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Preface

Learning to program is difficult. To program well requires knowledge of algo-
rithms, imagination, foresight, mastery of a programming language. Most of all,
it requires experience, since the difficulties are often hidden in the details. This
book offers a synthesis based on our own experience, both as programmers and
as teachers of programming.

It is important to remember that style is essential to programming. The same
algorithm can be written in a given language in multiple ways; only some of these
are simultaneously elegant and efficient, which is what the programmer should
strive for, above all else. This is why we chose to use a concrete programming
language, OCaml, rather than pseudocode.

The book is divided into three parts. Part I is an introduction to the OCaml
language. It is aimed at beginners, including both novice programmers and more
experienced programmers who do not know OCaml. Various small programs
will enable the reader to discover the basic concepts of programming and the
OCaml language. Parts II and III focus on fundamental algorithmic concepts,
with a view to enabling readers to write their own programs in an efficient
and structured manner. Algorithmic concepts are presented directly in OCaml
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syntax, and all the programs in this book can be readily reused.

Who Should Read This Book

The book is aimed at teachers, students, and programmers seeking to discover
and use the OCaml language effectively. For teachers and students, the book
may be used as a textbook in courses on algorithms or functional programming.
It contains numerous code samples and exercises. For OCaml programmers, it
may serve as a reference text in the study of specific data structures or algo-
rithms.

The Book’s Companion Website

All the programs in this book have been compiled and tested with OCaml version
4.14.0. The programs are available at the following address:

https://usr.lmf.cnrs.fr/lpo/
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Programming with OCaml






The Working Environment

The OCaml language is available for use with the main operating systems
(Linux, macOS, Windows). It can be obtained at the following address:

https://ocaml.org/

The site contains installation instructions for these systems. Once you have
installed OCaml, you will have access to the following tools: an interpreter,
ocaml; two compilers, ocamlc and ocamlopt; and a package manager, opam.
We briefly present these four tools below.

1.1 The Compiler and the Interpreter

The OCaml system includes two compilers: ocamlc and ocamlopt. The first
generates portable code, independent of the hardware architecture; the second
generates more efficient native code (X86, ARM, etc.). You can use either
of these two tools to compile the programs given in this book. The system
also includes an interactive version, namely, the program ocaml. This is an
interpreter or toplevel that executes a read-eval-print loop (REPL).


https://ocaml.org/
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1.2 A First OCaml Program

We illustrate the use of these tools with a simple program that displays the
message Hello world! on the screen. It can be written as follows:

let () = print_string "Hello world!\n"

This is itself a complete program. We will go into the details of such programs in
the next chapter. If the program is stored in a file hello.ml, it can be compiled
from within a terminal' using ocamlc, as follows:

> ocamlc hello.ml

We can then execute the resulting binary, a.out, with the expected result:

> ./a.out
Hello world!

The binary can be given a different name using the compiler’s —o option:

> ocamlc -o hello hello.ml
> ./hello
Hello world!

To use the interpreter, it suffices to type the command ocaml in a terminal.
The program then displays a prompt in the form of the character #, prompting
the user to enter an expression.

> ocaml
0Caml version 4.14.0
#

To be evaluated, the expression must end with two semicolons ;; followed by a
carriage return. The toplevel verifies that the expression is syntactically correct
and well-typed. It then evaluates the expression and displays the result. Thus,
in order to display the message Hello world! on the screen, it suffices to type:

!The symbol > designates the terminal prompt from which commands are launched.
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> ocaml
OCaml version 4.14.0

# let () = print_string "Hello world!\n";;
Hello world!
#

In addition to the result, the toplevel also displays the type inferred by
OCaml for the expression that has been entered. For example, if you enter the
mathematical expression 1+4 x 2, the interpreter returns the following response:

# 1+ 4 x 2;;
- : int = 9
#

This shows that the expression is of type int (the type of integers), and that its
result is 9. From now on, we will present the expression entered by the user and
the interpreter’s response against a gray background . Thus, the evaluation of
the preceding expression will be presented, as follows:

#1+4 %x 2 ;;
- : int = 9

To exit the toplevel, type the command #quit, as follows:

# #quit;;
>

A simpler way to do this is to press the keys ctrl and D simultaneously.

1.3 Programming Environments

As with many other programming languages, you can work with OCaml using
your preferred text editor (Emacs, Visual Studio Code, etc.). The text editor
may be configured with OCaml-specific syntax coloring, error highlighting, and
so forth.
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In this text, we will use the tool dune to automate the compilation process.
This tool can be obtained via the opam package manager, and can be installed
by typing the following command in a terminal:

> opam install dune

Another solution is to use the tool make. This requires writing a configuration
file (Makefile) specific to OCaml.

Online Environments

There are also online solutions for using OCaml without installing it on your
machine. One example is the online interpreter TryOCaml, available at the
following address:

https://try.ocamlpro.com/
Another example is the website
https://replit.com/

which offers online environments for a number of languages, among them OCaml.

1.4 Installing OCaml Libraries

The community of OCaml users has developed a number of OCaml libraries.
The easiest way to install them is to use the package manager opam. In the next
chapter, we will use a graphics library, which may be installed as follows:

> opam install graphics

We will explain later how to use this library and, more generally, any library
installed using opam.


https://try.ocamlpro.com/
https://replit.com/

First Steps with OCaml

The best way to learn a programming language is by programming. We therefore
present below fourteen (little) programs to get started with OCaml. The aim is
to introduce the basic constructions and ideas of the language.
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Program 1 [leap_year.ml] — Leap Year

let year = read_int ()

let leap
(year mod 4 = 0 &% year mod 100 <> 0) || year mod 400 = 0

let msg = if leap then "is" else "is not"

let () = Printf.printf "Jd %s a leap year\n" year msg

2.1 Leap Years

‘0" Ideas introduced

e the general form of a program

e the let construct

e calling a function

« basic types (int, bool, string)

o standard library (Printf, Sys, etc.), module system
o access to program arguments (Sys.argv)

o access to the elements of an array (notation t. (i))

Our first program, leap_year.ml, determines if a given year is a leap year.
We can compile it using ocamlc.

> ocamlc -o leap_year leap_year.ml

When the program is launched, it waits for the user to enter a year. It then
prints whether the year is a leap year or not.

> ./leap_year
2013
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2013 is not a leap year

Let us now consider the structure of this program. The first line reads an
integer from standard input:

let year = read_int (O

This line alone contains several notions of the OCaml language. Firstly, it is a
variable declaration of the form:

let year = ...

This initializes a new variable year with the result of the expression to the right
of the symbol =. The type of the variable year does not have to be declared; it
is automatically deduced by the compiler or the interpreter. The expression to
the right of the symbol = is a function call. It is a call to the predefined function
read_int.

. = read_int ()

Here, () indicates that the function read_int does not take any meaningful
argument. It only returns an integer, read from standard input.

The second line introduces a boolean variable leap whose value is true if
and only if year is a leap year, that is, if it is divisible by 4 but not by 100, or
if it is divisible by 400.

let leap =
(year mod 4 = 0 &% year mod 100 <> 0) || year mod 400 = 0

The infix operator mod returns the remainder of integer division. The operators
&& and | | represent the boolean AND and OR, respectively. As with year, the
type of the variable leap is deduced automatically. The following line introduces
a third variable, msg, which contains a string:

let msg = if leap then "is" else "is not"

The variable msg will contain the string "is" if leap is true, and the string
"is not" if it is false. (Strings are delimited by double quotes ".) Note that
the construction if-then-else is used here to construct an expression, namely,
a string.
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Finally, the last line prints a message that indicates whether or not the year
entered is a leap year.

let () = Printf.printf "%d %s a leap year\n" year msg

This is achieved by calling the library function Printf.printf with three ar-
guments: a formatting string "%d %s a leap year\n" together with the two
values, year and msg, which respectively replace %d and %s in the printed mes-
sage. As you can see, the function call is denoted by simply juxtaposing the
function and its arguments. Unlike other languages, OCaml does not use paren-
theses around arguments.

. = Printf.printf "Jd %s a leap year\n" year msg

We refer the reader to the OCaml manual for further information on the stan-
dard library and, in particular, on the function Printf.printf. The manual is
available online at the address: https://ocaml.org/manual. Finally, note that
the call to the function printf is contained in a declaration of a specific form:

let () = ...

This is somewhat enigmatic, and will be left so for the present. It will be
explained when we discuss pattern matching in sections 2.6 Drawing a Curve
and 2.12 Playing a Musical Score. For now, suffice it to say that in general an
OCaml program is a series of declarations that are evaluated from top to bottom,
that is, in the order in which they appear in the source file. Unlike languages
like C or Java, there is no main entry point. The specific form let () = ...
is used in order to maintain the same format in case of expressions that do not
return a value. When this form is used, OCaml verifies that the expression does
indeed not return a value.

Additional Information

The Command Line

Rather than reading the year from standard input, we can pass it on the com-
mand line. In that case, the program is invoked as follows:


https://ocaml.org/manual
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> ./leap_year 2013
2013 is not a leap year

To do this, we replace the line let year = read_int () with:
let year = int_of_string Sys.argv. (1)

This line calls the predefined function int_of_string with Sys.argv. (1) as
argument. The value Sys.argv. (1) contains the year passed as parameter on
the command line. As is the case with other programming languages (Java or
C, for example), we can retrieve the values passed to the program in the form of
an array of strings, designated Sys.argv in OCaml. More precisely, the array
is called argv, and it is available within the Sys module, which consists of an
interface to the operating system. The notation Sys.argv involves the module
system of OCaml, that organizes libraries in terms of units, called modules,
which themselves contain different values. Without getting into the details of
the module system, suffice it to say for now that we refer to a value in a module
by writing the name of the module, followed by the name of the value, separated
by a dot. (We will discuss this in greater detail in section 2.11 Logo Turtle.)
Thus, Sys.argv must be read as “the array argv that belongs to the module
Sys.”

We use the notation t. (i) to access the i-th element of an array t. We will
return to the notion of arrays in section 2.5 The Sieve of Eratosthenes. The
first element of Sys.argv is Sys.argv.(0) since arrays are indexed starting
from 0. This is the program’s name (here leap_year). The second element is
Sys.argv.(1). This is the first parameter passed to the program (2013 in our
example). Since it is a string, it must be converted into an integer by calling
the function int_of_string, which belongs to the module Stdlib. This is a
special module for which it is not necessary to write Stdlib. f.

Type-Checking

Let us now consider some additional details regarding the datatypes introduced
in our first program. While the types of variables are inferred automatically, it
is also possible to display them using the -i option of the compiler:
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> ocamlc -i leap_year.ml
val year : int

val leap : bool

val msg : string

We thus see that the variables year, leap, and msg are respectively of type int,
bool, and string. These are three predefined types in OCaml. Let us examine
these and other related types using the toplevel.

Types int, int32, and int64

Let us begin with the type int, which corresponds to processor-native integers,
also called machine integers. An integer constant can be written in decimal,
binary (prefix 0b), octal (prefix 0o) or hexadecimal (prefix 0x) notations. Thus,
the decimal constant 91 can be written as 0b1011011 in binary, as 00133 in
octal, and as 0x5B in hexadecimal.

The usual operations on the type int are addition (+), subtraction (-),
multiplication (*), integer division (/), and remainder (mod).

# 2% (7 /2) + 7 mod 2;;
- : int =7
For greater clarity, the digits may be separated using an underscore (_).

# Ox2f_ff ff ff + 268_435_456;;
- : int = 1073741823

The precision of the type int depends on the machine architecture. The min-
imum and maximum values of the type int are given by the two constants
min_int and max_int.

# min_int;;

- : int = -1073741824

On a 32-bit machine, values of type int are encoded as 31-bit signed integers',
so that min_int and max_int have the values —23% and 230 — 1, respectively. On

!One bit is used by OCaml’s automatic memory management system; see section 3.2 Run-
time Model in chapter 3.
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a 64-bit machine, the values of type int are encoded as 63-bit signed integers.
The machine representation of integers uses the two’s complement representation
and may be manipulated with the help of shift operations (1sl1, 1sr, and asr)
and bitwise operations (land, lor, 1xor, and lnot). For example, you can test
the fifth bit of the representation of the integer 42 using:

# 42 land (1 1sl 5);;
- : int = 32

To manipulate 32-bit or 64-bit signed integers, OCaml offers two specific types:
int32 and int64. The integer constants of type int32 (or int64) are written
with the suffix 1 (or L).

