
A NEW ALGORITHM FOR DECODING REED-SOLOMON CODES

SHUHONG GAO

Abstract. A new algorithm is developed for decoding Reed-Solomon codes. It uses fast
Fourier transforms and computes the message symbols directly without explicitly finding
error locations or error magnitudes. In the decoding radius (up to half of the minimum
distance), the new method is easily adapted for error and erasure decoding. It can also detect
all errors outside the decoding radius. Compared with the Berlekamp-Massey algorithm,
discovered in the late 1960’s, the new method seems simpler and more natural yet it has a
similar time complexity.

1. Introduction

Reed-Solomon codes are the most popular codes in practical use today with applications
ranging from CD players in our living rooms to spacecrafts in deep space exploration. Their
main advantage lies in two facts: high capability of correcting both random and burst
errors; and existence of efficient decoding algorithm for them, namely the Berlekamp-Massey
algorithm, discovered in the late 1960’s [1, 9]. The Berlekamp-Massey algorithm first finds
the syndromes and then the error locations and error magnitudes. It has a quadratic running
time and is efficient in practice. Possibly due to this reason, the Berlekamp-Massey approach
has since become a prototype for decoding many other linear codes.

In this paper we present a new approach for decoding Reed-Solomon codes. Our method
deviates from the Berlekamp-Massey approach in the sense that it computes message sym-
bols directly without explicitly finding error locations or error magnitudes. The message
polynomial is in some sense “visible” in the whole decoding process and our algorithm goes
straight after it. The main operations used are interpolation, partial gcd, and long division
of polynomials. They can all be implemented by fast algorithms based on FFTs. It is hoped
that our approach provides an alternative way to study the decoding problem of many other
codes including algebraic geometry codes.

We fix the following notations throughout the paper: q a prime power, Fq the finite field
of q elements, n, k, d integers with 1 ≤ k < n ≤ q and d = n− k + 1.

Date: January 31, 2002.
The author was supported in part by National Science Foundation (NSF) under Grant DMS9970637,

National Security Agency (NSA) under Grant MDA904-00-1-0048, Office of Naval Research (ONR) under
Grant N00014-00-1-0565 in the DoD Multidisciplinary University Research Initiative (MURI) program, and
South Carolina Commission on Higher Education under a Research Initiative Grant.

1



2 SHUHONG GAO

2. Encoding Reed-Solomon codes

We fix any n elements of Fq, say a1, a2, . . . , an ∈ Fq. To encode a packet of k information
symbols

(m1,m2, . . . ,mk),

where each symbol mi is an element in Fq, first form the message polynomial

f(x) = m1 +m2x+ · · ·+mkx
k−1, (1)

then compute

ci = f(ai) ∈ Fq, i = 1, 2, . . . , n. (2)

The corresponding codeword is

c = (c1, c2, . . . , cn).

When the information symbols take all the values in Fq, we get q
k codewords of length n.

It is straightforward to see that these codewords form a linear code over Fq with minimum
distance d = n − k + 1 (which is best possible for any (n, k) linear code). This code was
discovered by Reed and Solomon [11], so called an (n, k, d) Reed-Solomon code.

The encoding (2) was the original approach of Reed and Solomon, and it is not systematic
in the sense that the information symbols do not appear directly as part of the codeword c.
This approach fell out favor after Gorenstein and Zierler [8] discovered that Reed-Solomon
codes (for n = q− 1) are special cyclic codes and can be encoded via generator polynomials.
Note that (2) is in fact a discrete Fourier transform in finite fields. We shall see below that
our decoding algorithm uses the inverse Fourier transform. In many cases fast algorithms
are available for computing a Fourier transform and its inverse, as described in Section 5.
Hence, the nonsystematic encoding in (2) is advantageous for our approach.

