co. Let f:I— R bethelimit. Then

'/xf=§i“;%x—m%
a n=1

where the radius of convergence of this series is at least p.

Proof. Take 0 < r < p. The partial sums Y _; c,,(x — a)" converge uniformly on [a —r,a +7].
For every fixed x € [a -1, a +r], the convergence is also uniform on [a, x] (or [x, a] if x < a).
Hence,

k+1

X X k x k
. . . Cn-1 n
= lim E c(s—a)”ds:hm/ E cu(s —a)" ds = lim E " (x-a)". O
/11 f /11 k—>oon:0 " k—o J, = " k—o0 = n
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Corollary 6.2.13. Let Y ¢, (x — a)" be a convergent power series with a radius of convergence
O<p<ooLetl =(a—p,a+p)ifp<ocoorl:=Rifp=oco. Let f: I — R be the limit. Then
f is a differentiable function, and

fi@) = > (n+Depnlx—a),
n=0

where the radius of convergence of this series is p.

Proof. Take 0 < r < p. The series converges uniformly on [a —r, a + 7], but we need uniform
convergence of the derivative. Let

R = limsup|cn|1/n.

n—0o0
As the series is convergent R < oo, and the radius of convergence is 1/r (or oo if R = 0).

Let € > 0 be given. In Example 2.2.14, we saw lim, . n'/" = 1. Hence there exists an
N such that for all # > N, we have n'/" <1 +e¢. So

R = limsup |c,|"" < limsup [nc,|Y™ < (1 + €)limsup |c,|V" = (1 + €)R.

n—oo n—oo n—oo

As € was arbitrary, limsup, _, |ncn|1/ " = R. Therefore, Y, ncy(x —a)" has radius of
convergence p. By dividing by (x — a), we find Y7 (1 + 1)cu11(x —a)" has radius of
convergence p as well.

Consequently, the partial sums er‘lzo(n +1)cyp1(x — a)", which are derivatives of the
partial sums Z,’;Q) cu(x —a)", converge uniformly on [a — 7, a + r]. Furthermore, the series
clearly converges at x = 2. We may thus apply Theorem 6.2.10, and we are done as r < p

was arbitrary. m|

Example 6.2.14: We could have used this result to define the exponential function. That is,

the power series
o0 xn
f@) =)o
n=0

has radius of convergence p = co. Furthermore, f(0) = 1, and by differentiating term by
term, we find that f'(x) = f(x).
Example 6.2.15: The series

(oe]
S e

n=1

x —
converges to o on (-1,1).

Proof: On (-1,1), ).;", x" converges to ﬁ The derivative ), ", nx""1 then converges

on the same interval to ﬁ Multiplying by x obtains the result.
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6.2.5 Exercises

Exercise 6.2.1: Find an explicit example of a sequence of differentiable functions on [—1, 1] that converge
uniformly to a function f such that f is not differentiable. Hint: There are many possibilities, simplest is

perhaps to combine |x| and §x* + % another is to consider \|x2 + (1/n)%. Show that these functions are

differentiable, converge uniformly, and then show that the limit is not differentiable.

Exercise 6.2.2: Let f,(x) := "n—” Show that { f,},;_, converges uniformly to a differentiable function f on
[0, 1] (find f). However, show that f'(1) # lim f,(1).
n—oo

1
x
Exercise 6.2.3: Let f: [0,1] — R be Riemann integrable (hence bounded). Find lim j% dx.
1n—00 0
2 2
Exercise 6.2.4: Show lim e dx = 0. Feel free to use calculus facts about the exponential.
n—oo 1

Exercise 6.2.5: Find an example of a sequence of continuous functions on (0, 1) that converges pointwise to a
continuous function on (0, 1), but the convergence is not uniform.

Note: In the previous exercise, (0, 1) was picked for simplicity. For a more challenging exercise,
replace (0, 1) with [0, 1].

Exercise 6.2.6: True/False; prove or find a counterexample to the following statement: If { f, }}"_, is a sequence
of everywhere discontinuous functions on [0, 1] that converge uniformly to a function f, then f is everywhere
discontinuous.

Exercise 6.2.7: For a continuously differentiable function f: [a,b] — R, define

Ifllcr = ||f||[a,h] + ”fI”[a,b] :

Suppose { fu} ", is a sequence of continuously differentiable functions such that for every € > 0, there exists
an M such that for all n, k > M, we have

Ifi = filler <e.
Show that { f,} ", converges uniformly to some continuously differentiable function f: [a,b] — R.

Suppose f: [0,1] — R is Riemann integrable. For the following two exercises define the number

1
Il = [ lrco as.

It is true that | f | is integrable whenever f is, see Exercise 5.2.15. The number is called the L!-norm
and defines another very common type of convergence called the L!-convergence. It is, however, a
bit more subtle.

Exercise 6.2.8: Suppose {f,},_, is a sequence of Riemann integrable functions on [0, 1] that converges
uniformly to 0. Show that
lim ||fu| = 0.

n—o00
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Exercise 6.2.9: Find a sequence {f,} ", of Riemann integrable functions on [0, 1] converging pointwise
to 0, but such that

lim ||fn||L1 does not exist (is 00).

n—o0

Exercise 6.2.10 (Hard): Prove Dini’s theorem: Let f,: [a,b] — R be a sequence of continuous functions
such that

0< fus1(x) < fulx)<--- < filx)  foralln e N.

Suppose { fu}_, converges pointwise to 0. Show that {f,}}_, converges to zero uniformly.

Exercise 6.2.11: Suppose f,: [a,b] — R is a sequence of continuous functions that converges pointwise to a
continuous f: [a,b] — R. Suppose that for every x € [a, b], the sequence {| fa(x) = f (x)|}:;1 is monotone.
Show that the sequence {f,,}_, converges uniformly.

Exercise 6.2.12: Find sequences of Riemann integrable functions f,: [0,1] — R such that {f,},’_, converges
to zero pointwise, and such that

1 oo . .
a) { /0 fn =1 increases without bound,

b) {/0 fn 15 the sequence —=1,1,-1,1,-1,1, .. ..

It is poss1b1e to define a joint limit of a double sequence {x; .} ,,_, of real numbers (that is a
function from N X N to R). We say L is the joint limit of {x,n},’, _,; and write

lim x,m =1L, or lim x,m,=1L,
n—oo (n,m)—o0
m—00

if for every € > 0, there exists an M such thatif n > M and m > M, then |x,,, — L| < €.

Exercise 6.2.13: Suppose the joint limit (see above) of {xn,m}},, _; is L, and suppose that for all n, Lim x
m—0o0

exists, and for all m, hm Xn,m exists. Then show lim lim x,, = lim lim x,, = L.

11— 00 11 —00 mM—00 1—00

(_1)n+m

min{n,m} "

Exercise 6.2.14: A joint limit (see above) does not mean the iterated limits exist. Consider xp » =

a) Show that for no n does l1m Xn,m exist, and for no m does hm Xn,m exist. So neither lim lim x,, ,,

1n—00 M—>00

nor lim lim x, » makes any sense at all.

m—00 N—>0

b) Show that the joint limit of {xn m};’ , _, exists and equals 0.

Exercise 6.2.15: We say that a sequence of functions f,: R — R converges uniformly on compact
subsets if for every k € N, the sequence { f,}}7_, converges uniformly on [k, k].

a) Prove that if f,: R — R is a sequence of continuous functions converging uniformly on compact subsets,
then the limit is continuous.

b) Prove that if f,: R — R is a sequence of functions Riemann integrable on every closed and bounded
interval [a, b], and converging uniformly on compact subsets to an f: R — R, then for every interval

[a,b], we have f € R ([a, b)), and /abf = nh_r){}ofub fu-

Exercise 6.2.16 (Challenging): Find a sequence of continuous functions f,: [0,1] — R that converge to
the popcorn function f: [0,1] — R, that is the function such that f(p/q) = 1/q (if P/q is in lowest terms)
and f(x) = 0 if x is not rational (note that f(0) = f(1) = 1), see Example 3.2.12. So a pointwise limit of
continuous functions can have a dense set of discontinuities. See also the next exercise.
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Exercise 6.2.17 (Challenging): The Dirichlet function f: [0,1] — R, that is the function such that
f(x) =1ifx € Qand f(x) = 0if x ¢ Q, is not the pointwise limit of continuous functions, although this
is difficult to show. Prove, however, that f is a pointwise limit of functions that are themselves pointwise
limits of continuous functions themselves.

Exercise 6.2.18:

a) Find a sequence of Lipschitz continuous functions on [0, 1] whose uniform limit is \/x, which is a
non-Lipschitz function.

b) On the other hand, show that if f,,: S — R are Lipschitz with a uniform constant K (meaning all of them
satisfy the definition with the same constant) and { f,}°_, converges pointwise to f: S — R, then the
limit f is a Lipschitz continuous function with Lipschitz constant K.

Exercise 6.2.19 (requires §2.6): If 3. ¢, (x — a)" has radius of convergence p, show that the term by term

integral 3, 1 “=L(x — a)" has radius of convergence p. Note that we only proved above that the radius of

convergence was at least p.

Exercise 6.2.20 (requires §2.6 and §4.3): Suppose f(x) = Y0 cn(x —a)" converges in (a — p, a + p).

a) Suppose that f*¥)(a) = 0 forallk = 0,1,2,3, . ... Prove that ¢, = 0 for all n, or in other words, f(x) = 0
forallx € (a —p,a+p).

b) Using part a) prove a version of the so-called “identity theorem for analytic functions”: If there exists an
€ > Osuchthat f(x)=0forallx € (a —€,a+€),then f(x) =0forall x € (a —p,a + p).

Exercise 6.2.21: Let f,(x) = 1+x—x)2 Notice that f, are differentiable functions.

(n

a) Show that {f,}_, converges uniformly to 0.

b) Show that | f,)(x)| < 1 for all x and all n.

c¢) Show that {f,}"_, converges pointwise to a function discontinuous at the origin.

d) Let {an}, | be an enumeration of the rational numbers. Define

gu(x) = D 27k fu(x - ap).
k=1

Show that {g,} ", converges uniformly to 0.

e) Show that {g;} " | converges pointwise to a function 1 that is discontinuous at every rational number
and continuous at every irrational number. In particular, lim g, (x) # 0 for every rational number x.
n—o0

Exercise 6.2.22 (requires §5.5): Show that uniform convergence is not enough to pass the limit through
improper integrals over infinite intervals. That is, find a sequence of functions f,: R — R Riemann
integrable on every bounded interval, converging uniformly to zero, and such that f_ O; fn =1 for every n.
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6.3 Picard’s theorem

Note: 1-2 lectures (can be safely skipped)

A first semester course in analysis should have a piéce de résistance caliber theorem. We
pick a theorem whose proof combines everything we have learned. It is more sophisticated
than the fundamental theorem of calculus, the first highlight theorem of this course.
The theorem we are talking about is Picard’s theorem® on existence and uniqueness of
a solution to an ordinary differential equation. Both the statement and the proof are
beautiful examples of what one can do with the material we mastered so far. It is also a
good example of how analysis is applied, as differential equations are indispensable in
science of every stripe.

6.3.1 First order ordinary differential equation

Modern science is described in the language of differential equations. That is, equations
involving not only the unknown, but also its derivatives. The simplest nontrivial form of a
differential equation is the so-called first order ordinary differential equation

y' =F(x,y).

Generally, we also specify an initial condition y(xo) = yo. The solution of the equation is a
function y(x) such that y(xo) = yo and y’(x) = F(x, y(x)). See Figure 6.8 for a graphical
representation as a so-called slope field.

NS
~ ////_/ / //

AV
VYAV awY Vi
/ / / /

|

[

\

Figure 6.8: A slope field giving the slope F(x, y) at each point, in this case F(x,y) = x(1 - y). A
solution is drawn going through the point (xg, o) = (1, 0.3), notice how it follows the slopes.

When F involves only the x variable, the solution is given by the fundamental theorem of
calculus. On the other hand, when F depends on both x and y, we need far more firepower.
It is not always true that a solution exists, and if it does, that it is the unique solution.
Picard’s theorem gives us certain sufficient conditions for existence and uniqueness.

*Named for the French mathematician Charles Emile Picard (1856-1941).
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6.3.2 The theorem

We need a definition of continuity in two variables. A point in the plane R> = R X R
is denoted by an ordered pair (x,y). For simplicity, we give the following sequential
definition of continuity.

Definition 6.3.1. Let U ¢ R? be a set, F: U — R a function, and (x, y) € U a point. The
function F is continuous at (x, y) if for every sequence {(xy, yn)}:;1 of points in U such that
lim, e X, = x and lim,, e Y = y, we have

lim F(x,, yn) = F(x,y).

We say F is continuous if it is continuous at all points in U.

Theorem 6.3.2 (Picard’s theorem on existence and uniqueness). Let I, ] C R be closed bounded
intervals, let 1° and |° be their interiors*, and let (xo, yo) € 1° X J°. Suppose F: I X | — R is
continuous and Lipschitz in the second variable, that is, there exists an L € R such that

|F(x,y)—F(x,z)|§L|y—z| forally,ze ], x €l.

Then there exists an h > 0 such that [xo — h,xo + h] C I and a unique differentiable function
filxo—h,xo+ h] — ] C R such that

f'(x) = F(x, f(x)) and f(x0) = yo. (6.1)

Proof. Suppose we could find a solution f. Using the fundamental theorem of calculus
we integrate the equation f’(x) = F (x, f (x)), f(x0) = yo, and write (6.1) as the integral
equation

f@=wo+ [ Fe ) (62)

The idea of our proof is that we try to plug in approximations to a solution to the right-hand
side of (6.2) to get better approximations on the left-hand side of (6.2). We hope that in the
end the sequence converges and solves (6.2) and hence (6.1). The technique below is called
Picard iteration, and the individual functions fi are called the Picard iterates.

Without loss of generality, suppose xg = 0 (exercise below). Another exercise tells us
that F is bounded as it is continuous. Therefore pick some M > 0 so that |F (x, y)| < M for
all (x,y) € I x]J. Pick @ > O such that [-a, a] C [ and [yo — a, yo + @] C ]. Define

h'—min{a a }
o "M+Lal’

Observe [-h, h] C I.
Set fo(x) := yo. We define f; inductively. Assuming fr_1([=Fh, h]) C [yo — a, yo + a], we
see F (t, fk—l(t)) is a well-defined function of t for t € [—h, h]. Further if f;_; is continuous

*By interior of [a, b], we mean (a, D).
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on [—h, h], then F (t, fr-1 (t)) is continuous as a function of ¢t on [—h, h] (left as an exercise).
Define

A=+ [ Bt fr(t) at

and fi is continuous on [—}, h] by the fundamental theorem of calculus. To see that f;
maps [—h, h] to [yo — a, yo + a], we compute for x € [-h, h]

<M|x| <Mh<M

< .

|fi(x) = yo| = ‘/ (, fra(t)) dt v La
We next define fr,1 using fr and so on. Thus we have inductively defined a sequence
{fi}io, of functions. We need to show that it converges to a function f that solves the
equation (6.2) and therefore (6.1).

We wish to show that the sequence { f¢}}- ; converges uniformly to some function on
[=h, h]. First, for t € [-h, k], we have the following useful bound

[F(t fu®) = (£ fi®)] < LIfu®) = fe®] < Lfa = fill Ly

where fk” _pp 18 the uniform norm, that is the supremum of | fu(t) = fk(t)| for
t e [-h,h]. Now note that [x| < h < 3% . Therefore

Iﬂ&w—fﬂxH=L£ Fﬁh&qﬁﬂdﬁ—L:Fﬁuﬁ4G»d4

- '/OX(P(t,fn_l(t)) —P(t,fk_l(t)))dt|
< L[ fa-1 = fimall 14

M+L0(||fn 1= fk 1” —h,h]

Let C := ;2% and note that C < 1. Taking supremum on the left-hand side we get

”fn _fk”[—h,h] <C ”fﬂ—l _fk—1||[—h,h] :

Without loss of generality, suppose n > k. Then by induction we can show

”fﬂ - fk”[—h,h] <ck ”fn—k - fO”[—h,h] :

For x € [—h, h], we have

| fr—k(x) = fo(x)] = | fa=k(x) = yo| < a.
Therefore,
”fn _fk”[_h,h] < C* ”fn—k _fOH[—h,h] < Cka.