# 1231;;

- : int32 = 1231

# 10_000_000_000_000L; ;

- : int64 = 10000000000000L

The arithmetic operations on these two types may be found in the OCaml
modules Int32 and Int64.

The Type bool

The type bool represents boolean values, that is, true and false. The oper-
ations on the type bool are conjunction (&&), disjunction (||), and negation
(not).

# not true && false || true;;
- : bool = true

Negation has the highest priority, followed by conjunction, and then disjunction.
The preceding expression is therefore read as:

# ((not true) && false) || true;;
- : bool = true

The evaluation order of the operations && and || is fixed from left to right.
Furthermore, the second argument is evaluated only if necessary, that is, only
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if the first argument of the operation && (respectively, | |) is true (respectively,
false). These are the only operations for which the evaluation order is specified.
Furthermore, these are the only operations whose evaluation is lazy.

The comparison operations =, <>, <, >, <=, and >= return a boolean.

#1 <2 && 3 =4;;
- : bool = false

Boolean expressions are mainly used in the conditional construction if el then e2 else e3.
Depending on whether the expression el is true or false, either the expression
e2 or the expression e3 is evaluated.

# if 1 < 2 then 3 else 4;;
- : int = 3

As is clear in this example, the construction if then else is an expression like
any other. In particular, for this expression to be well-typed, the two branches
e2 and e3 must have the same type, which is then the type of the expression as
a whole.

Types char and string

Characters are represented by the type char. They are written between single
quotes: ’a’. Characters that are not printable are entered using a notation of
the form ’\¢’, where ¢ can be a character (n, r, t, \), or an ASCII code (between
0 and 255), written with three decimal digits (\ddd) or two hexadecimal digits
(\xdd).

# ’a’;,;

- : char = ’a’

# °\n’;;

- : char = ’\n’
#\\;;

- : char = ’\\’
# °\1267;;

= char = ’~?
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- : char = ’~?

You can convert a character to its ASCII code and vice versa with the help of
the functions Char.code and Char.chr of the Char module.

Strings are represented by the type string. They are written within double
quotes: "abc". Within a string, characters that are not printable may be entered
with the same syntax used for the type char.

# Mal;;

- : string = "a"

# "hello world\n";;

- : string = "hello world\n"
#"

- : string = ""

# "abc\126def";;

- : string = "abc~def"

As is clear in this example, the string "a" does not have the same type as the
character ’a’. In general, there is no conversion between these two types. You
can access the i-th character of a string s with the notation s. [i], the first
character having index 0.

# "abc".[1];;
- : char = ’b’

The length of a string is given by the function String.length of the module
String. Finally, two strings can be concatenated using the operator ~.

# String.length ("abc" ~ "def");;
- : int =6

The reader is referred to the OCaml manual for further details regarding the
modules presented in this chapter.
Input/Output

The simplest input/output functions are those that print values of basic types,
such as print_string, which was used above to print Hello world. Other such
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functions include print_char, print_int, and print_float; print_newline,
to print a carriage return; and print_endline, to print a string followed by a
carriage return. These six printing functions write to standard output. To write
to standard error, there are six other functions: prerr_char, prerr_string, etc.
Likewise, there are functions that read from standard input, namely read_int,
read_float, and read_line. There is also a variant of the function printf to
write to standard error, Printf.eprintf. You will find more details regarding
input /output in section 2.7 Copying a File.

2.2 The Monte-Carlo Method

3@'— Ideas introduced

« side effects, expression sequences, references (ref keyword)

local variables (let-in construct)

for loops

floating-point numbers (type float)

o random number generation using the module Random

Our second program (see page 18), approx_pi.ml, calculates the value of
7w experimentally using the Monte-Carlo method. This method consists in ran-
domly generating points in a square of side 1, whose area is therefore 1, and then
counting the number of those points that lie within a quarter circle of radius
1 inscribed in this square. The area of the quarter circle is w/4. Figure 2.1
illustrates the idea.

We compile the program approx_pi.ml, for instance using ocamlopt (for
greater efficiency), as follows:

> ocamlopt -o approx_pi approx_pi.ml

We then execute the program and give it the number of points to be generated.
If this number is sufficiently large, the proportion of points contained within the
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Figure 2.1: Computation of 7 using the Monte-Carlo method.

quarter circle approaches the ratio of the area of the quarter circle to that of
the square, that is, /4. We obtain the following results:

> ./approx_pi
500

3.136000

> ./approx_pi
5000

3.113600

> ./approx_pi
50000
3.149920

> ./approx_pi
500000
3.142184

In practice, however, this method yields a value of 7 that is accurate only to a
few decimal places. For example, with 10 million points, the value is accurate
only to the third decimal place.

As in our first program, the first line of approx_pi.ml obtains the number
n of points to be generated by reading an integer from standard input:
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Program 2 [approx_pi.ml] — Approximation of m

let n = read_int ()

let O =
let p = ref O in
for k = 1 to n do
let x = Random.float 1.0 in

let y = Random.float 1.0 in
if x *. x +. y *. y <= 1.0 then
p:=!p+1
done;

let pi = 4.0 *. float !p /. float n in
Printf.printf "%f\n" pi

let n = read_int ()

The rest of the program uses a loop to generate n points at random. In each
iteration of the loop, we increase by 1 the contents of a variable initialized with
0 if the generated point lies within the quarter circle of radius 1. At the end,
we display the approximate value of 7, which equals four times the ratio of the
number of points within the quarter circle to the total number of points.

Computing in this manner, by modifying the contents of a variable, is called
computation by side effects. More generally, the term side effect is used in
relation to expressions that do not return a value when evaluated. As we have
mentioned in the previous section, a declaration of the form let () = ... is
used to evaluate such expressions.

The rest of the program consists in the expression that follows the = sign.
It begins with the initialization of a variable p using a declaration of the form:

let p= ... in

This declaration introduces a local variable, whose use or scope is restricted to
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the expression that follows the keyword in. This kind of declaration is useful
when one wishes to restrict the visibility of a variable, whether to prevent its
usage in other parts of the program or because one wishes to hide temporarily
another variable with the same name.

The variable p is initialized with a reference, that is, a memory cell, the
contents of which can be modified, and which initially contains the value 0.
This reference will be used to count the number of points that fall within the
quarter circle.

let p = ref 0 in

The variable p is created by calling the predefined function ref (defined in the
Stdlib module) with the integer 0 as argument. The application of this function
has the effect of allocating a new memory cell and initializing its contents to 0.
The type of p inferred by OCaml is int ref, read as “a reference containing a
value of type int.”

The next line introduces a for loop that evaluates the expression situated
between the keywords do and done n times, while varying the contents of a
variable k from 1 to n:

for k = 1 to n do

done

The variable k is the index of the loop, and the expression between do and done
is the body of the loop. The index k is initialized with the value 1. Then, the
body is evaluated. This is the first iteration of the loop. Then, k is increased,
and the body is evaluated again. This is the second iteration of the loop. And
so on and so forth. Following the evaluation for which k equals n, the loop
terminates.

The body of the loop begins by generating the coordinates of a point (z,y)
randomly within the square of side 1.

let x = Random.float 1.0 in
let y = Random.float 1.0 in
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To this end, two local variables, x and y, are initialized by two calls to the
function Random.float with the floating-point number 1.0 as argument. Each
of these calls returns a floating-point number between 0 and 1 (including 0 and
excluding 1). As we will see later, OCaml makes a strong distinction between
floating-point numbers, which are of type float, and integers, which are of
type int. Crucially, a dot must be inserted after the number 1 to represent the
floating-point number 1. We thus write 1.0 or 1. to distinguish it from the
integer 1 of type int.

The conditional that follows increases the contents of the reference p if the
point (x,y) is within the quarter circle, that is, if 22 +¢? < 1.

if x *. x +. y *. y <= 1.0 then
p:=!'p+1

As we see in the expression x *. x +. y *. y, the arithmetic operators on
floating-point numbers are also distinguished syntactically from operators on
integers: A dot . must be added after the sign of each operator (+, -, etc.).
Thus, +. is the addition operator on floats, *. the multiplication operator, etc.
However, the same operator <= is used to compare floats and integers. (See
chapter 3 for further details on comparison operators.)

The expression p := !p + 1 is used to increase the reference p by 1. Here,
the assignment operator := serves to modify the contents of a reference, and
the prefix unary dereference operator ! is used to retrieve the contents of a
reference. Thus, if p is a reference of type int ref, the value !p is of type int.
The loop ends after the iteration for which k equals n. The evaluation then
continues with the expression that follows the ; operator.

for k = 1 to n do

done;

Such a series of evaluations is called an expression sequence. For an expression
sequence to be accepted by OCaml, the expression before the semicolon must
not return a value, that is, it must only perform side effects.

The declaration that follows the for loop defines a local variable pi contain-
ing the approximation of .
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let pi = 4.0 *. float !p /. float n in

In order to perform a division of floating-point numbers, the integer values !p
and n are converted into floats using the function float (defined in the Stdlib
module). Finally, we display the approximation of 7 thus calculated using the
function Printf.printf:

Printf.printf "%f\n" pi

Just as we used %d in a formatting string to display an integer, here we use %f
to display a float.

Additional Information

Here, we present further explanations regarding the ideas introduced in this
second program.

The Type float

Real numbers are represented in the computer using a specific kind of encoding
called floating-point numbers, or more simply floats. In OCaml, floating-point
numbers are encoded using the double-precision IEEE 754 standard (64 bits).
There are no single-precision (32 bits) floating-point numbers in OCaml.

As we noted earlier, the type of floating-point numbers is float. A constant
of type float is written either in decimal notation (for example, 3.14) or in
scientific notation (for example, 6.02214e23). A dot must always be used in
the decimal notation, to indicate that the constant is not of type int. In case
of scientific notation, however, the dot is not compulsory.

# 3 ;;

- : int = 3

# 3. ;;
: float
# le6 ;;
: float

I
w

1000000.
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Operations on the type float are distinct from those on the type int. They are
followed by a dot, as in case of floating-point constants: +., —., *., /.. Unlike
in other languages, arithmetic operations thus have different names depending
on whether integers or floats are involved, and there are no implicit conversions
between the types int and float.

# 2 +. 3.14;;
Error: This expression has type int but an expression was
expected of type float

The conversion functions float and truncate must be used to convert integers
to floats and vice versa.

# 3.14 /. float 2;;

- : float = 1.57

# truncate 3.141592;;
- : int = 3

Numerous operations on the type float are available in the Std1ib module,
such as exponentiation **, square root sqrt, trigonometic functions, logarithmic
functions, etc. Thus, the value of w, which is not predefined in OCaml, could
be calculated using the following expression:

# 4. x, atan 1.;;
- : float = 3.14159265358979312

Unlike the type int, the type £loat includes three additional values, neg_infinity,
infinity, and nan, that represent calculations that have no meaningful result.

#-1. /. 0.;;

- : float = neg_infinity
#1. /. 0.;;

- : float = infinity

# 0. /. 0.;;

- : float = nan

Unlike other languages, OCaml offers only one type of floating-point num-
bers, namely, 64-bit double-precision floats conforming to the IEEE 754 stan-
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dard. Floats lie between a minimum value min_float and a maximum value
max_float.

# min_float;;
- : float = 2.22507385850720138e-308
# max_float;;
- : float = 1.79769313486231571e+308

The let and let-in Constructs

The let and let-in constructs are used, respectively, to define global and local
variables. Two important points must be noted regarding variables:

o Variables are necessarily initialized.

e The type of a variable is automatically inferred.

The first point results simply from the fact that variables can only be defined
using the constructions let and let-in, whose syntax requires an expression
for the initial value. The second point is specific to the OCaml language.

You can use the toplevel to find out the type inferred for a variable. For
instance, if we type the following declaration:

# let x = 1+2;;
The interpreter displays the response:
val x : int = 3

This indicates that we have defined a global variable x, initialized with the
integer 3. The type of x is inferred from the expression 1+2, namely, int.