3. Decoding Reed-Solomon codes

Let b = (b1, b2, . . . , bn) ∈ Fnq be a received word which comes from a codeword c with t
errors where t ≤ (d − 1)/2. Our goal is to find the message polynomial f(x) in (1) that
defined the original codeword c. We precompute the polynomial

g0 =
n∏
i=1

(x− ai) ∈ Fq[x].

Note that g0 is known for many cases. For example, g0 = x
q−x when n = q, and g0 = xn−1

when n | q− 1 and a1, a2, . . . , an form a multiplicative group in Fq. To decode b, we proceed
as follows.

Algorithm 1: Decoding Reed-Solomon codes

Input: A received vector b = (b1, b2, . . . , bn) ∈ Fnq .
Output: A message polynomial m1 +m2x+ · · ·mkxk−1, or “Decoding failure.”



DECODING REED-SOLOMON CODES 3

Step 1: (Interpolation) Find the unique polynomial g1(x) ∈ Fq[x] of degree ≤ n − 1 such
that

g1(ai) = bi, 1 ≤ i ≤ n.

Step 2: (Partial gcd) Apply the extended Euclidean algorithm to g0(x) and g1(x). Stop
when the remainder, say g(x), has degree < 1

2
(n+ k). Suppose we have at this time

u(x)g0(x) + v(x)g1(x) = g(x).

Step 3: (Long division) Divide g(x) by v(x), say

g(x) = f1(x)v(x) + r(x),

where deg r(x) < deg v(x). If r(x) = 0 and f1(x) has degree < k then output f1(x),
otherwise output “Decoding failure” (which means that more than (d − 1)/2 errors
have occurred).

We shall see later that the polynomial v(x) is in fact the error locator polynomial whose
roots contain all the positions ai where errors have occurred. Our decoding algorithm does
not need to know the actual error positions ai or the error magnitudes.

We now explain why the algorithm works. Recall the extended Euclidean algorithm (EEA)
when applied to two nonzero polynomials r0, r1 over Fq. Let

u0 = 1, u1 = 0, v0 = 0, v1 = 1.

The extended Euclidean algorithm performs a sequence of long divisions:

ri−1 = qiri + ri+1, deg(ri+1) < deg(ri), i = 1, 2, . . .m,

where ri 6= 0, 1 ≤ i ≤ m, and rm+1 = 0, and simultaneously computes

ui+1 = ui−1 − qiui, vi+1 = vi−1 − qivi, 1 ≤ i ≤ m. (3)

It is easy to prove by induction that gcd(r0, r1) = rm (made monic if necessary) and that

ri = uir0 + vir1, 0 ≤ i ≤ m+ 1. (4)

Lemma 3.1. Let r0 and r1 be two nonzero polynomials over Fq. Suppose the extended
Euclidean algorithm performs the computation as described above. Then

um+1 = (−1)
m+1 r1

rm
, vm+1 = (−1)

m r0

rm
.

Proof. We have from (3) that[
ui vi
ui+1 vi+1

]
=

[
0 1
1 −qi

] [
ui−1 vi−1
ui vi

]
.

Iterating the above matrix equation i times yields[
ui vi
ui+1 vi+1

]
=

[
0 1
1 −qi

] [
0 1
1 −qi−1

]
. . .

[
0 1
1 −q1

] [
u0 v0
u1 v1

]
.

Recall that [
u0 v0
u1 v1

]
=

[
1 0
0 1

]
.



4 SHUHONG GAO

Hence,

uivi+1 − ui+1vi = det

[
ui vi
ui+1 vi+1

]
=

i∏
j=1

det

[
0 1
1 −qj

]
= (−1)i.

Now we have from (4) that[
ri
ri+1

]
=

[
ui vi
ui+1 vi+1

] [
r0
r1

]
, 0 ≤ i ≤ m.

Therefore,[
r0
r1

]
=

[
ui vi
ui+1 vi+1

]−1 [
ri
ri+1

]
= (−1)i

[
vi+1 −vi
−ui+1 ui

] [
ri
ri+1

]
, 0 ≤ i ≤ m.