As C <1,{fy} 7, is uniformly Cauchy and by Proposition 6.1.13 we obtain that {f,}
converges uniformly on [—-F, 1] to some function f: [-h, h] — R. The function f is the
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uniform limit of continuous functions and therefore continuous. Furthermore, since
fu([=h, h]) € [yo — a,yo + a] for all n, then f([-h, h]) C [yo — a, yo + a] (Why?).
We now need to show that f solves (6.2). First, as before we notice

[F(t fu(0) = F(t, f0)] < LIfat) = FO] < Ll = Fll_j -
As ||f —f”[_h,h] converges to 0, then F(t, f,(t)) converges uniformly to F(t, f(t)) for

€ [-h, h]. Hence, for x € [—h, I] the convergence is uniform for t € [0, x] (or [x, 0] if
x < 0). Therefore,

Yo +/ E(t, f(t)) dt = yo +/ F(t, lim f,(t)) dt
=1yo + / lim F(t, fu(t)) dt (by continuity of F)
0 n—oo

= lim (yo + / E(t, fu(t)) dt) (by uniform convergence)
0

n—oo

= ’}Erolofn+l(x) = f(x)

We apply the fundamental theorem of calculus (Theorem 5.3.3) to show that f is differen-
tiable and its derivative is F(x, f(x)). It is obvious that £(0) = yo

Finally, what is left to do is to show uniqueness. Suppose g: [-h, h] — | C R is another
solution. As before we use the fact that |F(t, f(t)) — F(t, g(t)) L_nu- Then

lf(x) — g(x)| = y0+/0xF(t,f(t)) dt — (y0+/0x1-"(t,g(t)) dt)‘
- Vx(F(t,f(t)) — F(t,g(t))) dt‘
La

< LI = 8llyo 121 < Lo |f = &l i M+La||f 8l

As before, C = 3£4— < 1. By taking supremum over x € [~/1, h] on the left-hand side we
obtain

I = &llnm = €l = 8llinm-
This is only possible if || f- g”[_h’h] = 0. Therefore, f = g, and the solution is unique. O

6.3.3 [Examples

Let us look at some examples. The proof of the theorem gives us an explicit way to find an
h that works. It does not, however, give us the best h. It is often possible to find a much
larger h for which the conclusion of the theorem holds.

The proof also gives us the Picard iterates as approximations to the solution. So the
proof actually tells us how to obtain the solution, not just that the solution exists.
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Example 6.3.3: Consider
fl@)=fx),  fO)=1

That is, we suppose F(x, y) = y, and we are looking for a function f such that f'(x) = f(x).
Let us forget for the moment that we solved this equation in §5.4. See also Figure 5.7 for a
plot of both the equation, showing the slope F(x, y) = y at each point, and the solution, the
exponential, that satisfies f(0) = 1.

We pick any I that contains 0 in the interior. We pick an arbitrary | that contains 1 in
its interior. We can use L = 1. The theorem guarantees an /1 > 0 such that there exists a
unique solution f: [}, h] — R. This solution is usually denoted by

e* = f(x).

We leave it to the reader to verify that by picking I and | large enough the proof of the
theorem guarantees that we are able to pick a such that we get any /# we want as long as
h < 1/2. We omit the calculation. Of course, we know this function exists as a function for
all x, so an arbitrary h ought to work, but the theorem only provides h < 1/2.

By same reasoning as above, no matter what xo and yo are, the proof guarantees
an arbitrary  as long as h < 1/2. Fix such an h. We get a unique function defined on
[xo — I, xo + h]. After defining the function on [, h] we find a solution on the interval
[0, 2h] and notice that the two functions must coincide on [0, /1] by uniqueness. We thus
iteratively construct the exponential for all x € R. Therefore, Picard’s theorem could be
used to prove the existence and uniqueness of the exponential.

Let us compute the Picard iterates. We start with the constant function fy(x) := 1. Then

fl(x):1+/0xfo(s)ds =1+x,

x2
N/

f2(x)=1+/0xf1(5)d5=1+/0x(1+s)ds=1+x+ 5

x x 52 x2 x3
f3(x):1+/ fz(s)ds:1+/ (1+s+—)ds:1+x+—+—.
0 0 2 2 6

We recognize the beginning of the Taylor series for the exponential. See Figure 6.9.

Example 6.3.4: Consider the equation
, 2
f@=(f@)? and  fO)=1.
From elementary differential equations we know
1
flx) = 1—x

is the solution. The solution is only defined on (—co, 1). That is, we are able touse h < 1,
but never a larger i. The function that takes y to y? is not Lipschitz as a function on all
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Figure 6.9: The exponential (solid line) together with fy, f1, f2, f3 (dashed).

of R. As we approach x = 1 from the left, the solution becomes larger and larger. The
derivative of the solution grows as y2, and so the L required has to be larger and larger as
Yo grows. If we apply the theorem with xg close to 1 and yp = 1_1XO we find that the / that
the proof guarantees is smaller and smaller as x( approaches 1.

The h from the proof is not the best h. By picking a correctly, the proof of the theorem
guarantees 1 = 1—V3/2 ~ 0.134 (we omit the calculation) for xo = 0 and yo = 1, even though

we saw above that any /i < 1 should work.

Example 6.3.5: Consider the equation

f'(2) =24/|f (%)

, f()=0.

The function F(x, y) = 2, /| y| is continuous, but not Lipschitz in y (why?). The equation
does not satisfy the hypotheses of the theorem. The function

f(x)={x22 ifx >0,

—x- ifx <0,

is a solution, but f(x) = 0 is also a solution. A solution exists, but is not unique.

Example 6.3.6: Consider y’ = ¢(x) where ¢(x) :=0if x € Q and ¢(x) == 1if x ¢ Q. In
other words, the F(x, y) = @(x) is discontinuous. The equation has no solution regardless
of the initial conditions. A solution would have derivative ¢, but ¢ does not have the
intermediate value property at any point (why?). No solution exists by Darboux’s theorem.

The examples show that without the Lipschitz condition, a solution might exist but not
be unique, and without continuity of F, we may not have a solution at all. It is in fact a
theorem, the Peano existence theorem, that if F is continuous a solution exists (but may not
be unique).
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Remark 6.3.7. 1t is possible to weaken what we mean by “solution to y’ = F(x,y)” by
focusing on the integral equation f(x) = yo + /x Z F(t, f(t)) dt. For example, let H be the
Heaviside function®, that is H(x) := 0 for x < 0 and H(x) := 1 for x > 0. Then y’ = H(x),
y(0) = 0, is a common equation. The “solution” is the ramp function f(x) := 0if x <0
and f(x) := x if x > 0, since this function satisfies f(x) = fox H(t) dt. Notice, however, that
£'(0) does not exist, so f is only a so-called weak solution to the differential equation.

6.3.4 Exercises

Exercise 6.3.1: Let I,] C R be intervals. Let F: I X ] — R be a continuous function of two variables and
suppose f: I — | be a continuous function. Show that F(x, f(x)) is a continuous function on I.

Exercise 6.3.2: Let I, ] C R be closed bounded intervals. Show that if F: I X ] — R is continuous, then F
is bounded.

Exercise 6.3.3: We proved Picard’s theorem under the assumption that xo = 0. Prove the full statement of
Picard’s theorem for an arbitrary xo.

Exercise 6.3.4: Let f'(x) = x f(x) be our equation. Start with the initial condition f(0) = 2 and find the
Picard iterates fo, f1, f2, f3, fa-

Exercise 6.3.5: Suppose F: I X | — R is a function that is continuous in the first variable, that is, for every
fixed y the function that takes x to F(x,y) is continuous. Further, suppose F is Lipschitz in the second
variable, that is, there exists a number L such that

|F(x,y)—F(x,z)|sL|y—z| forally,z €], x €l

Show that F is continuous as a function of two variables. Therefore, the hypotheses in the theorem could be
made even weaket.

Exercise 6.3.6: A common type of equation one encounters are linear first order differential equations,
that is equations of the form

v +px)y=qx),  y(xo) = yo.

Prove Picard’s theorem for linear equations. Suppose I is an interval, xo € [,andp: I — Rand g: I - R
are continuous. Show that there exists a unique differentiable f: I — R, such that y = f(x) satisfies the
equation and the initial condition. Hint: Assume existence of the exponential function and use the integrating
factor formula for existence of f (prove that it works and then that it is unique):

f(x) = oo PO (/ eﬁfop(s)dsq(t)dt +yol-
X0

Exercise 6.3.7: Consider the equation f’(x) = f(x), from Example 6.3.3. Show that given any xo, any yo,
and any positive h < 1/2, we can pick a > 0 large enough that the proof of Picard’s theorem guarantees a
solution for the initial condition f(xo) = yo in the interval [xo — h, xo + h].

*Named for the English engineer, mathematician, and physicist Oliver Heaviside (1850-1825).


https://en.wikipedia.org/wiki/Oliver_Heaviside
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Exercise 6.3.8: Consider the equation y’ = y'/3x.

a) Show that for the initial condition y(1) = 1, Picard’s theorem applies. Find an a > 0, M, L, and h that
would work in the proof.

b) Show that for the initial condition y(1) = 0, Picard’s theorem does not apply.
c¢) Find a solution for y(1) = 0 anyway.

Exercise 6.3.9: Consider the equation xy’ = 2y.
a) Show that y = Cx? is a solution for every constant C.
b) Show that for every xo # 0 and every yo, Picard’s theorem applies for the initial condition y(xo) = yo.
c) Show that y(0) = yo is solvable if and only if yo = 0.
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Chapter 7

Metric Spaces

7.1 Metric spaces

Note: 1.5 lectures

As mentioned in the introduction, the main idea in analysis is to take limits. In chapter 2
we learned to take limits of sequences of real numbers. And in chapter 3 we learned to
take limits of functions as a real number approached some other real number.

We want to take limits in more complicated contexts. For example, we want to have
sequences of points in 3-dimensional space. We wish to define continuous functions of
several variables. We even want to define functions on spaces that are a little harder to
describe, such as the surface of the earth. We still want to talk about limits there.

Finally, we have seen the limit of a sequence of functions in chapter 6. We wish to unify
all these notions so that we do not have to reprove theorems over and over again in each
context. The concept of a metric space is an elementary yet powerful tool in analysis. And
while it is not sufficient to describe every type of limit we find in modern analysis, it gets
us very far indeed.

Definition 7.1.1. Let X be a set, and let d: X X X — R be a function such that for all
x,y,z€X

(i) d(x,y)=0. (nonnegativity)

(ii) d(x,y) = 0if and only if x = y. (identity of indiscernibles)
(iii) d(x,y) =d(y, x). (symmetry)
(iv) d(x,z) < d(x,y)+d(y, z). (triangle inequality)

The pair (X, d) is called a metric space. The function d is called the metric or the distance
function. Sometimes we write just X as the metric space instead of (X, d) if the metric is
clear from context.

The geometric idea is that d is the distance between two points. Items (i)—(iii) have
obvious geometric interpretation: Distance is always nonnegative, the only point that is
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distance 0 away from x is x itself, and finally that the distance from x to y is the same as the
distance from y to x. The triangle inequality (iv) has the interpretation given in Figure 7.1.

Figure 7.1: Diagram of the triangle inequality in metric spaces.

For the purposes of drawing, it is convenient to draw figures and diagrams in the plane
with the metric being the euclidean distance. However, that is only one particular metric
space. Just because a certain fact seems to be clear from drawing a picture does not mean it
is true in every metric space. You might be getting sidetracked by intuition from euclidean
geometry, whereas the concept of a metric space is a lot more general.

Let us give some examples of metric spaces.

Example 7.1.2: The set of real numbers R is a metric space with the metric
d(x,y) = |x - y|.

Items (i)—(iii) of the definition are easy to verify. The triangle inequality (iv) follows
immediately from the standard triangle inequality for real numbers:

dx,z)=|x -zl =|x—y+y—z| < |x—y|+|y - 2| = d(x,y) + d(y, 2).

This metric is the standard metric on R. If we talk about R as a metric space without
mentioning a specific metric, we mean this particular metric.

Example 7.1.3: We can also put a different metric on the set of real numbers. For example,
take the set of real numbers R together with the metric

|~y
dx,y) = — I
(x,v) g+ 1

Items (i)—(iii) are again easy to verify. The triangle inequality (iv) is a little bit more difficult.
Note that d(x, y) = g0(|x — y|) where ¢(t) = 77 and ¢ is an increasing function (positive
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derivative, see Figure 7.2). Hence

d(x,z) = p(x —z) = p(|x —y +y - 2|)
< glx -yl + |y -z))

_ -yl ly -+
e —y|+|y—z[+1
| -y ly - 2|
+

R R e R P VR
-yl v
-yl +1 -z|+1
y y

=d(x,y)+d(y, z).

The function d is thus a metric, and gives an example of a nonstandard metric on R. With
this metric, d(x, y) < 1forall x, y € R. That is, every two points are less than 1 unit apart.

Figure 7.2: Graph of - for positive t with an asymptote at 1.

An important metric space is the n-dimensional euclidean space R" = R xR x --- x R.
We use the following notation for points: x = (x1,x2,...,x,) € R". We will not write ¥
nor x for a point in R" as is common in multivariable calculus, we simply give it a name
such as x and we will remember that x is an element of R". We also write simply 0 € R”"
to mean the point (0,0, ...,0). Before making R" a metric space, we prove an important
inequality, the so-called Cauchy-Schwarz inequality.

Lemma 7.1.4 (Cauchy-Schwarz inequality*). Suppose x = (x1,x2,...,x,) € R", y =
(y1, Y2, -+, Yn) € R™. Then

2 n

Sl (545 4)

k:1 k:l

*Sometimes it is called the Cauchy-Bunyakovsky-Schwarz inequality. Karl Hermann Amandus Schwarz
(1843-1921) was a German mathematician and Viktor Yakovlevich Bunyakovsky (1804-1889) was a Ukrainian
mathematician. What we stated should really be called the Cauchy inequality, as Bunyakovsky and Schwarz
provided proofs for infinite-dimensional versions.


https://en.wikipedia.org/wiki/Hermann_Schwarz
https://en.wikipedia.org/wiki/Viktor_Bunyakovsky
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Proof. A square of a real number is nonnegative. Hence a sum of squares is nonnegative:

0< i i (xkyg - ngk)2

k=1 ¢=1
non

= (xiy‘% + x%yi — 2xkX0YkYe)

(ENEA EAEA AT o)

We relabel and divide by 2 to obtain precisely what we wanted,
2
0= (2% ) (L o) :
k=1

Example 7.1.5: Let us construct the standard metric for R". Define

n

d(x,y) = \/(xl - yl)2 + (xp — yg)2 4+t (x, — yn)2 = JZ (xx — yk)z.

k=1

For n = 1, the real line, this metric agrees with what we defined above. For n > 1, the
only tricky part of the definition to check, as before, is the triangle inequality. It is less
messy to work with the square of the metric. In the following estimate, note the use of the
Cauchy-Schwarz inequality.

(d(x, Z) Z (xx — zx)

:Z(xk—yk"‘]/k—zk)z
=1

((xk — ) + (yx — z1)* + 2(x — yi)(yx — Zk))

=

Sl
—_

(xk — yi)* + Z (yk — zk)* + ZZ(xk = Y)Yk — zk)

k_

Z(xk_]/k) +Z(yk_zk) +2¢Z(xk_yk) Z(yk—zk)
Pt

N D -y’ J > k- z) ) (d(x, y) +d(y, 2))"

Because the square root is an increasing function, the inequality is preserved when we take
the square root of both sides, and we obtain the triangle inequality.
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Example 7.1.6: The set of complex numbers C is the set of numbers z = x + iy, where x
and y are in R. By imposing i> = —1, we make C into a field. For the purposes of taking
limits, the set C is regarded as the metric space R?, where z = x + iy € C corresponds to
(x,y) € R2 For z = x + iy define the complex modulus by |z| := y/x2 + y2. Then for two
complex numbers z; = x1 + iy; and zp = x2 + iy, the distance is

d(z1,22) = \/(xl —x2)* + (1 —y2)’ = |z - 22l

Furthermore, when working with complex numbers it is often convenient to write the
metric in terms of the so-called complex conjugate: The conjugate of z = x +iyisz = x —iy.

