A family of algorithms
for
approximate Bayesian inference

Thomas P. Minka
MIT Media Lab
tpminka@media.mit.edu

www.media.mit.edu/~tpminka/

Supervised by Rosalind Picard, Affective Computing Group

Low-level language

Optimize free parameters
Minimize training set error
Regularize
Occam'’s razor
Cross—validation
Maximize margins

Boosting

High—-level language
Model the domain
with a stochastic process
Condition on data
Sum over possibilities
Automatic regularization,
margins, voting,

complexity control

Exposes logic behind inferences

Bayesian quantities
Unnormalized posterior p(z, Data)

Evidence (normalizing term) p(Data) = /wp(:c,Data)da:

Posterior Elz|Data] = /mf’? plz|Data) dx

Posterior mean Elz|Data] = /xx p(z|Data) dz

Predictive density ply|Data) = /xp(y\x) p(z|Data) dz

Approximating posterior distributions

Sampling

— Exact

good for complex,

multimodal posteriors

p(theta, D)

slow, predictable

theta

Deterministic approximation

— Exact
- — EP

good for simple,

smooth posteriors

fast, unpredictable

Deterministic approximation

Laplace’s method Variational bound

—— Exact —— Exact
— — Laplace — — Bound

Minimize
KL—-divergence

* Assumed-density filtering
* Belief propagation

* Expectation propagation

Outline

* Assumed-density filtering (ADF)
= Sequential KL—projection

(Boyen&Kaoller, Opper&Winther, Barber&Sollich, Lauritzen, ...)

* Expectation propagation (EP)

= ADF + iterative refinement

* Belief propagation

= EP for factorized posterior

* Application of EP: Bayes point machine
* Voting all linear classifiers

* Choosing feature space (kernel)

Recursive estimation

p(x|y, ---, y4) = p(x)p(y1|z)p(y2|2)D(Ys|2)P(Ya|T)

If X,y are jointly Gaussian (or in exp family),
use recursive estimation (Kalman filter):

p(@|y1; s yr) o< p(yelx)p(zlys, ... Y1)
¢""(x) o pylr)g™(x)

g(x) is Gaussian each time —— only propagate mean, var of x

(Kalman updates)
Sequential, but independent of ordering

What if p(y|x) is not linear or not Gaussian?

Extended Kalman filtering

p(y|x) is Gaussian in y but not linear in X, e.g.

p(ylx) = \/217T—U exp(— (y —21;(513))2)

Approximate p(y|x) with a linearization:

~

Plyle) = V;TU@XM_(?/—Z{W)

fl@) = flzo)+ f'(zo)(z — 20)

xg = FE,|z] (based on current ¢(x))

This makes the posterior Gaussian:

q"" (x) o< p(yelz)g™

z)

yields the EKF updates

Sequential, but sensitive to ordering

Batch relinearization: Change all approximations to new x0

Assumed-density filtering

Works for any p(y|x):

p(z, D) = p(x)pyilz)p(ye|z)p(ys|)p(yslx)
= p(x)ti(z)t2(z)t3(x)ts(x)

1. Initialize q(z) = p(z)
2. Loop 1:

. ti(2)g% ()
PO = @) (a)ds

¢"“(z) = argmin, D(p ||)

where q(x) has constrained parametric form

Graphically: ti(z) tao(z) t3(x) ta(z) ts(z)

q"" (z)

Gaussian filtering

At each step, assume posterior is Gaussian:

argmin, D(p || q) q(z) ~ N(z;m,v)
NIz
Ejlzs] = Ejlz]
m = /xﬁ(x)dw
E 1] = B2

N(I’, mold) UOld)p(yi|flf) — N(.CU, 7nnew7 ,Unew)

g preserves certain expectations of p
— true for any assumed density in exponential family

(Gamma, Dirichlet, multinomial, ...)

Example

Data model

1 1
p(ylx) = §N(y; x,1) + §N(y; 0, 10)

Typical data

y2
H

yl

ADF posterior for three orderings of same data:

— EXxact
ADF

p(x,D)

True x =2
20 data points

ADF is sensitive to ordering

Can we make ADF independent of ordering?

Another view of ADF

ADF can interpreted as making an EKF-type update:

q"*" (z) o t;(x)q""(x)

qud(xl
ti(z) ta(x) ts(x) ta(w) ts(w)
Graphically: i
7?1 (.CC) ’ZQ (33) ’53 (ZC) t4(.f13) t5 (ZC)
qnew (33)
as long as we define y(z) = " (x)
3 ()

¢ in exp family = ¢ has same form

Approximate each term as Gaussian, then multiply

Now we can repeat and refine the Gaussians

Expectation Propagation

Use the approximations to refine each term:

5" ()

To refine a term:

1. Remove %;:

qn~ew ($)

¢'"(z)

2. Recompute ¢"*¥(x) as in ADF:

p(x) o ti(x)gf"(x)
¢"*(z) = argmin, D(p || q)

p(x,D)