Since rm+1 = 0, the theorem follows from the above equation when i = m. �
The next lemma is the key to our decoding algorithm.

Lemma 3.2. Let g0(x) = w0(x) · r0(x) + ε0(x) and g1(x) = w0(x) · r1(x) + ε1(x), with
gcd(r0(x), r1(x)) = 1 and

deg ri(x) ≤ t, deg εi(x) ≤ `, i = 1, 2.

Suppose d0 satisfies

degw0(x) ≥ d0 > `+ t.

Apply the extended Euclidean algorithm (EEA) to g0(x) and g1(x), and stop whenever the
remainder g(x) has degree < d0. Suppose that at termination we have

u(x)g0(x) + v(x)g1(x) = g(x).

Then

u(x) = −α r1(x), v(x) = α r0(x)

for some nonzero α ∈ Fq.

Proof. We prove that EEA computes the same quotient sequence for the pair r0 and r1 as
for g0 and g1. More precisely, suppose

ri−1 = qiri + ri+1, deg ri+1 < deg ri, i = 1, 2, . . . ,m,

where rm+1 = 0 and rm ∈ Fq \ {0} (as gcd(r0, r1) = 1). Let

u0 = 1 u1 = 0 ui+1 = ui−1 − qiui, 1 ≤ i ≤ m,

v0 = 0 v1 = 1 vi+1 = vi−1 − qivi, 1 ≤ i ≤ m.

Then

ri = uir0 + vir1, 0 ≤ i ≤ m+ 1,

and

deg ui ≤ deg r1 ≤ t, deg vi ≤ deg r0 ≤ t.

By Lemma 3.1,

um+1 = (−1)
m+1r1/rm, vm+1 = (−1)

mr0/rm. (5)



DECODING REED-SOLOMON CODES 5

Now define
gi = uig0 + vig1, 2 ≤ i ≤ m+ 1.

Certainly, we have
gi−1 = qigi + gi+1, 1 ≤ i ≤ m.

We need to show that the degrees of g1, . . . , gm+1 decrease strictly. Indeed, for 0 ≤ i ≤ m+1,

gi = ui(w0r0 + ε0) + vi(w0r1 + ε1) = w0(uir0 + vir1) + (uiε0 + viε1) = w0ri + (uiε0 + viε1).

Since deg(uiε0 + viε1) ≤ `+ t < d0 ≤ degw0 for 0 ≤ i ≤ m+ 1, we have

deg gi = degw0 + deg ri ≥ degw0 ≥ d0 > `+ t, 0 ≤ i ≤ m,

and
deg gm+1 = deg(um+1ε0 + vm+1ε1) ≤ `+ t.

By our assumption above, the degrees of r1, . . . , rm decrease strictly, so do the degrees of
g1, . . . , gm+1. This means that the quotient sequence of g0 and g1, up to step m, is exactly
q1, . . . , qm, the same as that of r0 and r1. This in turn implies that the u and v sequences
for g0 and g1 are also the same. Also, the step m is the first time that the remainder gm+1
has degree < d0 and at this step

um+1g0 + vm+1g1 = gm+1,

where um+1 and vm+1 are as in (5). This proves the lemma. �
Now back to the correctness of our algorithm.

Theorem 3.3. If the received vector b has distance at most (d − 1)/2 from a codeword
c defined by a message polynomial f(x) in (1) then Algorithm 1 returns f(x), otherwise
“Decoding failure” is returned.

Proof. Suppose the received vector b = (b1, b2, . . . , bn) has distance t ≤ (d − 1)/2 from a
(unique) codeword c = (c1, c2, . . . , cn) defined by f(x) as in (1) and (2). Define the error
locator polynomial to be

w(x) =
∏
1≤i≤n,
ci 6=bi

(x− ai)

so deg(w) = t. Let w0(x) be the cofactor of w(x) in g0(x), namely

g0(x) = w0(x)w(x).