Then |z|* = x2 + y?=2zZ,and so |21 — 20| = (21 — 22)(z1 — 22).

Example 7.1.7: An example to keep in mind is the so-called discrete metric. For any set X,
define
1 ifx#y,

d(x/y) = {0 lfxzy

That is, all points are equally distant from each other. When X is a finite set, we can draw a
diagram, see for example Figure 7.3. Of course, in the diagram the distances are not the
normal euclidean distances in the plane. Things become subtle when X is an infinite set
such as the real numbers.

Figure 7.3: Sample discrete metric space {a, b, ¢, d, e}, the distance between any two points is 1.

While this particular example may seldom come up in practice, it gives a useful “smell
test.” If you make a statement about metric spaces, try it with the discrete metric. To show
that (X, d) is indeed a metric space is left as an exercise.

Example 7.1.8: Let C([a,b], [R) be the set of continuous real-valued functions on the
interval [a, b]. Define the metric on C([a, b], R) as

a(f,g) = sup |f(x) —g(x)|.

x€la,b]

Let us check the properties. First, d(f, ) is finite as | f(x) - g(x)| is a continuous function
on a closed bounded interval [a, b], and so is bounded. It is clear that d(f, g) > 0, it is the
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supremum of nonnegative numbers. If f = g, then | f(x) - g(x)| = 0 for all x, and hence
d(f,g) = 0. Conversely, if d(f, g) = 0, then for every x, we have |f(x) - g(x)| < d(f, g) =0,
and hence f(x) = g(x) for all x, and so f = g. That d(f, g) = d(g, f) is equally trivial. To
show the triangle inequality we use the standard triangle inequality;

d(f,g) = sup |f(x)—g(x)| = sup |f(x)—h(x)+h(x) - g(x)|

xela,b] x€la,b]
< 51[1pb](|f(x) - h(x)| + |h(x) - g(x)l)
xe|a,

< Sl[lpb] |f(x) - h(x)| + 51[1}2] |h(x) — g(x)| =d(f,h)+d(h,g).

When treating C([a, b], R) as a metric space without mentioning a metric, we mean this
particular metric. Notice that d(f, g) = || f- g”[a by the uniform norm of Definition 6.1.9.

This example may seem esoteric at first, but it turns out that working with spaces
such as C([a, b], R) is really the meat of a large part of modern analysis. Treating sets of
functions as metric spaces allows us to abstract away a lot of the grubby detail and prove
powerful results such as Picard’s theorem with less work.

Example 7.1.9: Another useful example of a metric space is the sphere with a metric
usually called the great circle distance. Let S? be the unit sphere in R3, that is S? = {x €
R3 : x% + x5 + x% = 1}. Take x and y in S?, draw a line through the origin and x, and
another line through the origin and y, and let O be the angle that the two lines make.
Then define d(x,y) := 0. See Figure 7.4. The law of cosines from vector calculus says
d(x,y) = arccos(x1y1 + x2y2 + x3y3). It is relatively easy to see that this function satisfies
the first three properties of a metric. Triangle inequality is harder to prove, and requires a
bit more trigonometry and linear algebra than we wish to indulge in right now, so let us
leave it without proof.

Figure 7.4: The great circle distance on the unit sphere.

This distance is the shortest distance between points on a sphere if we are allowed
to travel on the sphere only. It is easy to generalize to arbitrary diameters. If we take a
sphere of radius r, we let the distance be d(x, y) := r0. As an example, this is the standard
distance you would use if you compute a distance on the surface of the earth, such as
computing the distance a plane travels from London to Los Angeles.
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Oftentimes it is useful to consider a subset of a larger metric space as a metric space
itself. We obtain the following proposition, which has a trivial proof.

Proposition 7.1.10. Let (X, d) be a metric space and Y C X. Then the restriction d|yxy is a
metricon Y.

Definition 7.1.11. If (X, d) is a metric space, Y C X, and d’ := d|yxy, then (Y, d’) is said to
be a subspace of (X, d).

It is common to simply write d for the metric on Y, as it is the restriction of the metric
on X. Sometimes we say d’ is the subspace metric and Y has the subspace topology.

A subset of the real numbers is bounded whenever all its elements are at most some
fixed distance from 0. When dealing with an arbitrary metric space there may not be some
natural fixed point 0, but for the purposes of boundedness it does not matter.

Definition 7.1.12. Let (X, d) be a metric space. A subset S C X is said to be bounded if there
existsa p € X and a B € R such that

d(p,x) < B forallx € S.

We say (X, d) is bounded if X itself is a bounded subset.

For example, the set of real numbers with the standard metric is not a bounded metric
space. It is not hard to see that a subset of the real numbers is bounded in the sense of
chapter 1 if and only if it is bounded as a subset of the metric space of real numbers with
the standard metric.

On the other hand, if we take the real numbers with the discrete metric, then we obtain
a bounded metric space. In fact, any set with the discrete metric is bounded.

There are other equivalent ways we could generalize boundedness, and are left as
exercises. Suppose X is nonempty to avoid a technicality. Then S C X being bounded is
equivalent to either

(i) For every p € X, there exists a B > 0 such that d(p, x) < B forall x € S.
(ii) diam(S) := sup{d(x,y):x,y € S} < co.

The quantity diam(S) is called the diameter of a set and is usually only defined for a
nonempty set.

7.1.1 Exercises

Exercise 7.1.1: Show that for every set X, the discrete metric (d(x,y) = 1if x # y and d(x, x) = 0) does
give a metric space (X, d).

Exercise 7.1.2: Let X := {0} be a set. Can you make it into a metric space?

Exercise 7.1.3: Let X := {a,b} be a set. Can you make it into two distinct metric spaces? (define two
distinct metrics on it)
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Exercise 7.1.4: Let the set X := {A, B, C} represent 3 buildings on campus. Suppose we wish our distance
to be the time it takes to walk from one building to the other. It takes 5 minutes either way between buildings
A and B. However, building C is on a hill and it takes 10 minutes from A and 15 minutes from B to get to C.
On the other hand it takes 5 minutes to go from C to A and 7 minutes to go from C to B, as we are going
downbhill. Do these distances define a metric? If so, prove it, if not, say why not.

Exercise 7.1.5: Suppose (X, d) is a metric space and ¢: [0,00) — R is an increasing function such
that @(t) > O for all t and @(t) = 0 if and only if t = 0. Also suppose ¢ is subadditive, that is,
@(s +1t) < @(s) + @(t). Show that with d'(x,y) = ¢(d(x,y)), we obtain a new metric space (X, d’).
Exercise 7.1.6: Let (X, dx) and (Y, dy) be metric spaces.

a) Show that (X XY, d) with d((xl, 1), (x2, yz)) = dx(x1,x2) + dy(y1, y2) is a metric space.

b) Show that (X XY, d) with d((xl, 1), (x2, yz)) = max{dx(xl, x2), dy(y1, yz)} is a metric space.

Exercise 7.1.7: Let X be the set of continuous functions on [0, 1]. Let ¢: [0,1] — (0, c0) be continuous.
Define

a(f, ) = /01 |f(x) = g(x)| @ (x) dx.
Show that (X, d) is a metric space.
Exercise 7.1.8: Let (X, d) be a metric space. For nonempty bounded subsets A and B let
d(x,B) = inf{d(x, b):be B} and d(A,B) = sup{d(a,B) ta € A}.
Now define the Hausdorff metric as
du(A, B) := max{d(A, B),d(B, A)}.

Note: dy can be defined for arbitrary nonempty subsets if we allow the extended reals.

a) Let Y C P(X) be the set of bounded nonempty subsets. Prove that (Y, dp) is a so-called pseudometric
space: dpy satisfies the metric properties (i), (iii), (iv), and further dg(A, A) =0 forall A€Y.

b) Show by example that d itself is not symmetric, that is d(A, B) # d(B, A).
c) Find a metric space X and two different nonempty bounded subsets A and B such that dy (A, B) = 0.

Exercise 7.1.9: Let (X, d) be a nonempty metric space and S C X a subset. Prove:
a) S is bounded if and only if for every p € X, there exists a B > 0 such that d(p, x) < B forall x € S.
b) A nonempty S is bounded if and only if diam(S) = sup{d(x,y): x,y € S} < co.

Exercise 7.1.10:
a) Working in R, compute diam([a, b]).
b) Working in R", for every r > 0, let B, := {x} + x5 +--- + x2 < r?}. Compute diam(B, ).

c) Suppose (X, d) is a metric space with at least two points, d is the discrete metric, and p € X. Compute
diam({p}) and diam(X), then conclude that (X, d) is bounded.
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Exercise 7.1.11:
a) Find a metric d on N such that N is an unbounded set in (N, d).
b) Find a metric d on N such that N is a bounded set in (N, d).
c) Find a metric d on N such that for every n € N and every € > 0, there exists an m € N such that

din,m) < e.

Exercise 7.1.12: Let C'([a, b], R) be the set of once continuously differentiable functions on [a,b]. Define

d(f,8) = lf = glliap; + Il f = &'llap),
where ||-||(4,p) is the uniform norm. Prove that d is a metric.

Exercise 7.1.13: Consider {* the set of sequences {x,}°°_, of real numbers such that 3,;_; x2 < co.

a) Prove the Cauchy—-Schwarz inequality for two sequences {x,}_ and {y,}_, in *: Prove that
i XnYu converges (absolutely) and

(i xnyn) < (i X%)(i yﬁ)-

n=1 n=1 n=1

b) Prove that €2 is a metric space with the metric d(x, y) = \/ Do (y — y,)2. Hint: Don't forget to show
that the series for d(x, y) always converges to some finite number.
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7.2 Open and closed sets

Note: 2 lectures

7.2.1 Topology

Before we get to convergence, we define the so-called topology. That is, we define open and
closed sets in a metric space. And before that, we define two special open and closed sets.

Definition 7.2.1. Let (X, d) be a metric space, x € X, and 6 > 0. Define the open ball, or
simply ball, of radius 6 around x as

B(x, ) = {y € X:d(x,y) < 6}.

Define the closed ball as
C(x,0) ={ye X :d(x,y) < 6}.

When dealing with different metric spaces, it is sometimes vital to emphasize which
metric space the ball is in. We do this by writing Bx(x, 0) := B(x, 6) or Cx(x, ) := C(x, 0).

Example 7.2.2: Take the metric space R with the standard metric. For x € Rand 6 > 0,
B(x,0)=(x—=06,x+0) and C(x,0)=[x-0,x+0]

Example 7.2.3: Be careful when working on a subspace. Consider the metric space [0, 1] as
a subspace of R. Then in [0, 1],

B(0,1/2) = Bj1)(0,1/2) = {y € [0,1] : |0 — y| < 1/2} = [0, 1/2).

This is different from Br(0, /2) = (-1/2,1/2). The important thing to keep in mind is which
metric space we are working in.

Definition 7.2.4. Let (X, d) be a metric space. A subset V C X is open if for every x € V,
there exists a 6 > 0 such that B(x, ) c V. See Figure 7.5. A subset E C X is closed if the
complement E€ = X \ E is open. When the ambient space X is not clear from context, we
say V is open in X and E is closed in X.

If x € V and V is open, then we say V is an open neighborhood of x (or sometimes just
neighborhood).

Intuitively, an open set V is a set that does not include its “boundary.” Wherever we
are in V, we are allowed to “wiggle” a little bit and stay in V. Similarly, a set E is closed if
everything not in E is some distance away from E. The open and closed balls are examples
of open and closed sets (this must still be proved). But not every set is either open or closed.
Generally, most subsets are neither.
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Figure 7.5: Open set in a metric space. Note that 6 depends on x.

Example 7.2.5: The set (0,0) c R is open: Given any x € (0,), let 6 := x. Then
B(x,06) =(0,2x) C (0, 00).

The set [0, ) C R is closed: Given x € (—o0,0) = [0, )¢, let 6 := —x. Then B(x, ) =
(—2x,0) C (=0, 0) = [0, ).

The set [0, 1) C R is neither open nor closed. First, every ball in R around 0, B(0, 6) =
(=0, 6), contains negative numbers and hence is not contained in [0, 1). So [0, 1) is not open.
Second, every ball in R around 1, B(1,6) = (1 — 6,1 + 6), contains numbers strictly less
than 1 and greater than 0 (e.g. 1 — /2 as long as 0 < 2). Thus [0,1)° = R\ [0, 1) is not open,
and [0, 1) is not closed.

If (X, d) is any metric space, and x € X is a point, then {x} is closed (exercise). On the
other hand, {x} may or may not be open depending on X. The set {0} C R is not open as
B(0, 6) contains nonzero numbers for every 6 > 0. If X = {x}, then {x} is open.

Proposition 7.2.6. Let (X, d) be a metric space.
(i) 0 and X are open.
(i) If V4, V2, ..., Vi are open subsets of X, then

.

Vi
j=1
is also open. That is, a finite intersection of open sets is open.
(iii) If {Vr}rer is an arbitrary collection of open subsets of X, then
v
Ael
is also open. That is, a union of open sets is open.

The index set I in (iii) can be arbitrarily large. By (J,¢; Vi, we simply mean the set of
all x such that x € V) for at least one A € I.

Proof. The sets @ and X are obviously open in X.
Let us prove (ii). If x € ﬂ;‘zl Vj, then x € V; for all j. As V; are all open, for every j
there exists a 6; > 0 such that B(x, 6;) C V. Take 6 := min{01, 62, ..., 6} and notice 6 > 0.
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We have B(x, 0) C B(x, 6;) C V; for every j and so B(x, ) C ﬂ;'(=1 V;. Consequently the
intersection is open.

Let us prove (iii). If x € [ J,¢; Vi, then x € V) for some A € I. As V} is open, there exists
a 6 > 0 such that B(x, 6) € V. But then B(x, 0) C [J,¢r Vi, and so the union is open. O

Example 7.2.7: Notice the difference between items (ii) and (iii). Item (ii) is not true for an
arbitrary intersection. For instance, (;_,(~1/n,1/n) = {0}, which is not open.

The proof of the following analogous proposition for closed sets is left as an exercise.
Proposition 7.2.8. Let (X, d) be a metric space.
(1) 0 and X are closed.
(i) If{Er} el is an arbitrary collection of closed subsets of X, then
[
Ael

is also closed. That is, an intersection of closed sets is closed.
(iii) If E1,Ea, ..., Ex are closed subsets of X, then

k
LJE
j=1
is also closed. That is, a finite union of closed sets is closed.

Despite the naming, we have not yet shown that the open ball is open and the closed
ball is closed. Let us show these facts now to justify the terminology.

Proposition 7.2.9. Let (X, d) be a metric space, x € X, and 6 > 0. Then B(x, 0) is open and
C(x, 0) is closed.
Proof. Lety € B(x,0). Leta := 0 —d(x,y). As a > 0, consider z € B(y, a). Then

dx,z) <d(x,y)+d(y,z) <dx,y)+a=d(x,y)+06—d(x,y) = 0.

Therefore, z € B(x, 0) for every z € B(y, a). So B(y,a) C B(x,0), and so B(x, 0) is open.
See Figure 7.6.
The proof that C(x, 6) is closed is left as an exercise. O

Again, be careful about which metric space we are in. The set [0, 1/2) is an open ball in
[0, 1], and so [0, 1/2) is an open set in [0, 1]. On the other hand, [0, 1/2) is neither open nor
closed in R.

Proposition 7.2.10. Let a, b be two real numbers, a < b. Then (a,b), (a, ), and (—co, b) are
open in R. Also [a, b], [a, 00), and (—oo, b] are closed in R.

The proof is left as an exercise. Keep in mind that there are many other open and closed
sets in the set of real numbers.
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_________

Figure 7.6: Proof that B(x, 0) is open: B(y, &) C B(x, 0) with the triangle inequality illustrated.

Proposition 7.2.11. Suppose (X, d) is a metric space, and Y € X. Then U C Y isopen in Y
(in the subspace topology) if and only if there exists an open set V C X (so open in X) such that
vny=U.

For example, let X := R, Y :=[0,1], U := [0,1/2). We saw that U is an open setin Y. We
may take V = (-1/2,1/2).