It is equally important to master the scoping rules of variables declared by
a let or let-in construct. The scope of a global variable x begins immediately
after the declaration let x = ... used to define it. This scope extends until
the end of the program. The scope of a local variable introduced with the let-in
construct is limited to the expression that follows the keyword in. Thus, each
of the three declarations below triggers a scoping error:
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# let x = x + 1;;

Error: Unbound value x

# (let v=1+2inv *x v) + v;;
Error: Unbound value v

# let z =1+ z in z *x 2;;
Error: Unbound value z

The three declarations above illustrate an important rule regarding variable
usage: To be used, a variable must have been declared beforehand. The following
program is therefore correct:

let x = 10
let y = x+2

By contrast, the program below is wrong:

let y = x+2
let x = 10

It is important to note that in the expression let x = el in e2; e3, the
scope of the variable x extends to the entire expression e2; e3. The precedence
of the operator ; is higher than that of the construction let. In other words,
this expression must be read as: let x = el in (e2; e3). Program 2 uses
this scoping rule in the declaration of the local variable p.

let () =
let p= ... in
for k = 1 to n do
p:=!'p+1
done;

let pi = 4. *. float !p /. float n in

Thus, the variable p is visible both in the for loop and in the body of the
declaration of the variable pi.

You can use the same name for several variables, including those of different
types. The use of a variable x always refers to the nearest declaration. Consider
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the following program as an example:

let x = 10
let y =x + 2
let x = 20

let () = Printf.printf "x=Yd y=/d\n" x y

The declaration let x = 20 defines a new variable x, which hides the scope
of the previous one. The message displayed when you execute the program is
therefore x=20 y=12.

The for Loop

As we have seen in our example, for loops are used to evaluate a given expression
a certain number of times. They have the following form:

for i = el to e2 do
e
done

The index of the loop, the variable i, is introduced by the for construct. Its
value cannot be modified by the user. Its scope is limited to the body of the
loop (the expression e), and therefore it cannot be used in the expressions el
and e2. These two expressions are evaluated only once, before the execution of
the loop. This can be observed with the following program:

let () =
for i = (Printf.printf "*"; 0) to (Printf.printf "."; 5) do
Printf.printf ")d" i
done

When you execute this program, it displays the string *.012345. The evaluation
of the for loop begins with the initialization of the index i with the value
of the expression (Printf.printf "x"; 0). The evaluation of this sequence
first causes the symbol * to be printed. Then, the integer 0 is returned. The
fact that the second printed character is a dot . indicates that the expression
(Printf.printf "."; 5), which corresponds to the final value of the index, is
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evaluated next. As the rest of the message contains only the numbers displayed
by the expression Printf.printf "%d" i of the body of the loop, it may be
deduced that the expressions el and e2 are not evaluated again. It is also
important to note that if the value of el is strictly greater than that of e2, the
body of the loop is never executed.

There is also a variant of the for construct that goes backwards. For exam-
ple, the following program displays the numbers 9 8 7 6 5 4 3 2 1 0, in this
order.

let () =
for i = 9 downto O do
Printf.printf "%d " i
done

Note that the index can only be increased or decreased by 1 in each iteration.
For other increments, it is possible to use a while loop, which will be discussed
later.

For the sake of completeness, let us note that the body of the for loop in
program 2 does not make use of the loop index k. The OCaml compiler can
detect this and emit a warning, if we add the command-line option -w +a:

> ocamlopt -w +a -o approx_pi approx_pi.ml
Warning 35 [unused-for-index]: unused for-loop index k.

A solution is to avoid naming the index of the loop, by replacing it with an
underscore _.

for _ =1 to n do

This does not change the behavior of the for loop in any way.
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2.3 Drawing a Cardioid

-@'— Ideas introduced

e open directive

o library (extension .cma)
o library Graphics

o function ignore

Our third program (see page 28), cardioid.ml, draws a cardioid, that is, a
curve that represents the trajectory of a fixed point on a circle that turns around
a second circle of the same diameter, as shown in figure 2.2.

Figure 2.2: Drawing a cardioid.

Mathematically, a cardioid is an algebraic plane curve that may be defined
by the following parametric equations:

{ x(0) = a (1 —sin(f)) cos(d)
y(0) = a (1 —sin(#)) sin(h)

where a is the radius of each circle.

To trace the cardioid, we use the OCaml library Graphics, which allows you
to open a two-dimensional graphical window and draw in it using elementary
graphical functions. This library contains a single module, also called Graphics.
Since we will be using a number of functions of this module, the program begins
with a directive to open the module:
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Program 3 [cardioid.ml] — Drawing a cardioid

open Graphics

let O

open_graph " 300x200"

let O
moveto 200 150;
for i = 0 to 200 do
let th = atan 1. *. float i /. 25. in
let r = 50. *. (1. -. sin th) in
lineto (150 + truncate (r *. cos th))
(150 + truncate (r *. sin th))

done;
ignore (read_key ())

open Graphics

We will thus be able to use the values and functions of this library without
having to prefix them each time with the name of the module, Graphics.

The following line opens a graphical window with the function open_graph.
This function takes as argument a string indicating the window’s dimensions.

let () = open_graph " 300x200"

This statement opens a window of size 300 x 200, that is, 300 pixels wide and
200 pixels high. (Note that the space at the start of the string is mandatory.)
We then draw within this window using integer coordinates, the origin being
located at the bottom left of the window, the z-coordinates taking values from
0 to 299 and the y-coordinates from 0 to 199 (see figure 2.3).

The rest of the program plots the cardioid. Since this part of the code does
not return a value, we place it within a declaration of the form:

let () = ...
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0 : a:; 599 r-axis

Figure 2.3: Coordinate system of the library Graphics.

The functions we will use to draw the cardioid rely on a notion of current point.
This point can be positioned using moveto. A call to lineto x y traces a line
segment from the current point to the point with coordinates (x,y), which then
becomes the new current point.

We begin by placing the current point at (200, 150), by calling the function
moveto, with a view to drawing a cardioid beginning at this point:

moveto 200 150;

We use a for loop to vary the angle 6 between 0 and 2x. For this, we make
use of an integer index i varying from 0 to 200, and we use the fact that
arctan(1) = 7 /4 to calculate 6 as arctan(1) x i/25.

for i = 0 to 200 do
let th = atan 1. *. float i /. 25. in

done

In OCaml, the arctangent of an angle, expressed in radians, is calculated using
the function atan of the standard library Std1lib.

The following line defines a local variable r with the value of the intermediate
subexpression a (1 — sin(#)), where the radius a of the cardioid is fixed at 50
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pixels:
let r = 50. *. (1. -. sin th) in

This variable is used to factor out one part of the calculation of the coordinates
of the point (2(9),y(0)).

Finally, using the function lineto, we trace a segment between the current
point and the point with coordinates (z(#),y(f)). Since graphical coordinates
are integers, we use the function truncate to extract the integer part of the
expressions used to calculate the coordinates.

lineto (150 + truncate (r *. cos th))
(150 + truncate (r *. sin th))

After the for loop, the last line of the code pauses the program, waiting for a
key to be pressed. This is in order to keep the graphical window from closing
immediately after the drawing finishes.

ignore (read_key())

Since we are only waiting for a key to be pressed, we ignore the actual character
returned by the function read_key using the predefined function ignore.

Compilation

In order to compile the program cardioid.ml, we must explicitly tell the com-
piler that we wish to use the library Graphics. This is not needed in case of the
modules we saw earlier, such as Sys, Arg or Printf, which belong to the OCaml
standard library. The Graphics library is contained in the file graphics.cmxa,
which must be added to the command line. Furthermore, we must tell the com-
piler the location of this file, which was installed by opam. This can be done
using the following command:

> ocamlopt -I ‘ocamlfind query graphics‘ graphics.cmxa cardioid.ml -
o cardioid

The tool ocamlfind allows you to find the location of the library graphics,
which is then passed to the OCaml compiler using the -I option. (Note that the
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command ocamlfind query graphics has to be placed between backquotes.)
If you wish to use the ocamlc compiler, you should replace the suffix .cmxa by
.cma. As we will see in section 2.10 Breakout without Bricks, the order of the
files on the command line of the compiler is important: Here, graphics.cmxa
must appear before cardioid.ml since the latter uses the library Graphics.

Another way of compiling our program consists in using dune. To do this, we
write a configuration file, which must be named dune, in the directory containing
cardioid.ml. This file should contain the following:

(executable
(name cardioid)
(libraries graphics))

This specifies that we wish to construct an executable that is named cardioid,
and that uses the library graphics. Assuming that our two files cardioid.ml
and dune are in the directory my-first-project/, we must first perform an
initialization step with the following command:

> dune init project my-first-project/

We can then shift to the directory my-first-project/ and build the executable
there:

> cd my-first-project/
> dune build

Finally, we can execute the program with the following command:
> dune exec ./cardioid.exe

The executable is named cardioid.exe, where the extension .exe is added by
dune. It is stored in a subdirectory _build/default/, and the command dune
exec allows us to launch it directly.

To use the library Graphics from within the toplevel ocaml, it suffices to
type the following command in the terminal:
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> ocaml -I ‘ocamlfind query graphics‘ graphics.cma
0Caml version 4.14.0
#

Note that the library Graphics can also be used directly from within TryOCaml.

The Library Graphics

In addition to the functions moveto and lineto used in our program cardioid.ml,

the library Graphics offers various other functions: plot, to plot a point;
set_color, to modify the display color; draw_circle, to draw a circle; set_line_width,
to change the line thickness; £i1ll_rect, to shade a rectangle; draw_string, to

display a string, etc. The reader is referred to the OCaml manual’s web page

for a complete description of this library. It is important to note that, although

the features of Graphics are limited, this library has the advantage of being
available on many architectures. If you wish to use a more sophisticated library,

you can use (depending on your operating system):

e OCaml-Canvas: a portable Canvas framework for OCaml, with an inter-
face similar to HTML5 Canvas.

o LablTk: a Tcl/Tk library that allows you to create graphical user inter-
faces (GUI) with drop-down menus, buttons, etc.

o LablGtk: similar to LablTk but based on the graphical library Gtk.
e OCamlsdl: an SDL library mainly used to create video games.

This list is not exhaustive.
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2.4 The Mandelbrot Set

-@'— Ideas introduced

o function declarations
e recursive functions

e type unit and the value ()

Program 4 (see page 35) draws the Mandelbrot set (see figure 2.4). It is
defined as the set of points (a,b) of the plane for which neither of the following
two recursive sequences tends to infinity in absolute value.

g = 0

Yo =0

Tpt1 = 22—y2+a
Yntl = 2TpYn +0b

Figure 2.4: Mandelbrot set.

Although there is no exact method to determine whether this condition
holds, it can be proven that one of these sequences must tend to infinity as
soon as 22 + y2 > 4. This result allows us, firstly, to deduce that the points of
the Mandelbrot set belong to a disc of radius 2 and center (0,0). Secondly, it
enables us to draw an approximation of the Mandelbrot set, defined by the set
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of points (a,b) such that 22 + y2 < 4 for the first k terms of these sequences.
Note that the precision of this approximation depends solely on the number of
terms k.

The program begins with an open Graphics directive to simplify the use of
the functions of the graphical library. It continues with the definition of two
global variables width and height, containing respectively the width and height
of the graphical window we wish to open (here, 800 x 800):

let width = 800
let height = 800

Next, we fix k, the maximum number of terms to be calculated (100 terms
sufficing for a good approximation):

let k = 100

The following declaration defines a function norm2 that takes two arguments
x and y and returns the value of the expression 2 + y2.

let norm2 x y = X *. X +. y *. y

We discuss this syntactic construction in greater detail at the end of this
section. For now, note that, as in the case of a function call, the names of the
arguments are only separated by spaces. Note also that the body of the function,
the expression to the right of the symbol =, may be arbitrary.

The following function, mandelbrot, determines whether a point with coor-
dinates (a,b) belongs to the Mandelbrot set by calculating the first k terms of
the recursive sequences (x,) and (y,). In a manner similar to the declaration
of norm2, we declare the function mandelbrot with two arguments a and b as
follows:

let mandelbrot a b = ...

To calculate the terms of the two recursive sequences, we define a local recursive
function mandel_rec with three arguments x, y, and i.

let rec mandel _rec x y 1 =

in
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Program 4 [mandelbrot.ml] — Drawing the Mandelbrot Fractal

open Graphics

let width = 800
let height = 800
let k = 100

let norm2 x y = x *. X +. y *. y
let mandelbrot a b =

let rec mandel _rec x y i =
if i =k || norm2 x y > 4. then i = k

else
let x? =x *. x -. y *. y +. a in
let y> = 2. *. x *x. y +. b in

mandel_rec x’ y’ (i + 1)
in
mandel_rec 0. 0. O

let draw () =
for w = 0 to width - 1 do
for h = 0 to height - 1 do
let a = 4. *. float w /. float width -. 2. in

let b = 4. *. float h /. float height -. 2. in
if mandelbrot a b then plot w h
done
done
let ) =

let dim = Printf.sprintf " %dx¥d" width height in
open_graph dim;

draw ();

ignore (read_key ())
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The first two arguments x and y of mandel_rec contain the i-th values x; and
y; of the recursive sequences, and the third argument contains the index 4.