Define w̄(x) ∈ Fq[x] to be the unique polynomial with deg(w̄) < t such that

w̄(ai) = (bi − ci)/w0(ai), for all 1 ≤ i ≤ n with bi 6= ci.

Then gcd(w(x), w̄(x)) = 1, and

g1(x) = w0(x) · w̄(x) + f(x),

as both sides have degrees less than n and have the same value bi when evaluated at ai for
1 ≤ i ≤ n.

Let d0 = (n+ k)/2. Note that

deg(w0(x)) = n− t ≥ d0 > k − 1 + t ≥ deg(f(x)) + deg(w(x)).



6 SHUHONG GAO

Then by Lemma 3.2, we have u(x) = −αw̄(x) and v(x) = αw(x) for some α ∈ Fq \ {0}.
Hence, g(x) = u(x)g0(x) + v(x)g1(x) = v(x)f(x). This means that in Step 3 of Algorithm 1
the remainder should be zero and the quotient f1(x) is equal to f(x) (which has degree < k)
as expected.

On the other hand, suppose the algorithm returns a polynomial f1(x) in Step 3. Certainly,
f1(x) defines a codeword (as it has degree < k). The identity in Step 2 implies that

u(x)g0(x) = v(x)(f1(x)− g1(x)),

hence
v(ai)(f1(ai)− g1(ai)) = 0, 1 ≤ i ≤ n.

But v(x) has degree t ≤ (d−1)/2, we see that f1(ai) = g1(ai) for at least n−t ≥ n−(d−1)/2
values of i. Hence b is within distance (d − 1)/2 from the codeword defined by f1(x).
Therefore, if b has distance greater than (d − 1)/2 to every codeword, then the algorithm
must return “Decoding failure” in Step 3. �
Theorem 3.3 shows that the only possible decoding error occurs when there are too many

errors in the transmission moving original codeword into the ball of radius (d−1)/2 of another
codeword. This is a case that is impossible to detect by any means from the received word
alone.

The above proof shows more about the decoding algorithm. Note that

g0 = w0(x)w(x) (6)

g1 = w0(x)w̄(x) + f(x), (7)

where w(x) is the error locator polynomial. The polynomials u(x) and v(x) computed in
Step 2 are actually −αw̄(x) and αw(x), respectively, for some nonzero α ∈ Fq. Hence,

f(x) = g1(x) +
g0(x)

v(x)
u(x). (8)

The message polynomial f(x) is hidden in g1(x), yet “visible” to our algorithm, and we can
go straight after it.

Alternatively, we observe from Lemma 3.2 that u(x) and v(x) can be computed from only
the higher parts of the coefficients of g0 and g1. In fact, the polynomials ε0(x) and ε1(x) (the
lower parts) can be arbitrary, so not affecting the computation leading to u(x) and v(x).
Hence, we may simply ignore the coefficients at the lower parts. We need the degree ` (of
εi(x)) to satisfy

n− ` > `+ t,

implying that
` ≤ n− 2t− 1.

As 2t+1 ≤ d, we can take ` = n− d. At the start of Step 2, we can rewrite g0(x) and g1(x)
as

g0(x) = (terms of degree ≤ n− d) + xn−d+1s0(x), (9)

g1(x) = (terms of degree ≤ n− d) + xn−d+1s1(x). (10)



DECODING REED-SOLOMON CODES 7

That is, s0(x) and s1(x) are nothing but the higher part of the coefficients g0(x) and g1(x),
respectively. For example, s0(x) = x

d−1 when g0 = x
q − x or xn − 1. By Lemma 3.2, we can

apply the Euclidean algorithm directly to s0(x) and s1(x) to get u(x) and v(x). Here s1(x)
has degree at most d− 2 (the d− 1 higher coefficients of g1) and serves as the “syndrome”
of the received word. Algorithm 1 can thus be modified as follows.