Proof. Suppose V C Xisopenand VNY =U. Let x € U. As V isopen and x € V, there
exists a 6 > 0 such that Bx(x,6) c V. Then

By(x,0) = Bx(x,0)nYcVnY=U.

SoU isopeninY.
The proof of the opposite direction, that is, that if U C Y is open in the subspace
topology there exists a V' is left as Exercise 7.2.12. O

A hint for finishing the proof (the exercise) is that a useful way to think about an open
set is as a union of open balls. If U is open, then for each x € U, thereisa 6, > 0 (depending
on x) such that B(x, 6x) € U. Then U = (J,¢;; B(x, 0x).

In the case of an open subset of an open set or a closed subset of a closed set, matters
are simpler.

Proposition 7.2.12. Suppose (X, d) is a metric space, V C X is open, and E C X is closed.
(1) U c V isopen in the subspace topology if and only if U is open in X.
(if) F C E is closed in the subspace topology if and only if F is closed in X.

Proof. We prove (i) and leave (ii) as an exercise.
If U C V is open in the subspace topology, by Proposition 7.2.11, there isaset W C X
open in X such that U = W N V. Intersection of two open sets is open so U is open in X.
Now suppose U is open in X. Then U = U N V. So U is open in V again by
Proposition 7.2.11. O
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7.2.2 Connected sets

Let us generalize the idea of an interval to general metric spaces. One of the main features
of an interval in R is that it is connected—that we can continuously move from one point
of it to another point without jumping. For example, in R we usually study functions on
intervals, and in more general metric spaces we usually study functions on connected sets.

Definition 7.2.13. A nonempty* metric space (X, d) is connected if the only subsets of X
that are both open and closed (so-called clopen subsets) are @ and X itself. If a nonempty
(X, d) is not connected we say it is disconnected.

When we apply the term connected to a nonempty subset A C X, we mean that A with
the subspace topology is connected.

In other words, a nonempty X is connected if whenever we write X = X; U X, where
X1 NX; =0 and X; and X, are open, then either X; = 0 or X; = 0. So to show X is
disconnected, we need to find nonempty disjoint open sets X; and X, whose union is X.
For subsets, we state this idea as a proposition. The proposition is illustrated in Figure 7.7.

Proposition 7.2.14. Let (X, d) be a metric space. A nonempty set S C X is disconnected if and
only if there exist open sets Uy and Uy in X such that U1 N U, NS =0, U1 NS #0, U, NS #0,
and

S=(U1NS)u(U2nS).

Figure 7.7: Disconnected subset. Notice that U; N U need not be empty, but Us N U, NS = 0.

Proof. First suppose S is disconnected: There are nonempty disjoint S; and S, that are
openin S and S = S1 U Sy. Proposition 7.2.11 says there exist U; and U, that are open in X
suchthatU1 NS =S and U, NS = S5.

For the other direction start with the U; and Uy. Then Uy NS and U N S are open in S
by Proposition 7.2.11. Via the discussion before the proposition, S is disconnected. O

Example 7.2.15: Suppose S C R and there are x, y, z such that x < z < y with x, y € S and
z ¢ S. Claim: S is disconnected. Proof: Notice

((=00,2) N S) U ((z,00) N S) = S.

*Some authors do not exclude the empty set from the definition, and the empty set would then be
connected. We avoid the empty set for essentially the same reason why 1 is neither a prime nor a composite
number: Our connected sets have exactly two clopen subsets and disconnected sets have more than two. The
empty set has exactly one.
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Proposition 7.2.16. A nonempty set S C R is connected if and only if S is an interval or a single
point.

Proof. Suppose S is connected. If S is a single point, then we are done. So suppose x < y
and x,y € S. If z € Ris such that x < z < y, then (-0, z) N S is nonempty and (z, o) N S
is nonempty. The two sets are disjoint. As S is connected, we must have they their union is
not S, so z € S. By Proposition 1.4.1, S is an interval.

If S is a single point, it is connected. Therefore, suppose S is an interval. Consider open
subsets U and U; of R such that U; NS and U; NS are nonempty, and S = (U1 N S) U (Uz N S).
We will show that U; NS and U, N S contain a common point, so they are not disjoint,
proving that S is connected. Suppose x € U; NS and y € U, N'S. Without loss of
generality, assume x < y. As S is an interval, [x, y] € S. Note that U, N [x, y] # 0, and let
z = inf(Up N [x, y]). We wish to show that z € U;. If z = x, then z € U;. If z > x, then
for every € > 0, the ball B(z, €) = (z — €, z + €) contains points of [x, y] not in Uy, as z is
the infimum of Uy N [x, y]. So z ¢ U, as U> is open. Therefore, z € U; as every point of
[x,y]is in Uy or U,. As Uy is open, B(z,0) C U; for a small enough 6 > 0. As z is the
infimum of the nonempty set U, N [x, y], there must exist some w € U N [x, y] such that
w € [z,z+0) C B(z,0) € Uj. Therefore, w e Uy NUxN[x,y]. SoUi NS and Uy NS are

not disjoint, and S is connected. See Figure 7.8. m|
th — th
| zZ, w L
Ix ! | Iy
(z—=0,z+0)

Figure 7.8: Proof that an interval is connected.

Example 7.2.17: Oftentimes a ball B(x, 0) is connected, but this is not necessarily true in
every metric space. For a simplest example, take a two point space {a, b} with the discrete
metric. Then B(a,2) = {a, b}, which is not connected as B(a, 1) = {a} and B(b, 1) = {b} are
open and disjoint.

7.2.3 Closure and boundary

Sometimes we wish to take a set and throw in everything that we can approach from the
set. This concept is called the closure.

Definition 7.2.18. Let (X, d) be a metric space and A C X. The closure of A is the set

A= m{E C X :Eisclosed and A C E}.

That is, A is the intersection of all closed sets that contain A.
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Proposition 7.2.19. Let (X, d) be a metric space and A C X. The closure Ais closed, and A C A.
Furthermore, if A is closed, then A = A.

Proof. The closure is an intersection of closed sets, so A is closed. There is at least one
closed set containing A, namely X itself, so A C A. If A is closed, then A is a closed set that
contains A. So A C A, and thus A = A. O

Example 7.2.20: The closure of (0,1) in R is [0, 1]. Proof: If E is closed and contains (0, 1),
then E contains 0 and 1 (why?). Thus [0, 1] C E. But [0, 1] is also closed. Hence, the closure

(0,1 =10,1].

Example 7.2.21: Be careful to notice what ambient metric space you are working with.
If X = (0, o), then the closure of (0,1) in (0, ) is (0, 1]. Proof: Similarly as above, (0, 1]
is closed in (0, o) (why?). Any closed set E that contains (0, 1) must contain 1 (why?).
Therefore, (0,1] € E, and hence (0, 1) = (0, 1] when working in (0, o).

Let us justify the statement that the closure is everything that we can “approach” from
within the set.

Proposition 7.2.22. Let (X, d) be a metric space and A C X. Then x € A if and only if for every
6>0,B(x,0)NA=#0.

Proof. Let us prove the two contrapositives. Let us show that x ¢ A if and only if there
exists a 6 > 0 such that B(x,0) N A = 0.

First suppose x ¢ A. We know A is closed. Thus there is a & > 0 such that B(x, §) C A
As A c A we see that B(x, ) C A" ¢ A° and hence B(x,0)NnA =0.

On the other hand, suppose there is a 6 > 0 such that B(x,0) N A = 0. In other words,
A C B(x,8)°. As B(x, )" is a closed set, as x ¢ B(x, 6)°, and as A is the intersection of
closed sets containing A, we have x ¢ A. O

We can also talk about the interior of a set (points we cannot approach from the
complement), and the boundary of a set (points we can approach both from the set and its
complement).

Definition 7.2.23. Let (X, d) be a metric space and A C X. The interior of A is the set
A° = {x € A : there exists a 6 > 0 such that B(x, 9) C A}.

The boundary of A is the set
0A = A\ A°.

Alternatively, the interior is the union of open sets lying in A, see Exercise 7.2.14. By
definition, A° C A; however, the points of the boundary may or may not be in A.

Example 7.2.24: Suppose A = (0,1] and X := R. Then A =1[0,1], A° = (0,1), and
dA ={0,1}.
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Example 7.2.25: Consider X := {a,b} with the discrete metric, and let A := {a}. Then
A=A°=AandJdA =0.

Proposition 7.2.26. Let (X, d) be a metric space and A C X. Then A° is open and JA is closed.

Proof. Given x € A°, thereis a 6 > 0 such that B(x, 6) C A. If z € B(x, 6), then as open
balls are open, there is an € > 0 such that B(z,€) € B(x,0) C A. So z € A°. Therefore,
B(x,6) c A°, and so A° is open.

As A° is open, then dA = A\ A° = AN (A°) is closed. O

The boundary is the set of points that are close to both the set and its complement. See
Figure 7.9 for a diagram of the next proposition.

Proposition 7.2.27. Let (X, d) be a metric space and A C X. Then x € JA if and only if for every
0 >0, B(x,0) N Aand B(x,6) N A® are both nonempty.

Figure 7.9: Boundary is the set where every ball contains points in the set and also its
complement.

Proof. Suppose x € dJA = A\ A° and let 6 > 0 be arbitrary. By Proposition 7.2.22, B(x, 6)
contains a point of A. If B(x, 0) contained no points of A, then x would be in A°. Hence
B(x, 6) contains a point of A€ as well.

Let us prove the other direction by contrapositive. Suppose x ¢ dA, so x ¢ A or x € A°.
If x ¢ A, then B(x, §) C A’ for some 6 > 0 as A is closed. So B(x, 6) N A is empty, because
A C A Ifxe A°, then B(x, 6) € A for some 6 > 0, so B(x, 0) N A€ is empty. O

We obtain the following immediate corollary about closures of A and A°. We simply
apply Proposition 7.2.22.

Corollary 7.2.28. Let (X, d) be a metric space and A C X. Then dA = A N A°.
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7.2.4 Exercises

Exercise 7.2.1: Prove Proposition 7.2.8. Hint: Apply Proposition 7.2.6 to the complements of the sets.
Exercise 7.2.2: Finish the proof of Proposition 7.2.9 by proving that C(x, 0) is closed.

Exercise 7.2.3: Prove Proposition 7.2.10.

Exercise 7.2.4: Suppose (X, d) is a nonempty metric space with the discrete topology. Show that X is
connected if and only if it contains exactly one element.

Exercise 7.2.5: Take Q with the standard metric, d(x,y) = |x — Y|, as our metric space. Prove that Q is
totally disconnected, that is, show that for every x,y € Q with x # y, there exists an two open sets U and
Vsuchthatx e U, ye V,UNV =0,and UV V = Q.

Exercise 7.2.6: Show that in a metric space, every open set can be written as a union of closed sets.

Exercise 7.2.7: Prove that in a metric space,
a) E is closed if and only if JE C E.
b) U is open if and only if U N U = 0.

Exercise 7.2.8: Prove that in a metric space,

a) Aisopen if and only if A° = A.

b) U c A® for every open set U such that U C A.
Exercise 7.2.9: Let X be a set and d, d’ be two metrics on X. Suppose there exists an « > 0 and p > 0 such

that ad(x,y) < d'(x,y) < pd(x,y) forall x,y € X. Show that U is open in (X, d) if and only if U is open
in (X, d’). That is, the topologies of (X, d) and (X, d’") are the same.

Exercise 7.2.10: Suppose {S;}, i € N, is a collection of connected subsets of a metric space (X, d), and there
exists an x € X such that x € S; for all i € N. Show that | J;2, S; is connected.

Exercise 7.2.11: Let A be a connected set in a metric space.
a) Is A connected? Prove or find a counterexample.
b) Is A° connected? Prove or find a counterexample.
Hint: Think of sets in R,

Exercise 7.2.12: Finish the proof of Proposition 7.2.11. Suppose (X, d) is a metric space and Y C X. Show
that with the subspace metricon 'Y, ifa set U C Y is open (in Y), then there exists an open set V. C X such
thatU =V nNY.

Exercise 7.2.13: Let (X, d) be a metric space.
a) For every x € X and 6 > 0, show B(x, ) c C(x, ).
b) Is it always true that B(x, 5) = C(x,0)? Prove or find a counterexample.

Exercise 7.2.14: Let (X, d) be a metric space and A C X. Show that A° = | J{V : Visopenand V C A}.

Exercise 7.2.15: Finish the proof of Proposition 7.2.12.
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Exercise 7.2.16: Let (X, d) be a metric space. Show that there exists a bounded metric d’ such that (X, d’)
has the same open sets, that is, the topology is the same.

Exercise 7.2.17: Let (X, d) be a metric space.

a) Prove that for every x € X, there either exists a 6 > 0 such that B(x, 6) = {x}, or B(x, 0) is infinite for
every 6 > 0.

b) Find an explicit example of (X, d), X infinite, where for every 6 > 0 and every x € X, the ball B(x, 6) is
finite.

c) Find an explicit example of (X, d) where for every 6 > 0 and every x € X, the ball B(x, 0) is countably
infinite.

d) Prove that if X is uncountable, then there exists an x € X and a 6 > 0 such that B(x, 0) is uncountable.

Exercise 7.2.18: For every x € R" and every 6 > 0 define the “rectangle” R(x,0) = (x1 — 0, x1 + 0) X
(x2=0,x2+0) X -+ X (x, — 0, x, + 0). Show that these sets generate the same open sets as the balls in
standard metric. That is, show that a set U C R" is open in the sense of the standard metric if and only if for
every point x € U, there exists a 6 > 0 such that R(x, ) c U.
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7.3 Sequences and convergence

Note: 1 lecture

7.3.1 Sequences

The notion of a sequence in a metric space is very similar to a sequence of real numbers.
The related definitions are essentially the same as those for real numbers in the sense of
chapter 2, where R with the standard metric d(x, y) = |x - y| is replaced by an arbitrary
metric space (X, d).

Definition 7.3.1. A sequence in a metric space (X, d) is a function x: N — X. As before we
write x,, for the nth element in the sequence, and for the whole sequence use the notation

(X}
A sequence {x,})_, is bounded if there exists a point p € X and B € R such that
dp,x,) < B forall n € N.

In other words, the sequence {x,,}_; is bounded whenever the set {x, : n € N} is bounded.
If {nk};":1 is a sequence of natural numbers such that ny,1 > ny for all k, then the
sequence {xp, }} , is said to be a subsequence of {x,}} ;.

Similarly we define convergence. See Figure 7.10, for an idea of the definition.

Definition 7.3.2. A sequence {x,} _, in a metric space (X, d) is said to converge to a point
p € X if for every € > 0, there exists an M € N such that d(x,,p) < € foralln > M. The
point p is said to be a limit of {x,}}_,. If the limit is unique, we write

lim x, =p.

n—0oo

A sequence that converges is convergent. Otherwise, the sequence is divergent.

X8 o

B . € X
J 2 K .
X10 X1

. X3
X5

Figure 7.10: Sequence converging to p. The first 10 points are shown and M = 7 for this €.
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The limit is unique. The proof is almost identical (word for word) to the proof of the
same fact for sequences of real numbers, Proposition 2.1.6. Proofs of many results we
know for sequences of real numbers can be adapted to the more general settings of metric
spaces. We must replace |x - y| with d(x, y) in the proofs and apply the triangle inequality
correctly.

Proposition 7.3.3. A convergent sequence in a metric space has a unique limit.

Proof. Suppose {x;,} ., has limits x and y. Take an arbitrary € > 0. From the definition
find an M; such that for all n > M;, d(x,, x) < ¢/2. Similarly find an M, such that for all
n > My, we have d(x,, y) < ¢/2. Now take an n such that n > M; and also n > M,, and
estimate

d(y,x) < d(y, xn) + d(xn, x)

<18 ¢
2 2

As d(y,x) < € for all € > 0, then d(x,y) = 0 and y = x. Hence the limit (if it exists) is

unique. O
The proofs of the following propositions are left as exercises.

Proposition 7.3.4. A convergent sequence in a metric space is bounded.