Before we discuss the body of this function let us note that, syntactically
speaking, a declaration of the form let rec is used to define a recursive func-
tion. This is a function in which you can use its own name within its body.
Furthermore, as with local variable declarations, the scope of a local function,
whether it is introduced by let-rec-in or simply let-in, is limited to the
expression that follows the keyword in.

The body of the function mandel_rec begins with a test to determine whether
we have reached the calculation of the k-th term of the sequence, or if the stop-
ping condition xf + yf > 4 holds:

if i =k || norm2 x y > 4. then i = k
else

In both cases, the mandel_rec function ends and returns a boolean indicating
whether or not the point is in the set. If neither of these conditions holds, we
calculate z;11 and y;11 by applying the equations of the recursive sequences,
and store them in the local variables x’ and y’:

let x’ X ¥, X -. y *. y+. ain
let y> = 2. . x *x. y +. b in

We then call the function mandel_rec again to calculate the following terms:
mandel_rec x’ y’ (i + 1)
in
Finally, the mandelbrot function starts the calculation by calling the local func-
tion mandel_rec with the initial values xy and g as arguments:
in
mandel _rec 0. 0. O
To draw the Mandelbrot set, it suffices to traverse each row and each column
of the graphical window and to display the pixels (a, b) for which mandelbrot a b

returns the value true.
The drawing code is contained in a function draw that is declared as follows:
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let draw () = ...

A declaration of this form is used to define functions without arguments. To
be precise, this declaration defines a function with a single argument, denoted
by (). This is the unique value of a particular type, unit. As we will see in
section 2.6 Drawing a Curve, this is an example of a function defined by pattern
matching.

The function draw traverses the rows and columns of the graphical window
using two nested for loops:

for w = 0 to width - 1 do
for h = 0 to height - 1 do

done
done

To draw the Mandelbrot set in a window of size width x height, we scale
the window coordinates to points (a,b) in [—2,2] x [—2, 2], where a and b are
variables defined as follows:

let a = 4. *x. float w /. float width -. 2. in
let b = 4. *. float h /. float height -. 2. in

All that remains is to determine whether the point (a,b) belongs to the set, by
calling the function mandelbrot and plotting the point using the function plot:

if mandelbrot a b then plot w h
done
done

To complete the program, we open a graphical window of size width x height
by building a string of the form " wxh" where w and h are replaced by the values
contained in the variables width and height.

let () =
let dim = Printf.sprintf " %dx%d" width height in
open_graph dim;
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The string is constructed by calling the function Printf.sprintf with a format-
ting string " %dx%d", and the two arguments width and height. The function
Printf.sprintf is similar to the function printf, except that it returns the
string as result instead of displaying it.

Finally, we draw the Mandelbrot set by calling the function draw. We then
wait until a key is pressed to end the program:

draw ();
ignore (read_key ())

Note that the same syntax is used to call the function draw, as is used in its
declaration.

Function Declarations

Let us return to the notion of function in OCaml. A function is declared with
the keyword let. Thus, a global function f that associates x with x + 1 is
written simply as:

# let f x = x + 1;;
val £ : int -> int = <fun>

As with variables, its type is inferred. More precisely, the type of its argument
(here int) and that of its result (also int) are both inferred. The type of f has
the form int -> int, where the type to the left of the arrow -> is that of the
argument and the type to the right is that of the result. However, the value of
f is not displayed. Only <fun> is displayed, indicating that it is a function.
Functions may be local and follow the same scoping rules as variables.

# let sqr x = x * x in sqr 3 + sqr 4;;

- : int = 25

# (let sqr x = x * x in sqr 3) + sqr 4;;
Error: Unbound value sqr

By default, functions are not recursive.

# let fact x = if x = 0 then 1 else x * fact (x-1);;
Error: Unbound value fact
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The construction let rec must be explicitly used to introduce a recursive func-
tion.

# let rec fact x = if x = 0 then 1 else x * fact (x-1);;
val fact : int -> int = <fun>

# fact 10;;

- : int = 3628800

Notice that in the previous example, we wrote fact (x-1) and not fact x-1.
The second expression is understood as (fact x) - 1 because function appli-
cation is the operation with the highest precedence.

Mutually recursive functions must be defined simultaneously using the key-
word and. For example, we can define two mutually recursive functions £ and g
as follows:

let recfx=...g ...
and gx=...f°1

A function may take several arguments. These are simply juxtaposed both
in the definition and when it is called. For example, the following declaration
defines a function plus with two arguments:

# let plus x y = x +y ;;

val plus : int -> int -> int = <fun>
# plus 3 4;;

- :int =7

The type inferred by OCaml for this function is int -> int -> int. Adding
parentheses yields the type int -> (int -> int) (the operator -> is right as-
sociative), which is read as: “a function that takes a value of type int and
returns a function of type int to int ”. The function plus is therefore seen as
a function with one argument that returns a function that awaits the second
argument. Thus, strictly speaking, OCaml does not have functions that take
multiple arguments. There are only higher-order functions with one argument,
that is, functions that take a single argument and return another function. We
will discuss such functions later on (section 2.6 Drawing a curve).
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2.5 Sieve of Eratosthenes

3@'— Ideas introduced
e arrays

e while loop

e begin-end block

Our next program (see page 41) determines the primality of integers n < N
for a given integer N. To do this, it uses an algorithm called the siecve of
Eratosthenes. Let us illustrate how it works for NV = 23. We write down all the
integers from 0 to N and progressively eliminate all the integers that are not
prime. Hence the name sieve. We begin by noting that 0 and 1 are not prime.

A Y2]3]4]5]6]7]8]9]10]11]12]13]14]15]16]17]18]19]20]21]22] 23]

Next, we determine the first integer that has not yet been eliminated, namely, 2.
We eliminate all its multiples, that is, all even integers greater than 2. These
are shaded below.

213451807 2] 9 ] 11 [ pA] 13 A 15 [ 6] 17 | o] 19 | 2] 21 | 27] 23]

Then, we repeat the process. The next integer that has not yet been eliminated
is 3. We eliminate all the multiples of 3, shown shaded below.

A 2] 3 A5 187 |88 1 ] 13 s i 17 || 19 | o o 7] 23|

Note that certain integers have already been eliminated (the multiples of 6 in
this case).

The next integer to be considered is 5. Since 5 x5 > 23, the sieve is finished:
All multiples of 5, that is, k x 5, have either been eliminated (if £ < 5) or are
greater than 23 (if £ > 5). The integers that remain are the prime numbers less
than or equal to N: 2, 3, 5, 7, 11, 13, 17, 19 and 23.
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Program 5 [sieve.ml] — Sieve of Eratosthenes

let max = read_int ()

let prime = Array.make (max + 1) true

let O =
prime. (0) <- false;
prime. (1) <- false;

let limit = truncate (sqrt (float max)) in
for n = 2 to limit do

if prime.(n) then

begin

let m = ref (n * n) in

while !m <= max
prime. (Im) <-
m:=!m+n
done
end
done

let O =
for n = 2 to max do
if prime.(n) then
done

do
false;

Printf.printf "%d\n" n
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The program sieve.ml implements the sieve of Eratosthenes for a value
of N entered on standard input. We store this value in a variable max.

let max = read_int ()

We then create an array of booleans prime of size max+1. To this end, we use
the library function Array.make. It takes as arguments the size of the array
and a default value for its elements, here true.

let prime = Array.make (max + 1) true

Recall that arrays are indexed starting from 0. The indices of the array prime
are therefore the integers from 0 to max, both included. We begin by indicating
that the integers 0 and 1 are not primes, by assigning the value false to the
two corresponding elements of the array prime.

let O =
prime. (0) <- false;
prime. (1) <- false;

For this, we have used the construction t. (i) <- v, which assigns the value v
to the cell with index ¢ in the array ¢. This is a special syntax for the library
function Array.set. We could also have written Array.set prime O false.

We continue the program by specifying the largest number to be considered.
This is | y/max], which can be calculated thus:

let 1limit = truncate (sqrt (float max)) in

The main loop of the sieve then iterates over the integers from 2 to limit,
testing whether each is prime. The loop therefore has the following structure:

for n = 2 to limit do
if prime.(n) then begin
end

The construction begin-end introduces a block, that is, a piece of program that
is delimited, indicated here by the ellipses. In OCaml, there is no distinction
between expressions and instructions; there are only expressions. The delimited
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piece of code is thus nothing but an expression; it could have been delimited
by parentheses. Nevertheless, the use of begin-end highlights the imperative
character of this expression.

Let us now discuss this block. It consists of a second loop that eliminates
all multiples of n in the array prime. The same reasoning that allows us to stop
the sieve as soon as n x n > N also allows us to begin the elimination from
n X n (rather than 2n), the smaller multiples having already been eliminated.
To iterate over all the integer multiples of n from n? onwards, we initialize a
reference m to the starting value:

let m = ref (n * n) in

Then, we use a loop that assigns false to prime. (!m) and increases m by n, as
long as the expression !m <= max holds. Such a loop is written using a while
construct, as follows:

while !'m <= max do
prime. (!m) <- false;
m:=!m+n

done

Note that, as in case of the for loop, the body of the while loop is delimited
by the keywords do and done.

This completes the sieve. The values of the array prime now indicate which
numbers less than or equal to max are prime. We can display these prime
numbers using another loop.

let () =
for n = 2 to max do
if prime.(n) then Printf.printf "%d\n" n
done

We could instead have displayed the prime numbers upon finding them, that is,
while executing the sieve. However, the sieve’s loop stops when n = |/max]|,
so that another loop would have been necessary anyway to display the prime
numbers between |y/max| + 1 and max.
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Additional Information

We return here to the constructions while and begin-end introduced in this
section, and then discuss arrays.

The while Loop

In general, the syntax of the while loop is:

while e} do
€2
done

The expression e; must be of type bool and the expression es of type unit.

The begin-end Block
The construction begin-end is equivalent to a pair of parentheses. Thus, you
can write:

# 2 * begin 1 + 2 end;;

- : int = 6

Nevertheless, the convention is to limit its use to expressions that perform side
effects, by analogy with the notion of block in languages such as C or Java.

Arrays

An array can be constructed explicitly by specifying the values that make it up.

# let t = [| 12; 32; 3; 8 |1;;
val t : int array = [|12; 32; 3; 8|]

To allocate an array of an arbitrary and, in particular, statically unknown size,
we use the library function Array.make. It takes as arguments the size of the
array and a value used to initialize all its cells. (As with any OCaml value, an
array must be initialized.)

# let u = Array.make 1024 ’a’;;
val u : char array = [|’a’; ’a’; ’a’; ... |[]



2.5. Sieve of Eratosthenes 45

The size of an array can be obtained using the library function Array.length.

# Array.length u;;
- : int = 1024

Note finally that accessing an array with an index that lies outside the range of
valid indices produces a runtime error, signaled by an exception:

# u.(4012);;
Exception: Invalid_argument "index out of bounds".

Exceptions will be discussed in detail later on.

Matrices

There is no predefined type for matrices nor, more generally, for multidimen-
sional arrays. We simply use arrays of arrays. Consider, for instance, the matrix:

10
v-(23)
It is represented by the expression:

# letm = [I [I 1; 0 I];
h2; 311 11;;
val m : int array array = [|[l1; 0l1; [l2; 3111]

The element M; ; is accessed with m. (i) . (j), which is nothing more than two
successive accesses: First, we access row i with m. (i), and then, its element at
index j.

# m.(1).(0);;
- : int = 2

All operations on matrices are implemented using those of arrays. The module
Array nonetheless offers an operation to create a matrix, make_matrix, which
takes as arguments the dimensions of the matrix and the initial value of its
elements. We will return to matrices in the section 10.4 Matriz Calculus of
chapter 10.
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Aliasing

Imperative structures must be handled with caution. In particular, whenever it
is possible to reference an imperative structure in multiple ways, you may think
you are modifying different data even though this need not be the case.