Algorithm 1a: Decoding Reed-Solomon codes (modified)

Input: A received vector b = (b1, b2, . . . , bn) ∈ Fnq .
Output: A message polynomial m1 +m2x+ · · ·mkxk−1, or “Decoding failure.”
Step 1: (Interpolation) Find the unique polynomial g1(x) ∈ Fq[x] of degree ≤ n − 1 such

that

g1(ai) = bi, 1 ≤ i ≤ n.

Step 2: (Partial gcd) Form the polynomials s0(x) and s1(x) as in (9) and (10) from g0(x)
and g1(x). Apply the extended Euclidean algorithm to s0(x) and s1(x). Stop when
the remainder, say g(x), has degree < (d+ 1)/2. Suppose we have at this time

u(x)s0(x) + v(x)s1(x) = g(x).

Step 3: (Division and multiplication) Divide g0(x) by v(x), say

g0(x) = h1(x)v(x) + r(x),

where deg r(x) < deg v(x). If r(x) 6= 0 then output “Decoding failure”; otherwise,
compute

f1(x) := g1(x) + h1(x)u(x).

If f1(x) has degree < k then output f1(x), otherwise output “Decoding failure.”

With this modified algorithm, the gcd step is cheaper but the last step is more expensive.
Theorem 3.3 above still holds for this modified version. We should remark that the step on
partial gcd looks very similar to the approach of Sugiyama et al. [12].

4. Decoding with errors and erasures

It is easy to adapt our algorithm to decoding with erasures. This is desirable in practice
as it is often possible to have information about some of the error locations and making use
of this information will greatly enhance the performance of codes [10].

Let b = (b1, b2, . . . , bn) ∈ Fnq be a received word with s erasures. Then it is possible to
correct t further errors, where

2t+ s < d = n− k + 1.

Let S be the set of erasure positions (that is, positions where errors have been detected),
and the erasure polynomial

s(x) =
∏
i∈S

(x− ai).



8 SHUHONG GAO

If we ignore the positions in S in the original RS codewords, then we obtain another RS
code with length n − s, dimension k and distance d = n − s − k + 1. To decode b, we
could simply ignore the positions in S and apply Algorithm 1 or 1a to the truncated word.
More precisely, in Algorithm 1 or 1a, one only needs to replace n by n− s, d by d− s, g0(x)
by g0(x)/s(x), and to require in the interpolation step that g1(x), degree ≤ n − s − 1, be
such that g1(ai) = bi for all i 6∈ S. This works since all the above arguments still apply for
the truncated code (an RS code). The detailed modification of the algorithms is left to the
reader.

5. Fast Fourier transforms

Our decoding algorithm needs efficient algorithms for evaluation, interpolation, gcd, mul-
tiplication and division of polynomials. Fortunately, all these operations can be computed
via fast Fourier transforms (FFT) (see for instance [7]). In this section, we give a brief survey
of the best algorithms and their time complexities available, including some recent work of
the author.

For any fixed distinct points a1, a2, . . . , an ∈ Fq, the transform from a polynomial f ∈
Fq[x] to its values f(a1), f(a2), . . . , f(an) is called a discrete Fourier transform, denoted by
DFT(f). We write

DFT(f0, f1, . . . , fn−1) = (f(a1), f(a2), . . . , f(an)),

where and whereafter we identify a polynomial f = f0 + f1x + · · · + fn−1xn−1 ∈ F[x] of
degree < n with its coefficient vector (f0, f1, . . . , fn−1). Hence, DFT is a bijection on F

n
q .

The interpolation is the inverse transform, called the inverse discrete Fourier transform,
denoted by DFT−1. By a fast Fourier transform (FFT), we mean any fast algorithm that
computes DFT of length n with time complexity O(n(log n)`) for some small constant `.

Over an arbitrary finite field Fq, multiplication and division of polynomials of degree < n
can be computed usingO(n log n loglog n) operations in Fq, and gcd usingO(n log

2 n loglog n)
operations. For arbitrary points a1, a2, . . . , an, DFT and DFT

−1 can be computed using
O(n log2 n loglog n) operations in Fq. The details of these algorithms can be found in Chap-
ters 8–11 in [7]. The FFTs work well for large n, but may not be practical for small n (say
n < 1000).