Proposition 7.3.5. A sequence {x,},_, in a metric space (X, d) converges to p € X if and only if

there exists a sequence {a, } ", of real numbers such that

d(xn,p) < a, forallneN, and lim a, = 0.

n—oo

Proposition 7.3.6. Let {x,}>_, be a sequence in a metric space (X, d).

(@) If{xu},, converges to p € X, then every subsequence {xy, }., converges to p.

(ii) If for some K € N the K-tail {x,}_ ., converges top € X, then {x,} _, converges to p.
Example 7.3.7: Take C ([a, b], [R) be the set of continuous functions with the metric being
the uniform norm. We saw that we obtain a metric space. If we look at the definition

of convergence, we notice that it is identical to uniform convergence. That is, {f, ‘:’zl
converges uniformly if and only if it converges in the metric space sense.

Remark 7.3.8. It is perhaps surprising that on the set of functions f: [a,b] — R (continuous
or not) there is no metric that gives pointwise convergence. Although the proof of this fact
is beyond the scope of this book.

7.3.2 Convergence in euclidean space

In the euclidean space R", a sequence converges if and only if every component converges:
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Proposition 7.3.9. Let {x,}*_, be a sequence in R", where x,y = (Xm,1, Xm2, - -+, Xmn) € R".
Then {x} _, converges if and only if {xy} > _, converges for every k = 1,2,...,n, in which
case

lim xm = (lim xm’1, lim xmrzl. . ey lim .Xm’n).

Proof. Suppose {x,,};,_, converges to y = (y1,Y2,---,yn) € R". Given € > 0, there exists
an M such that for all m > M, we have

a(y, xm) < €.

Fixsome k =1,2,...,n. Forallm > M,

vk = x| = (Vi = 2mp)” < JZ (ve = xms) = d(y, xn) < €.

=1

Hence the sequence {xy, }; _; converges to y.
For the other direction, suppose {x; k};,_, converges to yi for every k = 1,2,...,n.
Given € > 0, pick an M such that if m > M, then |yk - xm,k| <¢/ynforallk =1,2,...,n.

Then
JZH: 2 Zn: e\’ = €2
Ay, xm) = (yk = Xm k)" < (—) = — =€
k=1 k=1 Vn Pl
That is, the sequence {x,};,_, converges to y = (y1,¥2,...,¥yn) € R". O

Example 7.3.10: As we said, the set C of complex numbers z = x + iy is considered as the
metric space R?. The proposition says that the sequence {z,,} %, = {x, +iy,,}_, converges
to z = x + iy if and only if {x,}} _; converges to x and {y,} ., converges to y.

7.3.3 Convergence and topology

The topology—the set of open sets of a space—encodes which sequences converge.

Proposition 7.3.11. Let (X, d) be a metric space and {x,}>_, a sequence in X. Then {x,})_,
converges to p € X if and only if for every open neighborhood U of p, there exists an M € N such
that for all n > M, we have x, € U.

Proof. Suppose {x,},_, converges to p. Let U be an open neighborhood of p, then there
exists an € > 0 such that B(p, €) C U. As the sequence converges, find an M € N such that
for all n > M, we have d(p, x,,) < €, or in other words x, € B(p,€) C U.

Let us prove the other direction. Given € > 0, let U := B(p, €) be the neighborhood of p.
Then there is an M € N such that for n > M, we have x,, € U = B(p, €), or in other words,
d(p, x,) < €. O

A closed set contains the limits of its convergent sequences.
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Proposition 7.3.12. Let (X, d) be a metric space, E C X a closed set, and {x,};,_, a sequence in
E that converges to some p € X. Then p € E.

Proof. Let us prove the contrapositive. Suppose {x,} ", is a sequence in X that converges
top € E°. As E€ is open, Proposition 7.3.11 says that there is an M such that for all n > M,
xn € E€. So{xy}; | isnot a sequence in E. O

To take a closure of a set A, we start with A, and we throw in points that are limits of

sequences in A.

Proposition 7.3.13. Let (X, d) be a metric space and A ¢ X. Then p € A if and only if there
exists a sequence {x,}>_, of elements in A such that lim x, = p.
- n—00

Proof. Let p € A. For every n € N, Proposition 7.2.22 guarantees a point x, € B(p, 1/n) N A.
As d(p, x,) < 1/n, we have limy,_,o X, = p.
For the other direction, see Exercise 7.3.1. O

7.3.4 Exercises

Exercise 7.3.1: Finish the proof of Proposition 7.3.13: Let (X, d) be a metric space and A € X. Letp € X
be such that there exists a sequence {x,} | in A that converges to p. Prove that p € A.

Exercise 7.3.2:

a) Show that d(x,vy) = min{l,

X — y|} defines a metric on R.
b) Show that a sequence converges in (R, d) if and only if it converges in the standard metric.

c¢) Find a bounded sequence in (R, d) that contains no convergent subsequence.
Exercise 7.3.3: Prove Proposition 7.3.4.
Exercise 7.3.4: Prove Proposition 7.3.5.

Exercise 7.3.5: Suppose {x,} | converges to p. Suppose f: N — N is a one-to-one function. Show that
{xf(n) oy converges to p.

Exercise 7.3.6: Let (X, d) be a metric space where d is the discrete metric. Suppose {x,})’_, is a convergent
sequence in X. Show that there exists a K € N such that for all n > K, we have x,, = xk.

Exercise 7.3.7: A set S C X is said to be dense in X if X C S or in other words if for every p € X, there

exists a sequence {x,},’_, in S that converges to p. Prove that R" contains a countable dense subset.

Exercise 7.3.8 (Tricky): Suppose {U,};"_, is a decreasing (Uy,+1 C Uy for all n) sequence of open sets in a
metric space (X, d) such that (\,_; U, = {p} for some p € X. Suppose {x,}';_, is a sequence of points in X
such that x, € Uy,. Does {x,},"_, necessarily converge to p? Prove or construct a counterexample.

Exercise 7.3.9: Let E C X be closed and let {x,} _, be a sequence in X converging to p € X. Suppose
xn € E for infinitely many n € N. Show p € E.
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Exercise 7.3.10: Take R* = {—oo} U R U {oo} be the extended reals. Define d(x,y) = |%|x| - #ly” if
x,y € R, define d(co, x) := |1 |, d(—o0, x) == |1 + ﬁxl|for all x € R, and let d(co, —0) = 2.

 T+Hx]

a) Show that (R*, d) is a metric space.

b) Suppose {x,} >, is a sequence of real numbers such that for every M € R, there exists an N such that
Xp = M foralln > N. Show that lim x, = oo in (R*,d).

n—00

c) Show that a sequence of real numbers converges to a real number in (R*, d) if and only if it converges in
R with the standard metric.

Exercise 7.3.11: Suppose {V,,}}"_, is a sequence of open sets in (X, d) such that Vy11 D V), for all n. Let
{xn};_, be a sequence such that x, € V41 \ 'V, and suppose {x,}>_, converges to p € X. Show that
p €V where V =J;_; V.

Exercise 7.3.12: Prove Proposition 7.3.6.

Exercise 7.3.13: Let (X, d) be a metric space and {x,}"_, a sequence in X. Prove that {x,} | converges to
p € X if and only if every subsequence of {x,} _, has a subsequence that converges to p.

Exercise 7.3.14: Consider R", and let d be the standard euclidean metric. Let d’(x,y) = Y;_, |xe — yg|
and d”(x,y) = max{|x1 -yi|,|x2 -2 Xy — yn|}.
a) Use Exercise 7.1.6, to show that (R",d") and (R", d”) are metric spaces.

b) Let {xk}}. , beasequence in R" and p € R". Prove that the following statements are equivalent:
(1) {xx}3, converges to p in (R", d).
(2) {xx}y., converges to p in (R",d’).
(3) {xk}y, converges to p in (R",d”).
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7.4 Completeness and compactness

Note: 2 lectures

7.4.1 Cauchy sequences and completeness

Just like with sequences of real numbers, we define Cauchy sequences.

Definition 7.4.1. Let (X, d) be a metric space. A sequence {x,}, _; in X is a Cauchy sequence
if for every € > 0, there exists an M € N such that forall » > M and all k > M, we have

d(xy,, xx) < €.

The definition is again simply a translation of the concept from the real numbers to
metric spaces. A sequence of real numbers is Cauchy in the sense of chapter 2 if and only
if it is Cauchy in the sense above, provided we equip the real numbers with the standard
metric d(x,y) = |x - y|.

Proposition 7.4.2. A convergent sequence in a metric space is Cauchy.

Proof. Suppose {x,} | converges to p. Given € > 0, there is an M such that for all n > M,
we have d(p, x,) < €¢/2. Hence for all n, k > M, we have d(x,, xx) < d(x,, x) + d(x, xx) <
€/2+¢€/2 = €. O

Definition 7.4.3. We say a metric space (X, d) is complete or Cauchy-complete if every Cauchy
sequence {x,}>_, in X convergestoap € X.

Proposition 7.4.4. The space R" with the standard metric is a complete metric space.

For R = R, completeness was proved in chapter 2. The proof of completeness in R" is
a reduction to the one-dimensional case.

Proof. Let {xy}  _, be a Cauchy sequence in R", where x,, = (xm,l, X2, e, xm,n) e R",
As the sequence is Cauchy, given € > 0, there exists an M such that forall i, j > M,

d(xi, xj) <e.

Fixsome k =1,2,...,n. Fori,j > M,

n

|xl~,k - x]‘/k| = \/(xi,k — x]‘/k)z < J (xi,g — x]',[)z = d(xi,x]-) < E.

=1

Hence the sequence {x, «}; _, is Cauchy. As R is complete the sequence converges;
there exists a yx € R such that yx = limy o Xy k. Write vy = (y1,v2,...,y1) € R". By
Proposition 7.3.9, {x,,},>_, converges to y € R", and hence R" is complete. O
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In the language of metric spaces, the results on continuity of section §6.2, say that the
metric space C([a, b], R) of Example 7.1.8 is complete. The proof follows by “unrolling the
definitions,” and is left as Exercise 7.4.7.

Proposition 7.4.5. The space of continuous functions C([a,b], R) with the uniform norm as
metric is a complete metric space.

A subset of a complete metric space such as R" with the subspace metric need not be
complete. For example, (0, 1] with the subspace metric is not complete, as {1/n}}’_; is a
Cauchy sequence in (0, 1] with no limit in (0, 1]. However, a closed subspace of a complete
metric space is complete. After all, one way to think of a closed set is that it contains all
points reachable from the set via a sequence. The proof is Exercise 7.4.16.

Proposition 7.4.6. Suppose (X, d) is a complete metric space and E C X is closed. Then E is a
complete metric space with the subspace metric.

7.4.2 Compactness

Definition 7.4.7. Let (X, d) be a metric space and K C X. The set K is said to be compact if
for every collection of open sets {U, } 1¢r such that

KCUU/\,

there exists a finite subset {A1, Ay, ..., A} C I such that

m
K| Juy,.
j=1

A collection of open sets {U,} 1er as above is said to be an open cover of K. A way to say
that K is compact is to say that every open cover of K has a finite subcover.

Example 7.4.8: Let R be the metric space with the standard metric.

The set R is not compact. Proof: For j € N, let U; := (-j,j). Any x € R is in some
U; (by the Archimedean property), so we have an open cover. Suppose we have a finite
subcover R ¢ U;; UUj, U---UUj,, and suppose j; < j2 <--- < j,. Then R C U;,, but that
is a contradiction as j,; € R on one hand and j,, ¢ Uj,, = (—=jm, jm) on the other.

The set (0,1) C R is also not compact. Proof: Take the sets U; := (1/j,1 —1/j) for
j=3,4,5,.... Asabove (0,1) = U]f'iS U;. And similarly as above, if there exists a finite
subcover, then there is one U; such that (0, 1) C U, which again leads to a contradiction.

The set {0} C R is compact. Proof: Given an open cover {U)} ¢, there must exist a Ao
such that 0 € U, as it is a cover. But then U, gives a finite subcover.

We will prove below that [0, 1], and in fact every closed and bounded interval [a, b], is
compact.

Proposition 7.4.9. Let (X, d) be a metric space. If K C X is compact, then K is closed and
bounded.
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Proof. First, we prove that a compact set is bounded. Fix p € X. We have the open cover

o
Kc UB(p,n) = X.
n=1
If K is compact, then there exists some set of indices n1 < n < ... < n,, such that

K c | JB(p,nj) = Blp, nn).
j=1

As K is contained in a ball, K is bounded. See the left-hand side of Figure 7.11.

Next, we show a set that is not closed is not compact. Suppose K # K, that is, there is a
point x € K\ K. If y # x, then y ¢ C(x,1/n) for n € N such that 1/» < d(x, y). Furthermore,
x ¢ K, so

Kc O C(x, 1/n).
n=1

A closed ball is closed, so its complement C(x,1/x)  is open, and we have an open cover. If
we take any finite collection of indices 11 < 12 < ... < 1y, then

| C,m) = Cx,1fm)’
j=1

As x is in the closure of K, then C(x, 1/n,,) N K # (. So there is no finite subcover and K is
not compact. See the right-hand side of Figure 7.11. O

Figure 7.11: Proving compact set is bounded (left) and closed (right).

We prove below that in a finite-dimensional euclidean space, every closed bounded set
is compact. So closed bounded sets of R" are examples of compact sets. It is not true that
in every metric space, closed and bounded is equivalent to compact. A simple example
is an incomplete metric space such as (0, 1) with the subspace metric from R. There are
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many complete and very useful metric spaces where closed and bounded is not enough to
give compactness: C([a,b], R) is a complete metric space, but the closed unit ball C(0, 1) is
not compact, see Exercise 7.4.8. However, see also Exercise 7.4.12.

Not worrying about the boundedness for a moment, note further the difference between
being closed and being compact. Being closed depends on the ambient metric space: The
set (0, 1] is not closed in R, but it is closed in the subspace (0, o). However, a set K is
compact in some metric space (X, d) if and only if it is compact in the subspace metric on K.
So for a compact set, we do not have to ask what metric space it lives in. On the other hand,
every set is always closed in the subspace metric as a subset of itself. See also Exercise 7.4.6.

A useful property of compact sets in a metric space is that every sequence in the set has
a convergent subsequence converging to a point in the set. Such sets are called sequentially
compact. We will prove that in the context of metric spaces, a set is compact if and only if it
is sequentially compact. First we prove a lemma.

Lemma 7.4.10 (Lebesgue covering lemma®*). Let (X, d) be a metric space and K C X. Suppose
every sequence in K has a subsequence convergent in K. Given an open cover {Up}res of K, there
exists a & > 0 such that for every x € K, there exists a A € I with B(x, 6) C U,.

Proof. We prove the lemma by contrapositive. If the conclusion is not true, then there is
an open cover {U) } 11 of K with the following property. For every n € N, there exists an
xn € K such that B(x,,1/x) is not a subset of any U,. Take any x € K. Thereisa A € I such
that x € U). As U, is open, there is an € > 0 such that B(x, €) ¢ U,. Take M such that
I/m < ¢/2. If y € B(x,€/2) and n > M, then

B(y,1/n) € B(y,1/m) C B(y,¢/2) € B(x,e) C Uy,

where B(y, €/2) C B(x,€) follows by triangle inequality. See Figure 7.12. Thus y # x,,.
In other words, for all n > M, x, ¢ B(x,¢/2). The sequence cannot have a subsequence
converging to x. As x € K was arbitrary we are done. O

It is important to recognize what the lemma says. It says that if K is sequentially
compact, then given any cover there is a single 6 > 0. The 6 depends on the cover, but, of
course, it does not depend on x.

For example, let K := [-10,10] and let U,, := (n,n + 2) for n € Z give an open cover.
Consider x € K. Thereisann € Z,suchthatn < x <n+1. If n < x < n+1/2, then

B(x,1/2) € Up—1. If n +1/2< x < n +1, then B(x,1/2) C Uy,. So 6 = 1/2 will do. The sets
Uj, := (%,2), again give an open cover, but now the largest 6 that works is 1/4.
On the other hand, N C R is not sequentially compact. It is an exercise to find a cover

for which no 6 > 0 works.

Theorem 7.4.11. Let (X, d) be a metric space. Then K C X is compact if and only if every
sequence in K has a subsequence converging to a point in K.