A typical example of aliasing is obtained by allocating an array with all its
elements initialized to the same array. Consider the following expression:

Array.make 3 (Array.make 4 v)

You may think you are constructing a 3 x 4 matrix, each of whose elements
is v. In reality, this expression constructs a single array of size 4—Ilet us call
it a—whose elements have the value v, and an array of size 3, whose three
elements are the same array a. In other words, the result is as follows:

Of course, this is not what we want, as it has only four elements instead
of twelve. To construct an array of arrays correctly, you can use the function
Array.make_matrix of the standard library, by writing Array.make_matrix 3 4 v,
which has the effect of constructing the desired matrix, that is:

o
.

?
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2.6 Drawing a Curve

o Ideas introduced

e pairs, n-tuples
e evaluation order
o first-class, higher order, anonymous functions

o definition by pattern matching, wildcard pattern

Our sixth program (see page 50), plot.ml, draws a curve specified by a set
of points in the plane. The algorithm consists in joining these points with line
segments, proceeding in increasing order of their x-coordinates. For example,
the curve drawn for the set of points {(20, 15), (2,2), (30, 10), (10, 15)} is shown
in figure 2.5.

y-axis

Figure 2.5: Drawing a curve.

To draw this curve, we begin by reading from standard input an integer that
indicates the number of points in the set.

let n = read_int ()
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Next, we define a function that reads the coordinates of a point from standard
input:
let read_pair () =
let x = read_int () in
let y = read_int () in
(x, y)

After reading the first integer, x, and the second, y, from standard input using
two calls to read_int, the function read_pair returns the pair of integers (x,y),
constructed very naturally using the syntax (x,y). The type of this pair is
written as int * int in OCaml. We will discuss pairs and, more generally,
n-tuples in greater detail at the end of this section.

We then create an array data of size n that we initialize with the pairs
of integers read from standard input. To do this, we use the library function
Array.init that takes as arguments the size of the array and a function used
to initialize the array’s cells:

let data = Array.init n (fun i -> read_pair ())

The function call Array.init illustrates two new notions. First, the expression
fun i -> ... passed as an argument to Array.init is an anonymous function.
The symbol i to the left of the arrow —> represents the argument of the function,
the expression to the right, its body. Second, this call shows that functions in
OCaml are values like any other. We also say they are first-class values. They
can be passed as arguments and, as we will see later, returned as the results
of other functions. A function like Array.init, which takes a function as an
argument, is called a higher-order function.

The function Array.init returns an array obtained by initializing the cell
at index k (ranging from 0 to n — 1) with the value obtained by applying the
function (fun i -> read_pair ()) to k.

Thus, if the integers entered on standard input consist of the sequence
4 20 15 2 2 30 10 10 15, the preceding declarations define a variable n con-
taining the integer 4 and an array data whose contents are graphically repre-
sented as follows:

| (20,15) | (2,2) | (30,10) | (10,15) |




2.6. Drawing a Curve 49

To draw the curve, we must begin by sorting the cells of this array in in-
creasing order of z-coordinates. To this end, we begin by defining a function
that compares two pairs by their first component:

let compare (x1, yl1) (x2, y2) = x1 - x2

This function returns an integer. Its sign is interpreted by the sorting algorithm
as follows:

e if x1 - x2 = 0, the two pairs are considered to be equal,;
e if x1 - x2 > 0, the first pair is considered to be greater;

e if x1 - x2 < 0, the first pair is considered to be smaller.

Before continuing with the description of our program, let us stop an instant
and consider the form of this declaration.

The arguments of the function compare are not simple identifiers, but rather
patterns. They each have the form of a pair (x;,y;). The use of patterns
allows us here to easily retrieve the components x; and y; of the pairs passed
as arguments of the function. This is a declaration by pattern matching. This
form of declaration is very frequently used in OCaml programs, and we will use
it on numerous occasions in this book.

To sort the array, we use the higher-order function Array.sort which, in
addition to the array to be sorted, takes as its first argument a function to
compare the elements of the array. This sorting is done in-place, that is, directly
within the array data. The call to Array.sort only performs side effects.

let () = Array.sort compare data

At the end of this call, the contents of data are as follows:

| (2,2) | (10,15) | (20,15) | (30,10) |

All that remains is to draw the curve by joining the points thus ordered,
with line segments. We begin with a directive open Graphics. Then, we open
a graphical window of size 200 x 200. The call set_line_width 3 fixes the
thickness of the line segments.
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Program 6 [plot.ml] — Drawing a Curve

let n = read_int ()

let read_pair () =

let x = read_int () in
let y = read_int () in
(x, y)

let data = Array.init n (fun i -> read_pair ())

let compare (x1, yl1) (x2, y2) = x1 - x2
let () = Array.sort compare data

open Graphics
let () =
open_graph " 200x200";
set_line_width 3;
let (x0,y0) = data.(0) in moveto x0 yO;
for i = 1 to n-1 do
let (x,y) = data.(i) in
lineto x y
done;
ignore (read_key ())
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open Graphics

let () =

open_graph " 200x200";
set_line_width 3;

We then retrieve the first pair (x0, y0) from the O-th cell of the array data,
and use it to fix the coordinates of the current point using the function moveto:

let (x0,y0) = data.(0) in moveto x0 yO;

Here again, we use a declaration by pattern matching to extract the components
of a pair stored in the array. The value contained in data. (0) is matched by
means of the pattern (x0, y0), which defines two local variables x0 and yO.

We then iterate over all the elements of the array data with the help of a
for loop to join the points:

for i =1 to n-1 do
let (x,y) = data.(i) in
lineto x y

done;

The body of the loop retrieves the coordinates (x,y) of each point using a local
declaration by pattern matching (identical to the one above) and draws a line
from the current point to the point with coordinates (x,y).

Additional Information
Pairs and n-Tuples

A pair of two values v1 and v2 can be constructed using the traditional notation
(vl, v2). The type of pairs uses the mathematical notation of the Cartesian
product.

# (1, true);;
- : int * bool = (1, true)

You will note that the comma is used to construct the pair while the symbol
* is used to construct the type of the pair. The two projections are written fst
and snd respectively.
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# fst (1 + 2, true);;
- : int = 3

# snd (1, not true);;
- : bool = false

Pairs may be arbitrarily nested.

# ((1, true), (3.14, false));;
- : (int * bool) * (float * bool) = ((1, true), (3.14, false))
Pairs are a special case of n-tuples, and use the same syntax for both values
and types.
# (1, true, 3.14);;
- : int * bool * float = (1, true, 3.14)

It should be noted that the type (int * int) * int,thetypeint * (int * int),
and the type int * int * int are not the same:

o the first is that of a pair whose first component is a pair;
e the second is that of a pair whose second component is a pair;

e the third is that of a triple.

Projections by Pattern Matching and Wildcard Pattern

There are no projection functions for n-tuples. A declaration by pattern match-
ing must be used to retrieve each component. For example:

# let (x, (y, 2), t) = (1, (true, "hello"), 3.4);;
val x : int = 1

val y : bool = true

val z : string = "hello"

val t : float = 3.4

If you only wish to access certain components of an n-tuple, you may use a
wildcard pattern, which is written as _, to avoid having to introduce unnecessary
variable names. For example, if you wish only to access the components x and
z of the above triple, you can write the following pattern matching:
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# let (x, (_

, z), ) = (1, (true, "hello"), 3.4);;
val x : int = 1

val z : string = "hello"

Wildcard patterns also allow you to represent arbitrary values. Thus, if you
only wish to access components x and t, you may use a wildcard pattern to
represent the second component of the above triple:

# let (x, _, t) = (1, (true, "hello"), 3.4);;
val x : int = 1
val t : float = 3.4

Functions with Several Arguments and n-Tuples

It is equally important to differentiate clearly between a function with several
arguments and a function that takes a single argument which is an n-tuple.
Consider, for instance, the following function pyth:

# let pyth (x, y, 2z) = X*x + yxy = z*z;;
val pyth : int * int * int -> bool = <fun>

It takes a triple of integers as argument. You therefore call it using a single
argument of the form (e;, es, e3), as in the following call:

# pyth (3, 4, 5);;
- : bool = true

On the other hand, the same function may be written as a function of several
arguments, as follows:

# let pyth x y z = x*x + y*y = z*z;;
val pyth : int -> int -> int -> bool = <fun>

This function must be called by juxtaposing its name with three arguments, as
in the following call:

# pyth 3 4 5;;
- : bool = true
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The types int * int * int -> bool and int -> int -> int -> bool illus-
trate clearly the difference between these two variants. In this text, we adopt
the Curry style, wherein functions take n arguments rather than an n-tuple. In
particular, this enables the partial application of functions: You can pass the
function fewer arguments than it expects and obtain another function in return.
For example, by applying the function pyth to an integer, you obtain a function
that takes two arguments:

# let £ = pyth 3;;
val £ : int -> int -> bool = <fun>

You can then apply it several times:

# f 4 5;,;
- : bool = true
#f 67;,;
- : bool = false

Records

Tuples serve to group several values together. However, it is easy to confuse
the different components of an n-tuple when they have the same type. Thus,
a date represented by a triple of integers, of type int * int * int, does not
indicate clearly which integer designates the day, the month, and the year. To
correct this defect, the OCaml language provides the notion of record, that is,
an n-tuple whose fields are named. To create a record, you must declare a new
type beforehand, describing the names and the types of the different fields.

# type date = { day : int; month : int; year : int 1};;
type date = { day : int; month : int; year : int; }

We can then construct a value of the type date with the following syntax.

# let valentine’s_day = { day = 14; month = 2; year = 2014 };;
val valentine’s_day : date = { day = 14; month = 2; year = 2014 }

We access a field f of a record e using the notation e. f.
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# valentine’s_day.month; ;
- : int = 2

A new record can be constructed based on another record of the same type,
preserving the values of certain fields and giving new values to others. We use
the construction with for this.

# let d = { valentine’s_day with day = 15 };;
val d : date = {day = 15; month = 2; year = 2014}

This is identical to the following declaration:

# let d = { day = 15;
month = valentine’s_day.month;
year = valentine’s_day.year };;
val d : date = {day = 15; month = 2; year = 2014}

Another advantage of records over n-tuples is that the order of fields is not
significant. We can therefore write:

# let us_valentine’s_day = { month = 2; day = 14; year = 2014; };;
val us_valentine’s_day : date = {day = 14; month = 2; year = 2014}
# us_valentine’s_day = valentine’s_day;;

- : bool = true

It is also possible to use a pattern to retrieve the values of each field, once again
in any order.

# let { day; month; year } = valentine’s_day;;

val day : int = 14

val month : int = 2

val year : int = 2014

We can omit certain fields by using the wildcard pattern _ to indicate the fields
to be ignored.

# let { day; month; _ } = valentine’s_day;;

Tuples are nevertheless useful, particularly because they do not require us to
declare a type.
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Records with Mutable Fields
The keyword mutable declares a record field that can be modified.

# type student = { number : int; mutable age : int 1};;
type student = { number : int; mutable age : int; }

A record field is modified using the construction <-.

# let birthday e = e.age <- e.age + 1;;
val birthday : student -> unit = <fun>

This modification does not return a value. Hence its type is unit. We observe
this side effect in the following example:

# let e = { number = 123456; age = 21 };;

val e : student = {number = 123456; age = 21}
# birthday e;;

- : unit = O

# e;;

- : student = {number = 123456; age = 22}

We can use a record with a mutable field to simulate the traditional notion
of a mutable variable. For example, in case of a variable of type int, it suffices
to declare a type with a single mutable field value.

# type variable = { mutable value : int };;
type variable = { mutable value : int; }

We then use x.value to access the contents of the variable x and the assignment
x.value <- e to modify it.

# let x = { value = 41 };;

val x : variable = {value = 41}
# x.value <- x.value + 1;;

- : unit = O

# x.value;;

- : int = 42
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Strictly speaking, we are not modifying the variable x. We modify only the value
contained in the record that x points to. So, more precisely, it is the notion of
pointer that is being used here.

To avoid having to define such a type each time we need a mutable variable,
OCaml offers the predefined type of references, that we have already used (see
section 2.2 Approzimation of w). A reference is created using the keyword ref.

# let x = ref 41;;
val x : int ref = {contents = 41}

As is clear, the type of a reference, written as int ref, is that of a record, with
a single field contents. We access this field using the notation ! and modify its
contents using the notation :=.