More efficient FFTs are possible if n is a product of small factors and the points ai’s have
special structures, say form a group of order n. The most useful case is n being a power
of 2 or a power of 3. The usual FFT requires that the n points ai’s form a multiplicative
group of order n, that is, the polynomial xn − 1 has n distinct roots in the underlying field.
In this case we say that the field supports FFT, and we call such an FFT multiplicative. A
multiplicative FFT has time complexity O(n log n) and can be implemented in parallel time
O(log n), where the implicit constants are small.

Finite fields supporting multiplicative FFT. In the following, we list several families
of finite fields Fq that support multiplicative FFTs.



DECODING REED-SOLOMON CODES 9

(a) Fermat primes Fi = 2
2i + 1, for i = 0, 1, 2, 3 or 4. That is,

p = 3, 5, 17, 257, 65537.

For each of these primes p, ω = 3 is a primitive element in Fp. Fermat conjectured that Fi
is prime for all i, but he was completely wrong, since it is now known to be composite for
all 5 ≤ i ≤ 32. In fact, the next number 22

5
+ 1 = 641 · 6700417, and complete factorization

of Fi is known for all i ≤ 11. Currently i = 33 is the smallest for which the compositeness
of Fi is unknown (by August 29, 2001; see http://www.prothsearch.net/fermat.html).

(b) p = 3 · 2k + 1. All values of k ≤ 2000 that give primes of this form are

k = 1, 2, 5, 6, 8, 12, 18, 30, 36, 41, 66, 189, 201, 209, 276, 353, 408, 438, 534.

(c) p = 5 · 2k + 1. All values of k ≤ 2000 that give primes of this form are

k = 1, 3, 13, 15, 25, 39, 55, 75, 85, 127, 1947.

(d) p = 7 · 2k + 1. All values of k ≤ 2000 that give primes of this form are

k = 2, 4, 6, 14, 20, 26, 26, 50, 52, 92, 120, 174, 180, 190, 290, 320, 390, 432, 616, 830, 1804.

(e) p = 9 · 2k + 1. All values of k ≤ 2000 that give primes of this form are

k = 1, 2, 3, 6, 7, 11, 14, 17, 33, 42, 43, 63, 65, 67, 81, 134, 162, 206,

211, 366, 663, 782, 1305, 1411, 1494.

(f) Mersenne primes: p = 2k − 1. All known Mersenne primes come from

k = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217,

4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503,

132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593.

For a Mersenne prime p = 2k − 1,

p2 − 1 = (p+ 1)(p− 1) = 2k+1(2k−1 − 1)

is divisible by n = 2k+1. So one can apply FFT over Fp2 . Since p ≡ 3 (mod 4), we know
x2 + 1 is irreducible over Fp and

Fp2 = Fp[i] = {a+ bi : a, b ∈ Fp},

where i2 = −1. For explicit construction of elements of order n = 2k+1 in Fp2 , see Blake, et
al. [3]. It should be remarked that these fields Fp2 also support 4-adic FFTs which are more
efficient than the usual binary FFTs.

For all of the above fields, we can take n to be a power of 2 with n | (q − 1) and ai all
the roots of xn − 1. Then an FFT and its inverse at these points can be computed using
O(n log n) operations in Fq. By using FFTs, polynomial multiplication and division can
also be computed using O(n log n) operations, and gcd using O(n log2 n) operations. The
implicit constants in all these running times are very small, so these algorithms are practical
for n ≥ 256.



10 SHUHONG GAO

Additive FFT. Unfortunately multiplicative FFTs are not supported by many finite fields,
especially fields of characteristic two which are preferred in practical implementation of error-
correcting codes. Cantor (1989) finds a way to use the additive structure of the underlying
field to perform an FFT over a finite field of order pm where m is a power of p. This method
is generalized by von zur Gathen and Gerhard (1996) to arbitrary m. Their additive FFTs
(for p = 2) use O(n log2 n) additions and O(n log2 n) multiplications in Fq.

