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Boosting

Maximize margins

Cross−validation

Occam’s razor

Regularize

Minimize training set error

Optimize free parameters

Low−level language



High−level language

Automatic regularization,

Model the domain

with a stochastic process

Condition on data

Sum over possibilities

margins, voting,

complexity control

Exposes logic behind inferences
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Bayesian quantities

Unnormalized posterior

Evidence (normalizing term)

Predictive density

Posterior

Posterior mean
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multimodal posteriors

good for complex,

slow, predictable

Approximating posterior distributions

fast, unpredictable

smooth posteriors

good for simple,

Deterministic approximation

Sampling



Assumed−density filtering

Belief propagation

Expectation propagation

w

p(
D,

w)

Exact  
Laplace

w

p(
D,

w)

Exact
Bound

w

p(
D,

w)

Exact
EP   

Deterministic approximation

Variational boundLaplace’s method

Minimize
KL−divergence



Outline

Expectation propagation (EP)

= ADF + iterative refinement

Assumed−density filtering (ADF)

(Boyen&Koller, Opper&Winther, Barber&Sollich, Lauritzen, ...)

= Sequential KL−projection

Belief propagation

= EP for factorized posterior

Application of EP: Bayes point machine

Voting all linear classifiers

Choosing feature space (kernel)
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Recursive estimation

y1 y2 y3 y4

x

What if p(y|x) is not linear or not Gaussian?

Sequential, but independent of ordering

(Kalman updates)

q(x) is Gaussian each time −− only propagate mean, var of x

use recursive estimation (Kalman filter):
If x,y are jointly Gaussian (or in exp family),
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Extended Kalman filtering

p(y|x) is Gaussian in y but not linear in x, e.g.

Approximate p(y|x) with a linearization:

This makes the posterior Gaussian:

Batch relinearization: Change all approximations to new x0

yields the EKF updates

Sequential, but sensitive to ordering
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Assumed−density filtering

Works for any p(y|x):

Graphically:

where q(x) has constrained parametric form
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q preserves certain expectations of p

true for any assumed density in exponential family

(Gamma, Dirichlet, multinomial, ...)
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Gaussian filtering

At each step, assume posterior is Gaussian:
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Typical data

0 x
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Data model

−1 0 1 2 3 4 5
x

p(
x,

D)

Exact
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Example

ADF posterior for three orderings of same data:

Can we make ADF independent of ordering?

True x = 2

20 data points

ADF is sensitive to ordering
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Another view of ADF

ADF can interpreted as making an EKF−type update:

Approximate each term as Gaussian, then multiply

Graphically:

as long as we define

Now we can repeat and refine the Gaussians
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Expectation Propagation

To refine a term:

Use the approximations to refine each term:



0 0.5 1 1.5 2 2.5 3 3.5
x

p(
x,

D
)

Exact  
Laplace
VB     

0 0.5 1 1.5 2 2.5 3 3.5
x

p(
x,

D
)

Exact
EP   

y1

y2

Typical data

0 x

��������� ��� ��B� �5�/���q� � ��� ��B� �������z� � �h�

Example continued

EP posterior at convergence Other methods

All independent of data ordering

Data model
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Performance

Data size n=20 n=200

VB = variational bound

ADF = first ‘x’ of EP

Sampling methods do not care

(posterior is more Gaussian)

Deterministic methods improve with more data
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Mixture weights example

Typical result
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Factorized approximation
of belief networks

Factorized ADF (Boyen&Koller):
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Factorized EP

Child to parent:
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Factorized EP cont’d

EP can use structured approximations too, e.g. Markov chain

Loopy belief propagation is factorized EP

EP can restrict parametric form, e.g. Gaussian

−>  more accurate posteriors

−>   simpler messages

Parents to child:
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Bayes point machine

Bayesian approach to linear classification

Use w to classify x:

p(w) is uniform

Classify a new data point by voting:

E[w|D] is the Bayes Point



SVM
Bayes

Bayes point machine example

SVM

(distance to closest data point)

Maximize margin

Bayes Vote all perfect separators
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Performance of EP

Billiard = Monte Carlo

MF = mean−field theory

Opper&Winther’s algs:

TAP = cavity method
(equiv to Gaussian EP)

EP Gaussian posteriorVersion space
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BPM
SVM

BPM
SVM

Gaussian kernels

Map data into high dimensional space so that

narrow width 0.2 wide width 0.5

SVM boundaries are more contrived, sensitive to kernel
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Kernel selection

SVM and EP have similar boundaries, but prefer different kernels

Gaussian kernel, width 0.08

(SVM choice)

Gaussian kernel, width 0.6

(Bayes choice among Gaussians)

Quadratic kernel

(Bayes choice)



Expectation propagation = assumed−density filtering plus

iterative refinement

Generalizes belief propagation to hybrid nets and

non−factorized approximations

Summary

Like belief propagation, may not converge, local minima

Generalizes TAP method for Bayes point machine

Batch operation, more accurate

No error estimate available