#x :=Ix + 1;;
- : unit = O

# 1x;,;

- : int = 42

Evaluation Order

The OCaml language does not specify the evaluation order of the components
of n-tuples and records. Thus, in the pair (el, e2), it is not possible to know a
priori if the expression el will be evaluated before e2 or the other way around.
Of course, we can easily figure out the evaluation order of a specific imple-
mentation of OCaml using an expression that creates a pair, as follows:

# (read_int (), read_int ());;
4

5

- : int * int = (5, 4)

We can see here that it is the expression e2 that is evaluated first, since the first
integer typed in, here 4, is stored in the second component of the pair.
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In general, it is not a good idea to write a program that relies on the evalu-
ation order implemented by a specific compiler. It is better to use local decla-
rations to specify the evaluation order. Thus, what we ought to write is:

# let x = read_int () in let y = read_int () in (x, y);;
4

5

- : int * int = (4, 5)

Anonymous Functions

The definitions of anonymous functions are not limited to one argument. Func-
tions that take several arguments may be defined as follows:

# fun x y -> x + y;;
- : int -> int -> int = <fun>

It is interesting to note that the following two declarations are strictly equivalent:

# let £ = fun x > x + 1;;

val £ : int -> int = <fun>
# let f x =x + 1;;
val £ : int -> int = <fun>

2.7 Copying a File
3@'— Ideas introduced

« input/output

e exceptions

Our next program, copy_file.ml, copies the contents of one file into an-
other, with the names of the two files passed on the command line.
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For this, we write a function copy_file that takes as arguments the names
of the files, as strings £1 and £2. We begin by opening channels c1 and c2 on
the files £1 and £2, respectively.

let copy_file f1 f2 =
let c1 = open_in f1 in
let c2 = open_out f2 in

The first, c1, is opened for reading and the second, c2, for writing.
Then, we execute an infinite loop, (while true), which reads characters
from c1 and writes them to c2.

while true do output_char c2 (input_char c1) done

When there are no more characters left to read, the function input_char raises
a predefined exception, namely, End_of_file. This interrupts the execution of
the while loop and, more generally, of the program being executed, until the
exception is caught. Here, we catch this exception just outside the while loop.
We do this with the construction try-with.

let O =
try
while true do ... done
with End_of_file ->
close_in cl; close_out c2

The meaning of the construction try e; with E -> eg is as follows: We begin by
evaluating the expression ej. If a value is obtained, it is the value of the entire
try-with expression. If, however, the evaluation of e; raises the exception E,
then we evaluate the expression ey, and that is the result of the expression as a
whole. Finally, if e; raises an exception other than E, then the exception is not
caught, and it is the expression try-with as a whole that raises it.

In our case, the expression e; is an infinite loop, whose evaluation will never
end. However, it ends by raising the exception End_of_file, which is then
caught, and the two files c1 and c2 are closed.

All that remains then is to call the function copy_file with the first two
arguments of the command line, namely, Sys.argv. (1) and Sys.argv. (2).
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Program 7 [copy_file.ml] — Copying a file

let copy_file f1 f2 =
let cl1 = open_in f1 in
let c2 = open_out f2 in
try
while true do output_char c2 (input_char cl) done
with End_of _file ->
close_in cl; close_out c2

let () = copy_file Sys.argv.(1l) Sys.argv.(2)

Additional Information
Input/Output Channels

Input/output devices are represented by channels. Input channels are of the pre-
defined type in_channel, and output channels of the type out_channel. Three
predefined values represent, respectively, standard input, standard output, and
standard error of the program being executed: stdin of type in_channel, and
stdout and stderr of type out_channel.

Functions are available for reading and writing on channels. The function
input_char, of type in_channel -> char, reads a single character from the
channel passed as argument. We can thus read a character from standard input,
stdin, in the following manner:

# let c = input_char stdin;;
a
val ¢ : char = ’a’

A more general function, input, can be used to read n characters from an input
channel and store them at a certain position within a string.

Similarly, the output_char function, of type out_channel -> char -> unit,
writes a character to an output channel. A more general function, output, writes
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a given substring. There is also a function Printf.fprintf that writes to an
output channel, in a manner analogous to the function Printf.printf that we
used earlier.

Files can also be manipulated as channels. Thus, a file is opened for read-
ing with the function open_in, of type string -> in_channel, and for writing
with the function open_out, of type string -> out_channel. The string des-
ignates the file name. Symmetrically, we close a channel with the functions
close_in and close_out. Input/output operations on channels can fail (read-
ing or writing on a closed channel, invalid permissions, etc.). This is systemati-
cally signalled by raising an exception. For instance, reading beyond the end of
a file raises the predefined exception End_of_file.

Marshalling

Besides characters, it is possible to use channels to read and write OCaml values
of arbitrary types. This is known as marshalling. The function output_value
writes a value of an arbitrary type to an output channel.

# let ¢ = open_out "foo" in
output_value c (1, 3.14, true);
close_out c;;
- : unit = O
The format used is specific to OCaml (and even to its version). The function that
performs the inverse operation is input_value. When you read a marshalled
value with the function input_value, its type is inferred according to how it
is used. It is good practice to indicate the type of the value that is read with
a type annotation. Below, we read back the value written to the file "foo",
specifying that its type is int * float * bool:
# let ¢ = open_in "foo";;
val ¢ : in_channel = <abstr>
# let v : int * float * bool = input_value c;;
val v : int * float * bool = (1, 3.14, true)

There is no type information in the marshalled value itself. In particular, run-
time type safety is not guaranteed if we use a marshalled value in a way that
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is incompatible with the type of the value that was actually marshalled. In
the above example, we could pretend that the value read is a pair whose first
component is also a pair. This leads to a fatal program error.

# let ¢ = open_in "foo";;
val ¢ : in_channel = <abstr>
# let v = input_value c in fst (fst v);;

Process caml-toplevel segmentation fault

This error is not an exception that we could have caught. It is, rather, a
lower-level error corresponding to an unrecoverable illegal memory access.

Exceptions

Certain operations are partial, that is, they are not defined for all possible values
of their arguments. For instance, integer division by zero is not defined. If you
try, nevertheless, to perform this operation, an exception is raised.

# 1/0;;
Exception: Division_by_zero.

The evaluation of the expression does not result in a value; it fails when the
exception is raised, as the message beginning with Exception indicates. Here,
Division_by_zero is a predefined exception. Another predefined exception in
OCaml, Invalid_argument, is often used to signal the use of a function outside
its domain of definition.

# Random.int (-4);;

Exception: Invalid_argument "Random.int".
# Char.chr 257;;

Exception: Invalid_argument "Char.chr".

As is clear from these examples, a string is associated with the exception
Invalid_argument, which specifies the name of the function that raised the
exception.

Raising an exception interrupts the calculation, as we can see by evaluating
the following expression.
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# print_endline "before"; print_int (1/0); print_endline "after";;
before
Exception: Division_by_zero.

It is, nonetheless, possible to catch an exception, so as to continue the evaluation
with another expression. You use the construction try with for this, as follows:

# let test x y =
try let q = x / y in Printf.printf "quotient = %d\n" q
with Division_by_zero -> Printf.printf "error\n'";;

val test : int -> int -> unit = <fun>

# test 4 0;;

error

- : unit = ()

Here, we attempt to calculate x / y and display its value. In case of failure,
that is, when the division triggers the exception Division_by_zero, we catch
the exception and display an error message. The evaluation of the function test
therefore always ends with a value of type unit.

In general, the expression try e; with E -> ey is evaluated as follows:

e The expression e is evaluated first. If it does not raise an exception, the
calculation is complete, and its value is that of ey.

o If, however, the expression raises an exception, then there are two possi-
bilities:

— if the exception is F/, then evaluation continues with es;

— if the exception is something other than FE, then it is propagated,
without evaluating es.

In the expression try e; with E -> eg, the two sub-expressions e; and ey must
have the same type, which is also the type of the expression as a whole.

Users may define their own exceptions with the declaration exception fol-
lowed by the exception’s name, which must begin with a capital letter. The
exception need not take any arguments, for example, Division_by_zero:
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# exception Stop;;
exception Stop

Alternatively, the exception may have one or more arguments, for example,
Invalid_argument:

# exception Error of string;;
exception Error of string

To raise an exception, you use the construction raise. This construction
takes an exception as argument.

# let £ x =
if x < 0 then raise (Error "negative argument");
123 mod x;;

val £ : int -> int = <fun>

Here, the exception is constructed by applying the constructor Error to the
string "negative argument". You can observe the exception being raised by
calling £ with a negative argument.

#f (-1;;
Exception: Error '"negative argument".

Exceptions are, in fact, values like any other and belong to the predefined type
exn. This type can be seen as a concrete type with an unbounded number of
constructors. Predefined exceptions are merely predefined constructors of this
type. Each exception declaration adds a new constructor. You can construct
a value of type exn and pass it as an argument to raise:

# let e = Error "invalid argument";;
val e : exn = Error "invalid argument"
# raise e;;

Exception: Error "invalid argument".

The construction raise is simply a function that takes an argument of type
exn. The expression raise e can take any type. In the previous example, the
expression raise (Error "invalid argument") takes the type unit, but can
equally take the type int if we wish to write the function f with an else:
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# let £ x =
if x < 0 then raise (Error "invalid argument") else 123 mod x;;
val £ : int -> int = <fun>

Exceptions can be used to signal exceptional behaviors (as in the preceding
examples), as well as to change the program’s control flow. A typical example
is that of an infinite loop that you exit using an exception. For example, this
is the case of interactive programs that you exit by pressing a key. With the
library Graphics, such a loop can be written as follows:

try
while true do
let st = wait_next_event [Key_pressed] in
if st.keypressed && st.key = ’q’ then raise Exit;

done
with Exit ->
close_graph ();

Raising the exception Exit interrupts the infinite loop while true. We catch
the exception, close the graphical window with close_graph, and then continue
the program. Other examples of the use of exceptions to change the flow of
control are given in exercises 2.15 and 5.7.

Finally, note that the OCaml standard library provides two functions, failwith
and invalid_arg. When called with a string s, these raise the exceptions
Failure s and Invalid_argument s, respectively. OCaml also provides a spe-
cific construction assert e, which evaluates an expression e of type bool and
raises the exception Assert_failure if e is false.
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2.8 Reversing the Order of Lines in a Text

3@'— Ideas introduced

o lists
e pattern matching

o call stack, tail call

Our next program, tac.ml, reads lines of text from standard input and then
displays them in reverse order. It is easy to use. Having compiled the program,
we execute it and enter, for example, the following three lines on standard input:

first line
second line
third line

Once we signal the end of input (for example, by pressing the keys ctrl and D),
the program displays the lines in reverse order:

third line
second line
first line

To achieve this, the program must store all the lines read before it is able to
display them, since the first line to be displayed is the last one to be read. We
therefore need a data structure to store the lines that have been read. An array
is not suitable since we do not know the total number of lines?. We will therefore
use a list.

OCaml provides a built-in type for lists. These are constructed from the
empty list, represented by [1, and by adding an element x at the front of an
existing list [, represented as x :: [. Lists in OCaml are immutable: once a list
is constructed, it is no longer possible to modify it.

2 A resizeable array could also be used here. This notion will be presented in chapter 4.
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Program 8 [tac.ml] — Reversing the Order of Lines in a Text

let lines = ref []

let O =
try
while true do lines := read_line () :: !lines done
with End_of_file ->
O

let rec print 1 =
match 1 with
| [1 > O

| s :: r -> print_endline s; print r

let () = print !lines

Our program begins by introducing a reference, 1ines, that will contain the
list of lines that have been read. Initially, this list is empty.

let lines = ref []

We then proceed to read the lines, using the library function read_line, which
reads a line of text from standard input and returns it as a string. To read all
the lines, we write an infinite loop:

while true do lines := read_line () :: !lines done

Each line read using read_line is added to the list contained in the reference
lines. More precisely, we construct a new list whose first element is the most
recently read line, followed by the elements already present in lines, that is,
Ilines. Next, we set the value of the reference lines to this new list. When
there are no more lines to be read, the function read_line raises the exception
End_of_file.

We catch this exception just outside the loop:
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try while true do ... done
with End_of_file -> ()

With this, we are done with the reading. The reference 1ines now contains the
list of all the lines read. By construction, this list is in reverse order, the most
recently read line having been added at the head of the list. This is convenient
since this is precisely the order in which we wish to display the lines. To display
the lines, we begin by writing a recursive function print, which displays a list
1 of strings, one per line.

let rec print 1 =

This function examines the list 1, treating the case of an empty list and that of
a list containing at least one element separately. We discriminate between the
two cases using the OCaml construct match-with, as follows:

match 1 with
| [ -> ...case 1...
| s :: r -> ...case 2...