*Named after the French mathematician Henri Léon Lebesgue (1875-1941). The number 6 is sometimes
called the Lebesgue number of the cover.


https://en.wikipedia.org/wiki/Henri_Lebesgue

7.4. COMPLETENESS AND COMPACTNESS 283

Figure 7.12: Proof of Lebesgue covering lemma. Note that B(y,¢/2) C B(x,€) by triangle
inequality.

Proof. Claim: Let K C X be a subset of X and {x,};_, a sequence in K. Suppose that for each
x € K, there is a ball B(x, ay) for some ay > 0 such that x, € B(x, ay) for only finitely many
n € N. Then K is not compact.

Proof of the claim: Notice

Kc U B(x, atx).

xeK

Any finite collection of these balls contains at most finitely many elements of {x,}> ,, and
so there must be an x, € K not in their union. Hence, K is not compact and the claim is
proved.

So suppose that K is compact and {x,}]_; is a sequence in K. Then there exists an
x € K such that for all 6 > 0, B(x, 0) contains x,, for infinitely many n € N. We define the
subsequence inductively. The ball B(x, 1) contains some x, so let n1 := k. Suppose 71
is defined. There must exist a k > n;_1 such that x4 € B(x,1/j). Define n; := k. We now
posses a subsequence {x, . ]?"’:1. Since d(x, x,, j) < 1/j, Proposition 7.3.5 says lim; 0 x5, S =

For the other direction, suppose every sequence in K has a subsequence converging
in K. Take an open cover {U, } 11 of K. Using the Lebesgue covering lemma above, find a
0 > 0 such that for every x € K, thereis a A € I with B(x,0) C Uj.

Pick x; € K and find Ay € I such that B(x1,0) ¢ U,,. If K ¢ U,,, we stop as we
have found a finite subcover. Otherwise, there must be a point x, € K \ Uy,. Note that
d(x2,x1) = 0. There must exist some A, € I such that B(x2, 6) € U,,. We work inductively.
Suppose A1 is defined. Either Uy, U Uy, U--- U U,, , is a finite cover of K, in which case
we stop, or there must be a point x, € K\ (U, UUy, U---UU,,_,). Note that d(x,, xj) > 6
forallj =1,2,...,n —1. Next, there must be some A, € I such that B(x,,6) c U,,. See
Figure 7.13.

Either at some point we obtain a finite subcover of K, or we obtain an infinite sequence
{xx})_, as above. For contradiction, suppose that there is no finite subcover and we
have the sequence {x,} ;. For all n and k, n # k, we have d(x,,xx) > 6. So no
subsequence of {x,})_; is Cauchy. Hence, no subsequence of {x,}’’_; is convergent, which
is a contradiction. m]
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Figure 7.13: Covering K by U,. The points x1, x2, x3, x4, the three sets U,,, U,,, U,,, and the
first three balls of radius 6 are drawn.

Example 7.4.12: Theorem 2.3.8, the Bolzano—Weierstrass theorem for sequences of real
numbers, says that every bounded sequence in R has a convergent subsequence. Therefore,
every sequence in a closed interval [2,b] C R has a convergent subsequence. The limit is
also in [a, b] as limits preserve non-strict inequalities. Hence a closed bounded interval
[a,b] C Ris (sequentially) compact.

Proposition 7.4.13. Let (X, d) be a metric space and let K C X be compact. If E C K is a closed
set, then E is compact.

Because K is closed, E is closed in K if and only if it is closed in X. See Proposition 7.2.12.

Proof. Let {x,}) _, be a sequence in E. It is also a sequence in K. Therefore, it has a
convergent subsequence {xy; ]?";1 that converges to some x € K. As E is closed the limit of

a sequence in E is also in E and so x € E. Thus E must be compact. O

Theorem 7.4.14 (Heine-Borel*). A closed bounded subset K C R" is compact.

So subsets of R" are compact if and only if they are closed and bounded, a condition
that is much easier to check. Let us reiterate that the Heine—Borel theorem only holds for
R and not for metric spaces in general. The theorem does not hold even for subspaces of
R", just in R" itself. In general, compact implies closed and bounded, but not vice versa.

Proof. For R = R!, suppose K C R is closed and bounded. Then K C [a, b] for some closed
and bounded interval, which is compact by Example 7.4.12. As K is a closed subset of a
compact set, it is compact by Proposition 7.4.13.

We carry out the proof for n = 2 and leave arbitrary n as an exercise. As K C R? is
bounded, there exists a set B = [a, b] X [c, d] ¢ R? such that K ¢ B. We will show that B is
compact. Then K, being a closed subset of a compact B, is also compact.

Let {(xk,yk)}]io:1 be a sequence in B. Thatis,a < xy < bandc < yx < d forall k. A
bounded sequence of real numbers has a convergent subsequence so there is a subsequence

*Named after the German mathematician Heinrich Eduard Heine (1821-1881), and the French mathe-
matician Félix Edouard Justin Emile Borel (1871-1956).
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{xkj}]?";l that is convergent. The subsequence {ykj};il is also a bounded sequence so there

exists a subsequence {yk], }22, that is convergent. A subsequence of a convergent sequence
Ji=

is still convergent, so {x, };2; is convergent. Let
iVi=

x = lim x and y = lim yy, .

i—oo i i—o00

By Proposition 7.3.9, {(xk/i' yk].i)}z1 converges to (x, y). Furthermore, as a2 < x; < b and
¢ < yx < d for all k, we know that (x,y) € B. O

Example 7.4.15: The discrete metric provides interesting counterexamples again. Let (X, d)
be a metric space with the discrete metric, that is, d(x,y) = 1 if x # y. Suppose X is an
infinite set. Then

(i) (X,d)is a complete metric space.
(ii) Any subset K C X is closed and bounded.
(iii) A subset K C X is compact if and only if it is a finite set.

(iv) The conclusion of the Lebesgue covering lemma is always satisfied, e.g. with 6 =1/2,
even for noncompact K C X.

The proofs of the statements above are either trivial or are relegated to the exercises below.
Remark 7.4.16. A subtle issue with Cauchy sequences, completeness, compactness, and
convergence is that compactness and convergence only depend on the topology, that is,

on which sets are the open sets. On the other hand, Cauchy sequences and completeness
depend on the actual metric. See Exercise 7.4.19.

7.4.3 Exercises
Exercise 7.4.1: Let (X, d) be a metric space and A a finite subset of X. Show that A is compact.
Exercise 7.4.2: Let A = {1/n:n e N} C R.

a) Show that A is not compact directly using the definition.
b) Show that A U {0} is compact directly using the definition.

Exercise 7.4.3: Let (X, d) be a metric space with the discrete metric.
a) Prove that X is complete.
b) Prove that X is compact if and only if X is a finite set.

Exercise 7.4.4:
a) Show that the union of finitely many compact sets is a compact set.

b) Find an example where the union of infinitely many compact sets is not compact.

Exercise 7.4.5: Prove Theorem 7.4.14 for arbitrary dimension. Hint: The trick is to use the correct notation.
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Exercise 7.4.6: Show that a compact set K (in any metric space) is itself a complete metric space (using the
subspace metric).

Exercise 7.4.7: Let C([a,b], R) be the metric space as in Example 7.1.8. Show that C([a,b],R) is a
complete metric space.

Exercise 7.4.8 (Challenging): Let C ([0, 1], R) be the metric space of Example 7.1.8. Let 0 denote the zero
function. Then show that the closed ball C(0, 1) is not compact (even though it is closed and bounded). Hints:
Construct a sequence of distinct continuous functions { fu},;_; such that d(f,,0) = 1 and d(fu, fx) = 1 for
all n # k. Show that the set { f, : n € N} ¢ C(0, 1) is closed but not compact. See chapter 6 for inspiration.

Exercise 7.4.9 (Challenging): Show that there exists a metric on R that makes R into a compact set.

Exercise 7.4.10: Suppose (X, d) is complete and suppose we have a countably infinite collection of nonempty
compact sets E1 D E» D E3 D ---. Prove ﬂ;il E;# .

Exercise 7.4.11 (Challenging): Let C([0,1], R) be the metric space of Example 7.1.8. Let K be the set of
f € C([0,1], R) such that f is equal to a quadratic polynomial, i.e. f(x) = a + bx + cx?, and such that
|f(x)| < 1forall x € [0,1], that is f € C(0,1). Show that K is compact.

Exercise 7.4.12 (Challenging): Let (X, d) be a complete metric space. Show that K C X is compact if
and only if K is closed and such that for every € > 0 there exists a finite set of points x1,x2, ..., X, with
K c U7=1 B(xj, €). Note: Such a set K is said to be totally bounded, so in a complete metric space a set is
compact if and only if it is closed and totally bounded.

Exercise 7.4.13: Take N C R using the standard metric. Find an open cover of N such that the conclusion of
the Lebesgue covering lemma does not hold.

Exercise 7.4.14: Prove the general Bolzano—Weierstrass theorem: Any bounded sequence {x}}. , in R" has
a convergent subsequence.

Exercise 7.4.15: Let X be a metric space and C C P(X) the set of nonempty compact subsets of X. Using
the Hausdorff metric from Exercise 7.1.8, show that (C, d) is a metric space. That is, show that if L and K
are nonempty compact subsets, then dg(L, K) = 0 if and only if L = K.

Exercise 7.4.16: Prove Proposition 7.4.6. That is, let (X, d) be a complete metric space and E C X a closed
set. Show that E with the subspace metric is a complete metric space.

Exercise 7.4.17: Let (X, d) be an incomplete metric space. Show that there exists a closed and bounded set
E C X that is not compact.

Exercise 7.4.18: Let (X, d) be a metric space and K C X. Prove that K is compact as a subset of (X, d) if
and only if K is compact as a subset of itself with the subspace metric.

Exercise 7.4.19: Consider two metrics on R. Let d(x,y) = |x - y| be the standard metric, and let
#0,9) = g - |

a) Show that (R, d’) is a metric space (if you have done Exercise 7.3.10, the computation is the same).

b) Show that the topology is the same, that is, a set is open in (R, d) if and only if it is open in (R, d").

c) Show that a set is compact in (R, d) if and only if it is compact in (R, d").

d) Show that a sequence converges in (R, d) if and only if it converges in (R, d”).

e) Find a sequence of real numbers that is Cauchy in (R, d’) but not Cauchy in (R, d).

1) While (R, d) is complete, show that (R, d") is not complete.
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Exercise 7.4.20: Let (X, d) be a complete metric space. We say a set S C X is relatively compact if the
closure S is compact. Prove that S C X is relatively compact if and only if given any sequence {x,},° , in S,
there exists a subsequence {xy, } ., that converges (in X).
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7.5 Continuous functions

Note: 1.5-2 lectures

7.5.1 Continuity

Definition 7.5.1. Let (X, dx) and (Y, dy) be metric spaces and ¢ € X. Then f: X — Y is
continuous at c if for every € > 0 there is a 6 > 0 such that whenever x € X and dx(x,c) < 9,

then dy (f(x), f(c)) < e.

When f: X — Y is continuous at all ¢ € X, we simply say that f is a continuous function.

The definition agrees with the definition from chapter 3 when f is a real-valued function
on the real line—as long as we take the standard metric on R, of course.

Proposition 7.5.2. Let (X, dx) and (Y, dy) be metric spaces. Then f: X — Y is continuous at

¢ € X if and only if for every sequence {x,}"_, in X converging to c, the sequence {f (xn)}:;1
converges to f(c).

Proof. Suppose f is continuous at c. Let {x,}};_; be a sequence in X converging to c. Given
€ > 0, there is a 6 > 0 such that dx(x, c) < 6 implies dy (f(x), f(c)) < €. So take M such
that for all n > M, we have dx(x,,c) < 6, then dy(f(x,), f(c)) < €. Hence {f(xn)}:)=1
converges to f(c).

On the other hand, suppose f is not continuous at c. Then there exists an € > 0, such that
for every n € N there exists an x, € X, with dx(x,, ¢) < 1/n such that dy (f(xn),f(c)) > €.
Then {x,})’_, converges to c, but { f (xn)}:)=1 does not converge to f(c). O

Example 7.5.3: Suppose f: R> — R is a polynomial. That is,

dei

—

M=

ik 2 2 d
ajk x'y" =apo+aiox +ao1y +axo X" +ay1xy +ap2y +---+apay”,
0

f(x/]/): :

]

Il
(e}
o~

Il

for some d € N (the degree) and 4 € R. We claim f is continuous. Let {(xn, yn)}:’:l be a
sequence in R2 that converges to (x,y) € R2. We proved that this means lim;, e X, = x
and lim;, . ¥y, = y. By Proposition 2.2.5,

d d-j . d_d-j
Tim £, ya) = Hm > S apxhyk = > ) apxy* = f(x,y).
j=0 k=0 j=0 k=0

So f is continuous at (x,y), and as (x,y) was arbitrary f is continuous everywhere.
Similarly, a polynomial in 7 variables is continuous.

Be careful about taking limits separately. Consider f: R> — R defined by f(x,y) =
x2x+yy2 outside the origin and f(0,0) := 0. See Figure 7.14. In Exercise 7.5.2, you are
asked to prove that f is not continuous at the origin. However, for every vy, the function

g(x) == f(x,y) is continuous, and for every x, the function h(y) := f(x, y) is continuous.
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Figure 7.14: Graph of

x2+y?”

Example 7.5.4: Let X be a metric space and f: X — C a complex-valued function. Write
f(p) = g(p)+ih(p), where g: X — Rand h: X — R are the real and imaginary parts of f.
Then f is continuous at ¢ € X if and only if its real and imaginary parts are continuous at c.
This fact follows because {f(py) = g(pn) + i h(pn)}:;l converges to f(p) = g(p) + i h(p) if

and only if {g(pn)}:():l converges to g(p) and {h(pn)}:loz1 converges to h(p).

7.5.2 Compactness and continuity

Continuous maps do not map closed sets to closed sets. For example, f: (0,1) — R defined
by f(x) := x takes the set (0, 1), which is closed in (0, 1), to the set (0, 1), which is not closed
in R. On the other hand, continuous maps do preserve compact sets.

Lemma 7.5.5. Let (X, dx) and (Y, dy) be metric spaces and f: X — Y a continuous function. If
K c X is a compact set, then f(K) is a compact set.

[oe]

Proof. A sequence in f(K) can be written as { f (xn)}nzl, where {x,}  is a sequence in K.
The set K is compact and therefore there is a subsequence {x, j}]?’il that converges to some
x € K. By continuity,

lim f(xy,) = £(x) € f(K).

So every sequence in f(K) has a subsequence convergent to a point in f(K), and f(K) is
compact by Theorem 7.4.11. O

As before, f: X — R achieves an absolute minimum at ¢ € X if
f(x) = f(c) forall x € X.
On the other hand, f achieves an absolute maximum at c € X if

f(x) < f(c) forall x € X.
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Theorem 7.5.6. Let (X, d) be a nonempty compact metric space and let f: X — R be continuous.
Then f is bounded and in fact f achieves an absolute minimum and an absolute maximum on X.

Proof. As X is compact and f is continuous, f(X) C R is compact. Hence f(X) is closed
and bounded. In particular, sup f(X) € f(X) and inf f(X) € f(X), because both the sup
and the inf can be achieved by sequences in f(X) and f(X) is closed. Therefore, there is
some x € X such that f(x) = sup f(X) and some y € X such that f(y) = inf f(X). O

7.5.3 Continuity and topology

Let us see how to define continuity in terms of the topology, that is, the open sets. We have
already seen that topology determines which sequences converge, and so it is no wonder
that the topology also determines continuity of functions.

Lemma 7.5.7. Let (X,dx) and (Y, dy) be metric spaces. A function f: X — Y is continuous at
c € X if and only if for every open neighborhood U of f(c) inY, the set f~1(U) contains an open
neighborhood of c in X. See Figure 7.15.

Figure 7.15: For every neighborhood U of f(c), the set f ~1(U) contains an open neighborhood
W of c.

Proof. First suppose that f is continuous at c. Let U be an open neighborhood of f(c) in
Y, then By (f(c), €) c U for some € > 0. By continuity of f, there exists a 6 > 0 such that
whenever x is such that dx(x, ¢) < §, then dy (f(x), f(c)) < €. In other words,

Bx(c,8) c f7'(By(f(c),€)) c F71 (WD),

and Bx(c, 0) is an open neighborhood of c.
For the other direction, let € > 0 be given. If f1(By(f(c),€)) contains an open
neighborhood W of ¢, it contains a ball. That is, there is some 6 > 0 such that

Bx(c,8) c W c f1(By(f(c), €)).