Example continued

Data model Typical data

1 1
p(ylx) = §N(y; x,1) + §N(y; 0, 10)

y2
i
3

yl

EP posterior at convergence Other methods

— Exact — Exact
— —_EP — — Laplace
VB

p(x,D)

All independent of data ordering

Performance

Posterior mean

Posterior mean

10° 10°
107t Importance 4 10 '} —\JImeortance?
\
\ J
\
107} 107%}
— L | N —
2107t aplace 2107t Gibbs
W] W]
) Gibbs)
107} : 107}
107 107
10_6 2 ‘ 3 ‘ 4 ‘ 5 6 10_6 3 4 5 6 7
10 10 10 10 10 10 10 10 10 10
FLOPS FLOPS

Data size n=20

ADF = first ‘x’ of EP

VB = variational bound

n=200

Deterministic methods improve with more data

(posterior is more Gaussian)

Sampling methods do not care

Mixture weights example

p(w, D) = p(w) [[plylw)

plylw) = wN(y;0,3)+ (1 —w)N(y;1,3)

p(w) = 1

q(w) ~ Dirichlet(ay, as)

KL-minimization preserves the expectations Ellog(w)|, Ellog(1 — w)]

Typical result

x 10 a6 Evidence
6 T 10
— Exact
— — Laplace
10 - - VB
~N
1 N
0 0.2 0.4 0.6 0.8 1 5 S
w G S
x 10 w -
6 Laplace
—— Exact -48
- = ~ - EP 10 F
_ 4t/ < i
= [N N
S | S
2 i RN
~—_ 49 ‘EP2 ‘EP
0 ’ ’ ’ 10 3 4 5
0 0.2 0.4 0.6 0.8 1 10 10 10
w FLOPS

EP2 preserves the expectations F[w], F[w?] instead

10°

Factorized approximation
of belief networks

(#0) (21)
(w2 (v3) (@) ()

p(x1)p(z2|21)p(T3]|21)p(T4] T2, 23) q1(71)q2(72)q3(3)qa(T4)
argmin, D(p || q) = qi(7) = plak)
where ¢(z) = [() (marginals)
k

Factorized ADF (Boyen&Koller):
p(x) =]]p(zilpa(z:))
1. Init ¢(x) =1
2. Loop 1:

p(x) o p(xilpa(z;))¢®(x)
" (zx) = plag)

Factorized EP

~ ~

(x) = [[f() (messages)

" (x) o []t(x) (belief state)

¢?(x) o []1;(x) (partial belief state)

j#i
_ qnew(xk)
) =)
i
- Zp%’pa (z4)) HQOM
x\Tg J#k

(message i — k)

Child to parent:

Ezk:(xk) = /xx p(x;|xK, x5)q; ld(xz)q ld(%)

isLj

Factorized EP cont’'d

Parents to child:

Q\(l@ g (@)

tii (i) :/m i p($i|5131c,xj)q,?ld(fk)q'iold(%)
ksLj

Loopy belief propagation is factorized EP

EP can use structured approximations too, e.g. Markov chain

—> more accurate posteriors

EP can restrict parametric form, e.g. Gaussian

—> simpler messages

Bayes point machine

Bayesian approach to linear classification

Use w to classify x:

wix; > 0 (class 1) s
wix; < 0 (class 2) /\
Xx1—=yl x2—=y2 x3—=Yy3

p(w, D) — p(W) Hp(?Ji‘Xia W)

p(w) is uniform

plylx, w) = O(yw'x)
_ { 1 if wis a perfect separator
|0 otherwise

Classify a new data point by voting:

pylx, D) = [p(ylx, w)p(w|D)dw
y = Elsign(w"x)|D]
sign(E[w|D]" x)

2

E[w|D] is the Bayes Point

Bayes point machine example

SVM

Bayes

SVM — Maximize margin

(distance to closest data point)

Bayes — Vote all perfect separators

Performance of EP

Version space

Billiard = Monte Carlo

Opper&Winther’s algs:
MF = mean-field theory

TAP = cavity method
(equiv to Gaussian EP)

EP Gaussian posterior

SVM
O

Billiard

EP TAP

Gaussian kernels

Map data into high dimensional space so that

o~ 2
$(x:)"0(x;) = exp(— el
— - BPM — - BPM
— SVM — SVM
narrow width 0.2 wide width 0.5

SVM boundaries are more contrived, sensitive to kernel

Kernel selection

Gaussian kernel, width 0.08 Gaussian kernel, width 0.6
(SVM choice) (Bayes choice among Gaussians)

: Kernel | R*/p* | log(p(D))

0=0.08 | 18 -39
< 0=06 | 108 -19
: quadratic | 656 -16

Quadratic kernel

(Bayes choice)

SVM and EP have similar boundaries, but prefer different kernels

Summary

Expectation propagation = assumed-density filtering plus
iterative refinement

Batch operation, more accurate

Generalizes belief propagation to hybrid nets and
non—factorized approximations

Generalizes TAP method for Bayes point machine
Like belief propagation, may not converge, local minima

No error estimate available