This pattern matching construct is read as follows: If the list 1 is of the form
[1, that is, if it is the empty list, then we evaluate the code denoted above

by ...case 1.... If, however, the list 1 is of the form s :: r, that is, if it
contains a first element s and is followed by other elements forming a list r,
then we evaluate the code denoted above by ...case 2.... Here, the variables

s and r take the value of the first element and the rest of the elements of 1.
In the function print, we do nothing in the first case. In the second case, we
display the string s and then call print recursively on the list r. Therefore, the
body of the function print is:

match 1 with
| [ -> 0

| s :: r -> print_endline s; print r

All that remains to complete our program is to apply this function to the list
contained in the reference lines, that is:

let () = print !lines
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Additional Information
Lists

The type of lists is predefined in OCaml; it is 1ist. This type is “generic,” in
the sense that we can construct lists of values of any type at all, provided that
all the elements of a given list are of the same type.

#1 :: 2 :: 3 :: [1;;
- : int list = [1; 2; 3]

40 2aRl 3l e ]
Error: This expression has type char but an expression
was expected of type int

As we see in the first example, the toplevel displays a list in the form [1; 2; 3].
This notation can also be used to construct a list given its elements.

# [;a;; )bJ; ’C,];;
- : char list = [’a’; ’b’; ’c’]

Pattern Matching

When we presented n-tuples, we explained that pairs can be destructured using
the construction let (x,y) = e; in es. In fact, that pattern matching is iden-
tical in every way to the one we discussed above in relation to lists. The construc-
tion let is merely a shorthand for the expression match e; with (x,y) -> es.
In general, the construct 1let may be used with an arbitrary pattern as its first
argument, even if the latter is often reduced to a variable.

The function print proceeds by pattern matching on its argument 1. Such
functions are so common in OCaml that there is a keyword, function, which
introduces a function that proceeds by pattern matching on its argument. Thus,
we may write:

let rec print = function
I 0 -> 0

| s :: r -> print_endline s; print r
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In other words, the keyword function is a shorthand for fun x -> match x with.
Note also that function introduces a function with only one argument, where
the pattern matching may have one or more patterns. By contrast, fun defines

a function with several arguments, where each argument is matched by a single
pattern. Thus, we may write:

fun x (y, z2) > x +y * z

List Traversals

The function print that we wrote to display all the elements of the list !1ines
is an example of a list traversal, where all the elements of the list are treated the
same way, in the order in which they appear. Such traversals are so frequent
that a library function exists for them, namely, List.iter. This is a higher-
order function, like Array.init or Array.sort, which we presented earlier.
List.iter takes as argument the function to be applied to each element. Thus,
we can rewrite print quite simply as:

let print 1 = List.iter print_endline 1
We can even replace the last five lines by:

let () = List.iter print_endline !lines

Call Stack

Suppose we want our program to display the total number of lines that have
been read and reversed, in a message of the form:

113 lines read

For this, we write a function length that calculates the length of a list. As with
print, we write it in the form of a recursive function that proceeds by pattern
matching:

let rec length = function
| 0] -> 0
| _::r ->1+ length r
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Note the wildcard pattern _ used in place of the first element of the list in the
second pattern. This value does not need to be named because it is not used in
the calculation of the length of the list. All that remains now is to display the
length thus calculated:

let () = Printf.printf "Jd lines read\n" (length !lines)

If we run the program several times, we would observe that it does indeed give
the expected result. However, if we were to attempt feeding the program a very
large number of lines—say, 700,000 lines—we would be in for a nasty surprise:
The program would give us an error® even though everything worked just fine

up until the point where we tried to display the number of lines:

seq 700000 | ./tac
Fatal error: exception Stack_overflow

To explain this phenomenon, it is necessary to understand the principle behind
the execution of a recursive function like length.

Consider as an example the execution of the call length [1; 2; 3]. We
can “symbolically” unroll this call as follows:

length [1; 2; 3] = 1 + length [2; 3]
=1+ (1 + length [3])
=1+ (1 + (1 + length [1))
1+ @+ @+0)
1+ 1+ 1D
=1+ 2
=3

Each call to length allocates a memory cell to store the function’s argument.
In general, a function call, whether recursive or not, allocates the memory space
necessary for its arguments and its local variables. This memory space is freed
once the function call ends. In case of the recursive function length, the call
does not end until the recursive call completes and the addition 1 + ... is
performed. In particular, the call length [1; 2; 3] will require up to four

3The program seq is a Unix tool that displays all the integers from 1 to n, one integer per
line. It is the simplest way to obtain exactly n lines of text.
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nested function calls to reach the final call length []. Thus, four memory cells
will be needed to store the arguments of each of the four calls, as represented
in figure 2.6.

(R

e {2 [ 3]0

Figure 2.6: Representation of a call stack.

As is clear in the diagram, the nesting of function calls allows us to organize
the memory required for them as a stack. Hence the term call stack. Each call
to a function pushes the memory space required for its variables (here, the single
variable 1) onto the call stack, and removes this space when the call ends.

The error Stack_overflow triggered earlier when calculating the length of
a list of 700,000 elements is due to a limit on the size of the call stack. This
limit depends on the operating system and the compiler. It is generally fairly
low, of the order of several MB. When the stack reaches this limit, we call it a
stack overflow. The program is then interrupted. This is signaled either by the
exception Stack_overflow in OCaml or by a fatal crash of the program. If, on
the other hand, the size of the stack is large (or even unlimited), the program
will not trigger a stack overflow, but will consume more and more memory,
which could eventually cause the machine to crash.

Tail Calls

You may wonder why the call print !lines does not provoke a stack overflow,
unlike length !lines. The difference between the two functions is that, in the
function print, the recursive call is the very last expression evaluated in the
body of the function. This is not the case in the function length, where an
addition remains to be performed after the recursive call. In the case of print,
the compiler performs an optimization, which consists in removing the current
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call from the call stack, before performing the recursive call. Thus, the call stack
only ever contains the final call to print and, therefore, does not increase in
size.

In general, when a function call is the last expression to be evaluated in the
body of a function, we say it is a tail call. Note that this notion applies to both
recursive and non-recursive functions. In the former case, if every recursive call
is a tail call, the function is said to be tail recursive. Thus, print is tail recursive
and length is not. Note that a recursive function can contain both tail calls
and non-tail calls. This is the case of McCarthy’s famous 91 function.

let rec f91 n =
if n > 100 then n - 10 else f91 (f91 (n + 11))

We can avoid the stack overflow in the function length by writing it dif-
ferently, using an additional argument that represents the number of elements
already traversed. Thus, we can write:

let rec length_term acc = function

| [ -> acc
| _ :: r -> length_term (1 + acc) r

In this version, the recursive call to length_term is a tail call. To calculate the
length of a list, it suffices to call length_term with 0 as the first argument.

let length 1 = length_term 0 1

We can even define the function length as the result of the partial application
of length_term to O.

let length = length_term O
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2.9 Converting Integers from an Arbitrary Base

%@1Ideasintroduced

e iterators
e polymorphism
e function exit

Our next program (see page 75), radix.ml, takes numbers written in some
base B, where 2 < B < 36, and converts them to base 10. The base is passed
on the command line. The program then reads numbers from standard input
and displays them in base 10.

Here is a first example in base 16:

> radix 16
TFFF

-> 32767
AO

-> 160

After launching the program with the given base, we enter the number 7FFF on
standard input, and the program displays the result of the conversion, namely
32767. Next, we enter the number A0 and obtain 160.

Here is a second example, with numbers written in base 36:

> radix 36
ZORRO
-> 59942292

As you see in these examples, the numbers are written using the characters
0 to 9, and A (for 10) to Z (for 35).

Let us now pass to the implementation of the program. To begin, we retrieve
the base from the command line and store it in a variable base.

let base = int_of_string Sys.argv. (1)
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Program 9 [radix.ml] — Converting Integers from an Arbitrary Base

let base = int_of_string Sys.argv. (1)

let list_of_string s =
let digits = ref [] in
for i = 0 to String.length s - 1 do
digits := s.[i] :: !digits
done;
!digits

let digit_of_char c =
match ¢ with
| °0°..°9” -> Char.code c - Char.code ’0’
| A°..°Z> -> 10 + Char.code c - Char.code ’A’
| ¢ -> Printf.eprintf "invalid character ’%c\n" c; exit 1

let check_digit d =
if d < 0 || 4 >= base then begin
Printf.eprintf "invalid digit %d\n" d4; exit 1
end

let O =

while true do
let s = read_line () in
let cl = list_of_string s in
let dl = List.map digit_of_char cl in
List.iter check_digit dl;
let v = List.fold_right (fun d acc -> d + base * acc) dl O in
Printf.printf " -> J%d\n" v

done
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It is good practice to verify that the integer does indeed lie between 2 and 36,
and to fail otherwise.

We continue by defining a function, list_of_string, which converts a string
(of type string) to a list of characters (of type char list).

let list_of_string s =
let digits = ref [] in
for i = 0 to String.length s - 1 do
digits := s.[i] :: !digits
done;
ldigits

We traverse the string s, beginning with its first character, so as to construct
a list in which the last character of s—that is, the least significant digit of the
number—is found at the head of the list.

Next, we write a function digit_of_char to convert a character representing
a digit into the corresponding integer.

let digit_of_char c =
match ¢ with
| °0°..°9° -> Char.code c¢c - Char.code ’0’
| A>..°Z> -> 10 + Char.code c - Char.code ’A’
| ¢ => Printf.eprintf "invalid character %c\n" c; exit 1

The first pattern matching case | ’0°..°9° -> treats the case of a character ¢
between 0’ and ’9°’. Its numeric value is obtained simply as the difference be-
tween the ASCII code of ¢ and that of the character 0. The second case proceeds
in the same manner, for the characters between >A’ and ’Z’. For all other char-
acters, the last case displays a message on standard error using Printf.eprintf
and terminates the program using the predefined function exit.

We then write a function check_digit that verifies that d is a valid digit
for the given base, that is, that it lies between 0 and base — 1.

let check_digit d =
if d < 0 || d >= base then begin
Printf.eprintf "invalid digit %d\n" d; exit 1
end
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This function does not return a result. It interrupts the program if the digit d
is not valid.

The main part of the program is an infinite loop that reads a string s from
standard input and converts the corresponding number to base 10.

let O =
while true do
let s = read_line () in

done

We begin by converting the string s into a list of characters ¢l using the
function list_of_string.

let cl = list_of_string s in

In order to convert the list cl into a list of digits, we apply the function
digit_of_char to each element of cl. For this, we use the library function
List.map, which constructs a new list by applying a given function to all the
elements of a list.

let dl = List.map digit_of_char cl in

For example, if cl is the list [’A’; ’0°], then d1 is the list [10; 0]. More
generally, given a function f and a list [ [e1;es;...;e,], we have:
List.map fl= [fei;f ea; ... 5f enl
We then verify that each digit of the list d1 is valid by applying the function
check_digit successively to each element of dl1.
List.iter check_digit dl;

In this case we do not wish to construct a new list but rather to apply check_digit.
The whole program will be interrupted if check_digit detects an invalid digit.
In general, given a function f and a list [ equal to [eg;es;...;e,], the application
List.iter f [ is equivalent to the following sequence:

List.iter fl=fei;fex; -+ ;f en
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Finally, we will calculate the base 10 notation and display it. The list d1
is of the form [dy;dy; ... ;dn—1], where dy is the digit corresponding to the
last character in the string, that is, the least significant digit. It is therefore
necessary to calculate the following value:

n—1
E d; X base’
i=0

The most efficient method to minimize the number of multiplications (in
particular to avoid the expensive calculation of base?) is Horner’s rule, which
rewrites the preceding sum as follows:

dp + base x (d; + base X (... (d,—2 + base x (d,—1 + base x 0))...))

We can easily program the above using the library function List.fold_right,
which allows us to traverse the list d1 from the last element d,—; to the first
element dy, applying a function f to each element as follows:

List.fold_right flacc= fdo (...(f dno (f dn—1 acc)...))