That means precisely that if dx(x,c) < 6, then dy(f(x), f(c)) < €. So f is continuous
atc. i
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Theorem 7.5.8. Let (X, dx) and (Y, dy) be metric spaces. A function f: X — Y is continuous if
and only if for every open U C Y, f~Y(U) is open in X.

The proof follows from Lemma 7.5.7 and is left as an exercise.

Example 7.5.9: Let f: X — Y be a continuous function. Theorem 7.5.8 tells us thatif E C Y
is closed, then f~}(E) = X \ f~}(E°) is also closed. Therefore, if we have a continuous
function f: X — R, then the zero set of f, thatis, f71(0) = {x € X : f(x) = 0}, is closed.
We have just proved the most basic result in algebraic geometry, the study of zero sets of
polynomials: The zero set of a polynomial is closed.

Similarly, the set where f is nonnegative, f~1([0, 0)) = {x € X : f(x) > 0}, is closed.
On the other hand, the set where f is positive, f1((0,)) = {x € X : f(x) > 0}, is open.

7.5.4 Uniform continuity

As for continuous functions on the real line, in the definition of continuity it is sometimes
convenient to be able to pick one 6 for all points.

Definition 7.5.10. Let (X, dx) and (Y, dy) be metric spaces. Then f: X — Y is uniformly
continuous if for every € > 0 there is a 6 > 0 such that whenever p,q € X and dx(p, q) < 9,

we have dy (f(p), f(9)) < e.

A uniformly continuous function is continuous, but not necessarily vice versa as we
have seen.

Theorem 7.5.11. Let (X,dx) and (Y, dy) be metric spaces. Suppose f: X — Y is continuous
and X is compact. Then f is uniformly continuous.

Proof. Let € > 0 be given. For each ¢ € X, pick 6, > 0 such that dy(f(x), f(c)) < €/
whenever x € B(c, 6.). The balls B(c, 6.) cover X, and the space X is compact. Apply the
Lebesgue covering lemma to obtain a 6 > 0 such that for every x € X, thereis a c € X for
which B(x, 6) C B(c, 6.).

Suppose p, g € X where dx(p,q) < 6. Find a ¢ € X such that B(p, 0) € B(c, 6.). Then
q € B(c, 6). By the triangle inequality and the definition of &,

dy (f(p), f(@)) < dy (f(p), f(c) +dy (f(c), f(q) < ef2+¢2=e. O

As an application of uniform continuity, we prove a useful criterion for continuity of
functions defined by integrals. Let f(x, y) be a function of two variables and define

b
g(y) = / £(x, y) dx.

Question is, is g is continuous? We are really asking when do two limiting operations
commute, which is not always possible, so some extra hypothesis is necessary. A useful
sufficient (but not necessary) condition is that f is continuous on a closed rectangle.
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Proposition 7.5.12. If f: [a,b] X [c, d] — R is continuous, then g: [c,d] — R defined by

b
g(y) = / f(x,y)dx is continuous.

Proof. Fix y € [c,d] and let € > 0 be given. As f is continuous on [a, b] X [c, d], which is
compact, f is uniformly continuous. In particular, there exists a 6 > 0 such that whenever
z € [c,d] and |z — y| < 0, we have |f(x,z) —f(x,y)| < = for all x € [a,b]. So suppose

|z—y|<6.Then
b b
/f(x,z)dx—/ f(x,y)dx

b
/a (f(x,z) = f(x,y)) dx

|3(2) - g(y)| =

€ O
=€.
b-a

<(b-a)

In applications, if we are interested in continuity at 1y, we just need to apply the
proposition in [a, b] X [yo — €, yo + €] for some small € > 0. For example, if f is continuous
in [a,b] X R, then g is continuous on R.

Example 7.5.13: Useful examples of uniformly continuous functions are again the so-
called Lipschitz continuous functions. That is, if (X, dx) and (Y, dy) are metric spaces, then
f: X — Yis called Lipschitz or K-Lipschitz if there exists a K € R such that

dy(f(p), f(9)) < Kdx(p,q)  forallp,q € X.

A Lipschitz function is uniformly continuous: Take 6 = ¢/k. A function can be uniformly
continuous but not Lipschitz, as we already saw: y/x on [0, 1] is uniformly continuous but
not Lipschitz.

It is worth mentioning that, if a function is Lipschitz, it tends to be easiest to simply
show it is Lipschitz even if we are only interested in knowing continuity.

7.5.5 Cluster points and limits of functions

While we have not started the discussion of continuity with them and we will not need
them until volume II, let us also translate the idea of a limit of a function from the real line
to metric spaces. Again we need to start with cluster points.

Definition 7.5.14. Let (X, d) be a metric space and S C X. A point p € X is called a cluster
point of S if for every € > 0, the set B(p,e) N S \ {p} is not empty.

It is not enough that p is in the closure of S, it must be in the closure of S \ {p} (exercise).
So, p is a cluster point if and only if there exists a sequence in S \ {p} that converges to p.
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Definition 7.5.15. Let (X, dx), (Y, dy) be metric spaces, S C X, p € X a cluster point of S,
and f: S — Y a function. Suppose there exists an L € Y and for every € > 0, there exists a
0 > 0 such that whenever x € S \ {p} and dx(x, p) < 0, then

dy(f(x), L) <e.

Then we say f(x) converges to L as x goes to p, and L is a limit of f(x) as x goes to p. If L is
unique, we write

lim f(x) == L.
X—p
If f(x) does not converge as x goes to p, we say f diverges at p.

As usual, we prove that the limit, if it exists, is unique. The proof is a direct translation
of the proof from chapter 3, so we leave it as an exercise.

Proposition 7.5.16. Let (X, dx) and (Y, dy) be metric spaces, S C X, p € X a cluster point of S,
and let f: S — Y be a function such that f(x) converges as x goes to p. Then the limit of f(x) as
x goes to p is unique.

In any metric space, just like in R, continuous limits may be replaced by sequential
limits. The proof is again a direct translation of the proof from chapter 3, and we leave it as
an exercise. The upshot is that we really only need to prove things for sequential limits.

Lemma 7.5.17. Let (X, dx) and (Y, dy) be metric spaces, S C X, p € X a cluster point of S, and
let f: S — Y be a function.
Then f(x) converges to L € Y as x goes to p if and only if for every sequence {x,};,_; in S\ {p}

such that lim, . X, = p, the sequence { f (xn)}zo=l converges to L.

By applying Proposition 7.5.2 or the definition directly we find (exercise) as in chapter 3,
that for cluster points p of S C X, the function f: S — Y is continuous at p if and only if

lim () = £(p).

7.5.6 Exercises
Exercise 7.5.1: Consider N C R with the standard metric. Let (X, d) be a metric spaceand f: X — Na
continuous function.

a) Prove that if X is connected, then f is constant (the range of f is a single value).

b) Find an example where X is disconnected and f is not constant.

Exercise 7.5.2: Define f: R? — R by £(0,0) := 0, and f(x,y) = % if (x,y) # (0,0). See Figure 7.14.

a) Show that for every fixed x, the function that takes y to f(x, y) is continuous. Similarly for every fixed y,
the function that takes x to f(x, y) is continuous.

b) Show that f is not continuous.
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Exercise 7.5.3: Suppose (X, dx), (Y, dy) are metric spaces and f: X — Y is continuous. Let A C X.
a) Show that f(A) C f(A).
b) Show that the subset can be proper.

Exercise 7.5.4: Prove Theorem 7.5.8. Hint: Use Lemma 7.5.7.

Exercise 7.5.5: Suppose f: X — Y is continuous for metric spaces (X, dx) and (Y, dy). Show that if X is
connected, then f(X) is connected.

Exercise 7.5.6: Prove the following version of the intermediate value theorem. Let (X, d) be a connected
metric space and f: X — R a continuous function. Suppose xo,x1 € X and y € R are such that
f(x0) <y < f(x1). Then prove that there exists a z € X such that f(z) = y. Hint: See Exercise 7.5.5.

Exercise 7.5.7: A continuous f: X — Y between metric spaces (X, dx) and (Y, dy) is said to be proper
if for every compact set K C Y, the set f~1(K) is compact. Suppose a continuous f: (0,1) — (0,1) is
proper and {x, }_, is a sequence in (0, 1) converging to 0. Show that { f (xn)}:;1 has no subsequence that
converges in (0, 1).

Exercise 7.5.8: Let (X,dx)and (Y, dy) be metric spaces and f: X — Y be a one-to-one and onto continuous
function. Suppose X is compact. Prove that the inverse f~1: Y — X is continuous.

Exercise 7.5.9: Take the metric space of continuous functions C([0, 1], R). Let k: [0,1] x [0,1] — R be a
continuous function. Given f € C([0, 1], R) define

1
Pr(x) = /0 kx, v)f(y) dy.

a) Show that T(f) = ¢y defines a function T: C([0,1],R) — C([0,1], R).

b) Show that T is continuous.

Exercise 7.5.10: Let (X, d) be a metric space.

a) If p € X, show that f: X — R defined by f(x) := d(x, p) is continuous.

b) Define a metric on X X X as in Exercise 7.1.6 part b, and show that ¢: X X X — R defined by
g(x,y) = d(x,y) is continuous.

c) Show that if Ky and Ky are compact subsets of X, then there exists a p € Ky and q € Ky such that d(p, q)
is minimal, that is, d(p, q) = inf{d(x, y): x € K1,y € Kp}.

Exercise 7.5.11: Let (X,d) be a compact metric space, let C(X,R) be the set of real-valued continuous
functions. Define

d(f,g) =If - gllx = sup |f(x) - g(x)|.

xeX
a) Show that d makes C(X, R) into a metric space.

b) Show that for every x € X, the evaluation function E,: C(X,R) — R defined by E.(f) == f(x)isa
continuous function.
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Exercise 7.5.12: Let C([a, b], R) be the set of continuous functions and C'([a,b], R) the set of once
continuously differentiable functions on [a, b]. Define

de(f,8) =If = 8llfapy and  dei(f,8) =I1f = &l +IIf = &'lliap1

where ||-||[4,p1 is the uniform norm. By Example 7.1.8 and Exercise 7.1.12, we know that C ([a, b], R) with
dc is a metric space and so is C1([a, b], R) with dc:.

a) Prove that the derivative operator D: C! ([a,b], R) — C([a,b], R) defined by D(f) = f’ is continuous.
b) On the other hand if we consider the metric dc on C 1 ([a, b], [R), then prove the derivative operator is no

longer continuous. Hint: Consider sin(nx).

Exercise 7.5.13: Let (X, d) be a metric space, S C X, and p € X. Prove that p is a cluster point of S if and
only if p € S\ {p}.

Exercise 7.5.14: Prove Proposition 7.5.16.
Exercise 7.5.15: Prove Lenuna 7.5.17.

Exercise 7.5.16: Let (X, dx) and (Y,dy) be metric spaces, S C X, p € X a cluster point of S, and let
f:S — Y bea function. Prove that f: S — Y is continuous at p if and only if

lim £(x) = £(p).

Exercise 7.5.17: Define

2 .
s 0y #0,0),
0 if (x,y) =(0,0).

a) Show that for every fixed y the function that takes x to f(x,y) is continuous and hence Riemann
integrable.

flx,y) = {

b) For every fixed x, the function that takes y to f(x,y) is continuous.
c) Show that f is not continuous at (0, 0).
d) Now show that g(y) = /01 f(x,y)dx is not continuous at y = 0.

Note: Feel free to use what you know about arctan from calculus, in particular that % [arctan(s)] = ﬁ

Exercise 7.5.18: Prove a stronger version of Proposition 7.5.12: If f: (a,b) X (c,d) — R is a bounded
continuous function, then g: (c,d) — R defined by

b
g(y) = / f(x,y)dx is continuous.

Hint: First integrate over [a + 1/n, b —1/n].
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7.6 Fixed point theorem and Picard’s theorem again

Note: 1 lecture (optional, does not require §6.3)

In this section we prove the fixed point theorem for contraction mappings. As an
application we prove Picard’s theorem, which we proved without metric spaces in §6.3.
The proof presented here is similar, but the proof goes a lot smoother with metric spaces
and the fixed point theorem.

7.6.1 Fixed point theorem

Definition 7.6.1. Let (X, dx) and (Y, dy) be metric spaces. Amap ¢: X — Y is a contraction
(or a contractive map) if it is a k-Lipschitz map for some k < 1, i.e. if there existsa k < 1
such that

dy(p(p), ¢(9)) < kdx(p,q)  forallp,q € X.
Given amap ¢: X — X, a point x € X is called a fixed point if p(x) = x.

Theorem 7.6.2 (Contraction mapping principle or Banach fixed point theorem®). Let (X, d)
be a nonempty complete metric space and ¢ : X — X a contraction. Then ¢ has a unique fixed
point.

The words complete and contraction are necessary. See Exercise 7.6.6.

Proof. Pick xg € X. Define a sequence {x,,} | by x,+1 := ¢(xy). Then

A(Xps1, Xn) = d(@(xn), (P(xn—l)) < kd(xu, xp-1)-

Repeating n times, we get d(x,+1, x,) < k"d(x1, x0). Form > n,

d(xXm, xp) < d(xis1, xi)

3
_

=

< Y k'd(x1, x0)

i=n

3
-

m—-n—1

= K'd(x1,x0) Y K

i=0

< k"d(x1, xo) Z K = k"d(x1, xo)ﬁ.
=0

In particular, the sequence is Cauchy (why?). Since X is complete, we let x = lim,, 0 Xy,
and we claim that x is our unique fixed point.

*Named after the Polish mathematician Stefan Banach (1892-1945) who first stated the theorem in 1922.


https://en.wikipedia.org/wiki/Stefan_Banach

7.6. FIXED POINT THEOREM AND PICARD’S THEOREM AGAIN 297
Fixed point? The function ¢ is a contraction, so it is Lipschitz continuous:
p(x) = p(lim x,) = lim p(x,) = lim 2,1 =x.
Unique? Let x and y be fixed points.

d(x,y) = d(p(x), p(y)) < kd(x, y).
As k < 1, the inequality means that d(x, y) = 0, and hence x = y. The theorem is proved. O

The proof is constructive. Not only do we know a unique fixed point exists, we know
how to find it. Start with any point xo € X, then iterate ¢(x¢), (@ (x0)), p(@(¢(xp))), etc.
to find better and better approximations. We can even find how far away from the fixed
point we are, see the exercises. The idea of the proof is therefore useful in real-world
applications.

7.6.2 Picard’s theorem

We start with the metric space where we will apply the fixed point theorem: the space
C ([a, b], [R) of Example 7.1.8, the space of continuous functions f: [a,b] — R with the
metric
d(f,8) = IIf - gliapy = sup |[f(x)-g(x)|.
x€la,b]
Convergence in this metric is convergence in uniform norm, or in other words, uniform
convergence. Therefore, C([a, b], R) is a complete metric space, see Proposition 7.4.5.

Consider now the ordinary differential equation

dy
i F(x,y).

Given some Xy, /o, we desire a function y = f(x) such that f(xg) = yo and such that

f'(x) = F(x, f(x)).

To avoid having to come up with many names, we often simply write vy’ = F(x, y) for the
equation and y(x) for the solution.

The simplest example is the equation y” = y, y(0) = 1. The solution is the exponential
y(x) = e*. A somewhat more complicated example is y’ = —=2xy, y(0) = 1, whose solution
is the Gaussian y(x) = e,

A subtle issue is how long does the solution exist. Consider the equation y’ = y?,
y(0) = 1. Then y(x) = % is a solution. While F is a reasonably “nice” function and in
particular it exists for all x and y, the solution “blows up” at x = 1. For more examples

related to Picard’s theorem, see §6.3.
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We will look for the solution in C ([a, b], IR), which may feel strange at first as we
are searching for a differentiable function. The explanation is that we consider the
corresponding integral equation

f(x)=yo+/ F(t, f(t)) dt.