For fields of characteristic two and for n = 2m, Gao [5] recently improves on Can-
tor’s method. When m is a power of 2, the above time complexity can be improved to
O(n log n loglog n). For arbitrary m, there is an additive FFT using O(n log2 n) additions
and O(n log n) multiplications in Fq. These FFTs are highly parallel and can be imple-
mented in parallel time O(log2 n). Since all the implicit constants are very small, these
additive FFTs are suitable for practical implementation of RS codes.

Among all the majors operations, it seems that computing gcd is most troublesome to
be implemented by fast algorithms. If the number t of errors is small, the fast algorithms
mentioned above may not provide much advantage over the usual method via long division.
But if t is large, one should definitely consider using the fast methods.

6. Conclusions

We have presented a new method for decoding Reed-Solomon codes. Our method is easily
adapted to decode with errors and erasures. Additionally, all the errors outside the decoding
radius can be detected, a desirable feature in many applications. Unlike the Berlekamp-
Massey algorithm, our algorithm does not require the codes to be cyclic. It should be possible
to adapt our method to BCH codes and to generalize it to decode algebraic geometry codes
via Grobner bases. Indeed our forthcoming work will show how to generalize the current
method to decode Hermitian codes via Grobner bases. We have also given a brief overview
of the FFT-based fast algorithms available for the major operations needed in our algorithm,
namely, polynomial evaluation, interpolation, multiplication, division and gcd. These fast
algorithms should be considered in practical implementation of our decoding algorithm for
long codes.

Acknowledgment. The author thanks Jeff Farr for useful comments on an earlier draft of
the paper.

References

[1] E.R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968. (Revised edition, Laguna
Hills: Aegean Park Press, 1984.)

[2] R. E. Blahut, “Decoding of cyclic codes and codes on curves,” in Handbook of Coding Theory, Vol. II
(Eds. V. S. Pless, W. C. Huffman and R. A. Brualdi), Elsevier, 1998, 1569–1633.

[3] I.F. Blake, S. Gao and R.C. Mullin, “Explicit factorization of x2
k

+ 1 over Fp with prime p ≡ 3
(mod 4),” App. Alg. in Eng., Comm. and Comp. 4 (1993), 89–94.

[4] D.G. Cantor, “On arithmetical algorithms over finite fields,” J. of Combinatorial TheoryA 56 (1989),
285-300.



DECODING REED-SOLOMON CODES 11

[5] S. Gao, “Additive fast Fourier transforms over finite fields,” in preparation.
[6] J. von zur Gathen and J. Gerhard, “Arithmetic and factorization of polynomials over F2,” in
Proc. ISSAC’96, Zürich, Switzerland, 1996, ACM press, 1–9.

[7] J. von zur Gathen and J. Gerhard, Modern computer algebra, Cambridge University Press, New
York, 1999.

[8] D. Gorenstein and N. Zierler, “A class of error-correcting codes in pm symbols,” J. Soc. Indust.
Appl. Math. 9 (1961), 207–214.

[9] J. L. Massey, “Shift-register synthesis and BCH decoding,” IEEE Trans. Information Theory IT-15
1969 122–127.

[10] M. B. Pursley, “Reed-Solomon codes in frequency-hop communications,” in Reed-Solomon Codes and
Their Applications (Eds. S. B. Wicker and V. K. Bhargava), IEEE Press, 1994, 150–174.

[11] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” SIAM J. Appl. Math. 8
(1960), 300–304.

[12] Y. Sugiyama, M. Kasahara, S. Hirasawa, and Toshihiko Namekawa, “A method for solving
key equation for decoding Goppa codes,” Information and Control 27 (1975), 87–99.

Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975 USA

E-mail address: sgao@math.clemson.edu