To solve this integral equation, we only need a continuous function, so in some sense our
task should be easier—we have more candidate functions to try. This way of thinking is
quite typical when solving differential equations.

Theorem 7.6.3 (Picard’s theorem on existence and uniqueness). Let I, ] C R be closed and
bounded intervals, let 1° and ]° be their interiors, and let (xo, yo) € I° X J°. Suppose F: I X] — R
is continuous and Lipschitz in the second variable, that is, there exists an L € R such that

|F(x,y) —F(x,z)| < L|y -z

forally,ze€ ], x€l.

Then there exists an h > 0 such that [xo — h,xo + h] C I and a unique differentiable function
filxo—"h,xo+h] = J C Rsuch that

f(x)=F(x,f(x)) and  f(x0) = yo.

Proof. Without loss of generality, assume xo = 0 (exercise). As I X | is compact and F is
continuous, F is bounded. So find an M > 0 such that |F (x, y)| < Mforall (x,y) e I X].
Pick @ > O such that [-a,a] c I and [yo — a, yo + a] C J. Let

h'—min{a a }
o "M+ Lal”’

Note [-h, h] C I. Let
Y :={feC(-h h],R): f([-h, h]) cJ}.

That is, Y is the set of continuous functions on [—h, h] with values in |, in other words,
exactly those functions where F(x, f(x)) makes sense. It is left as an exercise to show
that Y is a closed subset of C([—h, 1], R) (because ] is closed). The space C([-h, h], R) is
complete, and a closed subset of a complete metric space is a complete metric space with
the subspace metric, see Proposition 7.4.6. So Y with the subspace metric is a complete
metric space. We will write d(f, g) = || f — gll[-x,n] for this metric.

Define a mapping T: Y — C([-h, 1], R) by

T(F)(x) = yo + /0 E(t, £(1) dt.

It is an exercise to check that T is well-defined, and that for f € Y, T(f) really is in
C([=h, h],R). Let f € Y and |x| < h. As F is bounded by M, we have

IT(F)6) - o] = ‘ J dt‘

aM
< M < hM < <
<|xIM < "M+ La T
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So T(f)([—h, h]) Clyo—a,yo+alcJ,and T(f) € Y. In other words, T(Y) C Y. From now
on, we consider T as a mapping of Y to Y.
Weclaim T: Y — Y is a contraction. First, for x € [-h, h] and f, g € Y, we have

[F(x, f(x)) = F(x,g(x))| < L|f(x) - g()| < Ld(f, g).

Therefore,

[T(F)(x) = T()(x)| = ‘ /0 (F(t £ 0) - F(t, 8)) dt‘

<RI Ld(f, §) < HLA(f,g) < 7o d(f, g).

We chose M > 0 and so MLJ‘F“L — < 1. Take supremum over x € [-h, h] of the left-hand side
above to obtain d(T(f), T(8)) < 2% d(f, g), thatis, T is a contraction.
The fixed point theorem (Theorem 7.6.2) gives a unique f € Y such that T(f) = f. In

other words,

f(x) = y0+/0 F(t, f(t)) dt.

Clearly, f(0) = yo. By the fundamental theorem of calculus (Theorem 5.3.3), f is differen-
tiable and its derivative is F (x, f (x)). Differentiable functions are continuous, so f is the
unique differentiable f: [}, h] — ] such that f'(x) = F(x,f(x)) and f(0) = yo. O

7.6.3 Exercises

For more exercises related to Picard’s theorem see §6.3.

Exercise 7.6.1: Let | be a closed and bounded interval and Y = {f € C([~h, h],R) : f([~h, h]) c J}.
Show that Y ¢ C([—h, h], R) is closed. Hint: ] is closed.

Exercise 7.6.2: In the proof of Picard’s theorem, show that if f: [—h, h] — ] is continuous, then F(t, f(t))
is continuous on [—h, h] as a function of t. Use this to show that

T(f)(x) = yo + /OXF(t,f(t)) dt

is well-defined and that T(f) € C([-h, h], R).

Exercise 7.6.3: Prove that in the proof of Picard’s theorem, the statement “Without loss of generality assume
xo = 07 is justified. That is, prove that if we know the theorem with xo = 0, the theorem is true as stated.
Exercise 7.6.4: Let F: R — R be defined by F(x) := kx + b where0 < k <1,b € R.

a) Show that F is a contraction.

b) Find the fixed point and show directly that it is unique.
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Exercise 7.6.5: Let f: [0,1/4] — [0, 1/4] be defined by f(x) = x>.
a) Show that f is a contraction, and find the best (smallest) k from the definition that works.
b) Find the fixed point and show directly that it is unique.

Exercise 7.6.6:
a) Find an example of a contraction f: X — X of a non-complete metric space X with no fixed point.
b) Find a 1-Lipschitz map f: X — X of a complete metric space X with no fixed point.
Exercise 7.6.7: Consider y' = y?, y(0) = 1. Use the iteration scheme from the proof of the contraction

mapping principle. Start with fo(x) = 1. Find a few iterates (at least up to f,). Prove that the pointwise limit
of fu is T, that is, for every x with |x| < h for some h > 0, prove that lim f,(x) = .
n—oo

Exercise 7.6.8: Suppose f: X — X is a contraction for k < 1. Suppose you use the iteration procedure with
Xn+1 = f(xy) as in the proof of the fixed point theorem. Suppose x is the fixed point of f.

a) Show that d(x,x,) < k”d(xl,xo)ﬁfor alln € N.

b) Suppose d(y1,y2) < 16 forall y1,y> € X, and k = 1/2. Find an N such that starting at any given point
x0 € X, d(x,x,) <271 foralln > N.

Exercise 7.6.9: Let f(x) == x — x;;Z (you may recognize Newton's method for V2).
a) Prove f([1,)) C [1, ).
b) Prove that f: [1,00) — [1, c0) is a contraction.

c) Show that the fixed point theorem applies, find the unique x > 1 such that f(x) = x, and show that
x = V2. Note: In particular, the technique from the proof of the theorem can be used to approximate V2.

Exercise 7.6.10: Suppose f: X — X is a contraction, and (X, d) is a metric space with the discrete metric,
that is, d(x, y) = 1 whenever x # y. Show that f is constant, that is, there exists a c € X such that f(x) = ¢
forall x € X.

Exercise 7.6.11: Suppose (X, d) is a nonempty complete metric space, f: X — X is a mapping, and denote
by f™ the nth iterate of f. Suppose for every n there exists a k, > 0 such that d(f"(x), f"(y)) < kn d(x, y)
forall x,y € X, where ), | ky, < 0. Prove that f has a unique fixed point in X.
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absolute convergence, 92
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achieves absolute maximum, 130
achieves absolute minimum, 130
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analytic function, 173
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Cantor’s theorem, 19, 42
Cantor—Bernstein—-Schroder, 18
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Cartesian product, 14
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Cauchy product, 104
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Cauchy series, 89
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Cauchy-Schwarz inequality, 257, 263
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clopen, 268
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complement relative to, 10
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completeness property, 24
complex conjugate, 259
complex modulus, 259
complex numbers, 27
composition of functions, 16
conditional convergence, 92
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constant sequence, 51
continuous at ¢, 122, 288
continuous function, 122

in a metric space, 288
continuous function of two variables, 247
continuously differentiable, 169
contraction, 296
contraction mapping principle, 296
convergent

improper integral, 214

power series, 106

sequence, 52

sequence in a metric space, 274

series, 87
converges

function, 114, 145

function in a metric space, 293
converges absolutely, 92
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converges in uniform norm, 231
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DeMorgan’s theorem, 11
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derivative, 155
diagonalization, 46
diameter, 261
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differentiable, 155
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Dini’s theorem, 244
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Dirichlet function, 126, 154, 183, 238, 245
disconnected, 268
discontinuity, 125
discontinuous, 125
discrete metric, 259
disjoint, 10
distance function, 255
divergent
improper integral, 214
power series, 106
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diverges, 114
function in a metric space, 293
diverges to infinity, 79, 146
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Euler-Mascheroni constant, 212

even function, 205

existence and uniqueness theorem, 247,
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exponential, 209, 210

extended real numbers, 34

extreme value theorem, 130

field, 25
finite, 17
finitely many discontinuities, 196
first derivative, 171
first derivative test, 166
first order ordinary differential equation,
246
fixed point, 296
fixed point theorem, 296
Fourier sine and cosine transforms, 224
Fubini for sums, 112
function, 13
bounded, 130
continuous, 122, 288
differentiable, 155
Lipschitz, 141, 292
fundamental theorem of calculus, 200

geometric series, 88, 109
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great circle distance, 260
greatest lower bound, 24
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Hausdorff metric, 262

305

Heine-Borel theorem, 284
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image, 14
improper integrals, 214
increasing, 149, 165
induction, 12
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induction step, 12, 13
infimum, 24
infinite, 17
infinite limit

of a function, 146

of a sequence, 79
infinitely differentiable, 173, 213
infinity norm, 230
initial condition, 246
injection, 15
injective, 15
integers, 9
integral test for series, 222
integration by parts, 205
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intermediate value theorem, 133
intersection, 10
interval, 41
inverse function, 16
inverse function theorem, 177
inverse image, 14
irrational, 30

joint limit, 244

L'Hopital’s rule, 161, 169
L'Hospital’s rule, 161, 169
L!-convergence, 243

L'-norm, 243

Lagrange form, 172

Laplace transform, 224

least element, 12

least upper bound, 24
least-upper-bound property, 24
Lebesgue covering lemma, 282
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Leibniz rule, 158
liminf, 73, 80
limit
infinite, 79, 146
of a function, 114
of a function at infinity, 145
of a function in a metric space, 293
of a sequence in a metric space, 274
limit comparison test, 98
limit inferior, 73, 80
limit superior, 73, 80
limsup, 73, 80
linear first order differential equations,
252
linearity of series, 91
linearity of the derivative, 157
linearity of the integral, 193
Lipschitz continuous, 141
in a metric space, 292
logarithm, 207, 208
logarithm base b, 211
lower bound, 23
lower Darboux integral, 182
lower Darboux sum, 181

map, 14
mapping, 14
maximum, 34
absolute, 130
relative, 162
strict relative, 174
maximum-minimum theorem, 130
mean value theorem, 164
mean value theorem for integrals, 197
member, 8
Mertens’ theorem, 104
metric, 255
metric space, 255
minimum, 34
absolute, 130
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strict relative, 174

minimum-maximum theorem, 130
modulus, 259
monic polynomial, 134, 148

monotone convergence theorem, 55

monotone decreasing sequence, 55
monotone function, 149
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monotonicity of the integral, 194

n times differentiable, 171
naive set theory, 8

natural logarithm, 208
natural numbers, 9
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nondecreasing, 149
nonincreasing, 149
nonnegative, 25
nonnegativity of a metric, 255
nonpositive, 25

nth derivative, 171

nth derivative test, 175

nth order Taylor polynomial, 171

odd function, 205
one-sided limit, 119
one-to-one, 15

onto, 15

open ball, 264

open cover, 280

open interval, 41

open neighborhood, 264
open set, 264

ordered field, 25
ordered set, 23

ordinary differential equation, 246

p-series, 94

p-test, 94

p-test for integrals, 214
partial sums, 87
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Picard iterate, 247
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Picard’s theorem, 247, 298
pointwise convergence, 227
polynomial, 123

popcorn function, 126, 198
positive, 25

power series, 106

power set, 19

principle of induction, 12
principle of strong induction, 13
product rule, 158

proper, 294

proper subset, 9
pseudometric space, 262

quotient rule, 159

radius of convergence, 107
range, 14

range of a sequence, 51

ratio test for sequences, 69
ratio test for series, 96
rational functions, 109
rational numbers, 9

real numbers, 23
rearrangement of a series, 102
refinement of a partition, 183
reflexive relation, 16

relation, 16

relative maximum, 162
relative minimum, 162
relatively compact, 287
remainder term in Taylor’s formula, 172
removable discontinuity, 127
removable singularity, 140
restriction, 118

reverse triangle inequality, 37
Riemann integrable, 185
Riemann integral, 185
Riemann-Lebesgue Lemma, 199
Rolle’s theorem, 163
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root test, 100

secant line, 141, 155
second derivative, 171
second derivative test, 174
sequence, 51, 274
sequentially compact, 282
series, 87

set, 8

set building notation, 9

set theory, 8

set-theoretic difference, 10
set-theoretic function, 13
sinc function, 220

slope field, 246

sphere, 260

squeeze lemma, 61
standard metric on R”, 258
standard metric on R, 256
step function, 198

strict relative maximum, 174
strict relative minimum, 174
strictly decreasing, 149, 165
strictly increasing, 149, 165
strictly monotone function, 149
strong induction, 13
subadditive, 262

subcover, 280

subsequence, 58, 274
subset, 9

subspace, 261

subspace metric, 261
subspace topology, 261

sup norm, 230

supremum, 24

surjection, 15

surjective, 15

symmetric difference, 20
symmetric relation, 16
symmetry of a metric, 255

tail of a sequence, 57
tail of a series, 89
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Taylor polynomial, 171
Taylor series, 173

Taylor’s theorem, 172
Thomae function, 126, 198
Tonelli for sums, 112
topology, 264

totally bounded, 286
totally disconnected, 272
transitive relation, 16
triangle inequality, 36, 255
trichotomy, 23

unbounded closed intervals, 41
unbounded interval, 41

unbounded open intervals, 41
uncountable, 18

uniform convergence, 229

uniform convergence on compact subsets,

INDEX

244

uniform norm, 230
uniform norm convergence, 231
uniformly Cauchy, 231
uniformly continuous, 138

in a metric space, 291
union, 10
unit sphere, 260
universe, 8
upper bound, 23
upper Darboux integral, 182
upper Darboux sum, 181

Venn diagram, 10

weak solution, 252
well ordering property, 12

zero set, 291
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A=B define A to equal B 8
xXeSsS x is an element of S 8
xX¢S x is not an element of S 8
ACB A is a subset of B 8
A=B A and B are equal 9
ACB A is a proper subset of B 9
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N the natural numbers: 1,2,3, ... 9
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Notation Description Page
f:A—B function with domain A and codomain B 13
AXB Cartesian product of A and B 14
f(A) direct image of A by f 14
fHA) inverse image of A by f 14
f1 inverse function 16
fog composition of functions 16
[a] equivalence class of a 17
|A| cardinality of a set A 17
P(P) power set of A 19
xX=y x is equal to y 23
x<y x is less than y 23
x<y x is less than or equal to y 23
x>y x is greater than y 23
x>y x is greater than or equal to y 23
sup E supremum of E 24
inf E infimum of E 24
C the complex numbers 27
R* the extended real numbers 33
o0 infinity 33
max E maximum of E 34
min E minimum of E 34
| x| absolute value 36
sup f(x) supremum of f(D) 38
xeD

;Slg f(x) infimum of f(D) 38
(a,b) open bounded interval 41
[a,b] closed bounded interval 41
(a,b],[a,b) half-open bounded interval 41
(a,0), (=00, b) open unbounded interval 41
[a, ), (—o0, b] closed unbounded interval 41
{xn} sequence 51, 274
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In(x), log(x)
exp(x), e*

xY
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limit of a sequence
subsequence

limit superior

limit inferior

series

sumag +dy+---+ag

f(x) converges to L as x goes to ¢
limit of a function

one-sided limit of a function

limit of a function at infinity

derivative of f

second, third, fourth derivative of f

nth derivative of f
lower Darboux sum of f over partition P

upper Darboux sum of f over partition P

lower Darboux integral

upper Darboux integral

Riemann integrable functions on [a, b]

Riemann integral of f on [a, b]

natural logarithm function
exponential function
exponentiation of x > 0and y € R

Euler’s number, base of the natural logarithm
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119

145

155
171
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181
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182
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Notation Description Page

|| f || p uniform norm of f over S 230

R the n-dimensional euclidean space 257
C(S,R) continuous functions f: S — R 259
diam(S) diameter of S 261
Cl(S,R) continuously differentiable functions f: S — R 263, 295
B(p, d), Bx(p, o) open ball in a metric space 264
C(p,0),Cx(p,0) closed ball in a metric space 264

A closure of A 269

A° interior of A 270

JdA boundary of A 270
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