The value computed for each element of the list is systematically passed to the
function f as the second argument, called the accumulator. Its initial value,
used when calling f on the last element d,_1 of the list, is the third argument
of List.fold_right, here called acc. To obtain Horner’s formula, it suffices
to let f be the function fun d acc -> d + base * acc. Thus, the end of the
program is simply:

let v = List.fold_right (fun d acc -> d + base * acc) dl O in
Printf.printf " -> %d\n" v

Additional Information
Polymorphism

To be useful, the functions of the library List, such as iter, map, or fold_right,
must be generic with respect to both the type of the elements of the list to
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which they are applied, and the operation performed on them. This genericity
is called polymorphism. The notion may be illustrated using the function length
to calculate the length of a list:

let rec length 1 =
match 1 with
I 0] ->0
| _::r->1+ length r

This function may, of course, be applied to a list of integers. For example:
# length [1; 6; 2; 8; 3] ;;
- : int =5
However, this function does not directly use the elements of the list 1 passed
as argument (as indicated by the pattern matching _ :: r). Therefore, this

function may in fact be applied to any list, be it a list of strings or one of
floating-point numbers. For example:

# length ["hello"; "world"; "!"1 ;;

- : int = 3

# length [ [3.4; .2]; [1; [1.2]; [5.1] ;;
- : int = 4

For the above to be possible, the function length must accept arguments of
type int list, string list, and even float list list. This function is, in
fact, applicable to lists of any type. In OCaml, it is given the type:

’a list -> int

where the type variable ’a represents any type. A type such as that of length,
which contains at least one type variable, is said to be polymorphic.

Apart from representing any type, type variables are also useful in estab-
lishing relations between the generic parts of a polymorphic type. For example,
in the function f, defined by let £ g x = (g x) + 1, the types of the argu-
ments g and x must be related because the function g is applied to x. Never-
theless, x (and hence g) remains polymorphic, because there is no other type
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constraint involving this value in the body of £. Thus, in the type of £, that is,
(’a -> int) -> ’a -> int, the variable ’a relates the type of the argument
of g with the type of x, without adding any extra constraints. Similarly, the
function iter of the library List has a polymorphic type:

iter : (’a -> unit) -> ’a list -> unit

This relates the type of the function passed as argument to that of the elements
of the list that the function iterates over.

A polymorphic type can contain several type variables, to represent unrelated
generic types. Thus, consider the function make_pair, defined by:

let make_pair x y = (%, y)

Here, the arguments x and y may be of any type, and they need not be re-
lated. Hence this function has a polymorphic type with two variables, that is,
’a => ’b => ’a *x ’b.

In the same way, the functions map and fold_right of the library List have
the following polymorphic types:

map : (Pa -> ’b) -> ’a list -> ’b list
fold_right : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

These types are the most general possible.

Right-to-Left and Left-to-Right Iterators on Lists

Combining higher-order functions and polymorphic types allows us to define
iterators, that is, functions that traverse generic data structures, such as lists.

For example, the iterator fold_right used in the program radix.ml can be
defined as follows:

# let rec fold_right £ 1 e =
match 1 with
| [1 > e
| x :: r > f x (fold_right £ r e);;
val fold_right : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b = <fun>
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As we have seen in the program radix.ml, the use of such an iterator allows
us to avoid writing recursive functions. Suppose, for example, that we wish to
multiply all the elements of a list of floats. We can simply write a function mult
as follows:

# let mult 1 = fold_right (fun x y -> x *. y) 1 1. ;;
val mult : float list -> float = <fun>

The reason for calling this iterator fold_right is that it treats the elements
of the list from right to left. The list is, in fact, traversed from left to right, but
the recursive call is performed before applying the function passed as argument.
This means that the rest of the list is treated before its first element. We can
confirm this behaviour by applying fold_right to a function that prints its first
argument:

# fold_right (fun x () -> print_int x) [1;2;3;4] ();;
4321- : unit =

It is natural at this point to consider the other iterator, which traverses and
treats elements from left to right. It is naturally called fold_left and is written
as follows:

# let rec fold _left f e = function
| 1 > e
| x :: r => fold left £ (f e x) r;;
val fold left : (Pa -> ’b -> ’a) -> ’a -> ’b list -> ’a = <fun>

It is clear that the elements are effectively treated from left to right:

# fold_left (fun () x -> print_int x) O [1;2;3;4];;
1234- : unit = ()

We can write the function mult with fold_left as we did with fold_right:

# let mult 1 = fold_left (fun x y -> x *. y) 1. 1 ;;
val mult : float list -> float = <fun>

There is, nevertheless, a slight difference. On a list containing hundreds of
thousands of elements, the function mult written with fold_right may trigger
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a stack overflow, which results either in an exception Stack_overflow or in the
sudden halt of the program. This is because the recursive call to fold_right
is not a tail call. (Since the call must be carried out before performing the
operation, it is necessary to save the value of the first element of the list.) By
contrast, in the case of fold_left, the recursive call is a tail call. (The stack is
not needed since the value x is used before the recursive call to fold_left).

It is important to note that an iterator like fold_left or fold_right tra-
verses all the elements of the list passed as argument. If we wish to stop the
calculation at a specific element, we have at least two possibilities*: Either we
write a recursive function that traverses the list and stops when we want it to.
Alternatively, we can use an iterator and raise an exception to interrupt the
list traversal. Consider again the example of the function mult. We may wish
to stop the calculation when the value 0 is encountered. The version with the
exception may be written as follows:

let mult 1 =
try
List.fold_left
(fun x y => if y = 0. then raise Exit else x *. y) 1. 1
with Exit -> 0.

However, in this case, writing a recursive function that terminates when it en-
counters 0 is simpler and more elegant.

2.10 Breakout without Bricks

3@'— Ideas introduced

o compilation unit, separate compilation

e module, interface

Our tenth program (see page 85) is a simplified version of the game Breakout,
without the bricks. The game consists in making a ball bounce within a frame,

4Chapter 9 will present another type of iterator which can solve this problem.
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by means of a paddle that is controlled using the mouse.

—
Figure 2.7: Breakout without bricks.

Graphically, the game window is as shown in figure 2.7, represented by a
gray frame, with a black circle representing the ball, and a black rectangle at
the base of the game window representing the paddle.

Programming such a game involves three main ingredients. First, we must
define the constants of the game, that is, the dimensions of the window (its
height and width, in pixels), the dimensions of the ball (that is, the radius of
the circle), and the paddle (the height and width of the rectangle). Next, we
must determine the state of the game, that is, the set of values that characterize
it at any instant. Here, these are the coordinates of the center of the ball, its
velocity, and the position of the paddle, which can be specified by the coordinates
of its bottom-left corner. To simplify matters, we may use the same coordinate
system as that of the library Graphics. That is, the point with coordinates
(0,0) is located at the bottom left of the window, and the z- and y-axes are
respectively the window’s bottom and left edges. Finally, the game is played
using an algorithm that executes the following steps:

1. Initialize the state of the game (the position and velocity of the ball, the
position of the paddle).

2. Erase the graphical window.

3. Calculate the position of the paddle as a function of the z-coordinate of
the mouse.
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4. Display the ball and the paddle.

5. Calculate the new state of the game, that is:

e the new position of the ball, as a function of its current position and
velocity vector;

o the new velocity vector of the ball, as a function of its bouncing off
the sides of the window and the position of the paddle.

6. Return to step 2.

As you can see, the actions performed in these steps are of two types: those
that are purely graphical (steps 2, 3, 4) and those that manipulate the state of
the game (steps 1, 5, 6). We choose to divide the OCaml code into two files:
draw.ml and breakout.ml. The first contains all the constants and graphical
functions of the game; the second maintains the current state and implements
the algorithm. In general, to clarify the structure of larger programs, it is a
good idea to divide them into several files, called compilation units.

To compile this program, which is divided into two files, we use the following
command line:

> ocamlc -I ‘ocamlfind query graphics‘ -o breakout \
graphics.cma draw.ml breakout.ml

As we will see shortly, the order of file names on the command line matters.

The graphical part (file draw.ml, program 10), begins by defining the di-
mensions of the game window, with the declaration of four constants: left,
right, down, and up.

let left = 0.
let right = 300.
let down = O.
let up = 200.
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Program 10 [draw.ml] — Breakout without Bricks (1/2)

open Graphics

let left = 0.
let right = 300.
let down = 0.
let up = 200.

let ball 5
let paddle = 50
let thick = 8

let gray = rgb 220 220 220

let init () =
let s = Printf.sprintf " %dx%d" (truncate right) (truncate up) in
open_graph s;
auto_synchronize false

let clear () =
set_color gray;
fill_rect 0 O (truncate right) (truncate up)

let get_paddle_pos () =
let x = fst (mouse_pos ()) in
max O (min x (truncate right - paddle))

let game x y =
clear ();
set_color black;
fill_circle (truncate x) (truncate y) ball;
let x = get_paddle_pos () in
£fill rect x 0 paddle thick;
synchronize ();
X
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These constants are values of type float, as we will later be using floating-point
numbers in trajectory calculations so as to guarantee a high degree of precision.

The following three constants define respectively the radius of the ball, the
length of the paddle, and its width (in pixels).

let ball = 5
let paddle = 50
let thick = 8

Finally, we declare a color gray, obtained by specifying the values of its three
components—red, green, and blue—using the function rgb.

let gray = rgb 240 240 240

The function init initializes the game window by opening a graphical canvas
of dimensions right x up.

let init () =
let s = Printf.sprintf " %dx%d" (truncate right) (truncate up)
open_graph s;
auto_synchronize false

Since the constants right and up are values of type float, we use the predefined
function truncate from the standard library to truncate their values and convert
them into integers. The call auto_synchronize false activates the double
buffering mode of the graphical device. When this mode is activated, all display
operations (drawing a circle, a rectangle, etc.) are performed in a memory
zone called the backing store, and not directly on the screen. The function
synchronize must then be used explicitly to copy the contents of the backing
store to the screen. As this copy is instantaneous, it eliminates any “flickering”
effects during the animation.

We now write a function for each graphical step of the algorithm. Step 2
is implemented by a function clear that erases the canvas by drawing a gray
rectangle of the same dimensions as the graphical window.

let clear () =
set_color gray;
fill_rect 0 O (truncate right) (truncate up)

in
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Step 3 of the algorithm is implemented by a function get_paddle_pos. It begins
by retrieving the x-coordinate of the current position of the mouse (with the
function mouse_pos). To ensure that the paddle does not go outside the game
window on the right side, we take the minimum between the value obtained and
truncate right - paddle.

let get_paddle_pos () =
let x = fst (mouse_pos ()) in
max O (min x (truncate right - paddle))

The main graphical function, game, takes as arguments the x- and y-coordinates
of the ball and implements steps 2, 3, and 4 of the algorithm.

let game x y =
clear ();
set_color black;
fill_circle (truncate x) (truncate y) ball;
let x = get_paddle_pos () in
fill_rect x O paddle thick;
synchronize ();
X

The second file, breakout.ml (see page 89), implements steps 1, 5, and 6 of
the algorithm. The state of the game is encoded as two pairs of floating-point
numbers: (x, y) and (vx, vy), which represent respectively the coordinates
of the ball and its velocity.

The first function of this file, bounce, calculates the new velocity of the ball,
taking into account that the ball may bounce off the sides of the window or the
paddle. The function bounce therefore also takes the position xp of the paddle
as an argument.

let bounce (x, y) (vx, vy) xp =

To calculate the new component vx, the x-coordinate of the ball must be com-
pared with the left and right edges of the game window. The constants left and
right having been defined in the file draw.ml, the dot notation Draw.left and
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Draw.right must be used to refer to them. Each compilation unit effectively
defines a module bearing the same name as the file, but with the first letter in
upper case.

let vx =
if x <= Draw.left || x >= Draw.right then -. vx else vx in

In the same way, to calculate the new component vy, we must compare the y-
coordinate of the ball with the top of the window Draw.up. The direction of the
ball’s velocity also changes if the ball hits the paddle, that is, if the x-coordinate
lies between xp and xp +. float Draw.paddle, and if the y-coordinate is less
than the paddle thickness Draw.thick.

let vy =
if y <= float Draw.thick && x >= xp &&
X <= xp +. float Draw.paddle || y >= Draw.up
then -. vy else vy
in
(vx, vy)
The following function returns the ball’s new position by adding the x- and
y-coordinates, respectively, to the velocity’s coordinates vx and vy.

let new_position (x, y) (vx, vy) = x +. vx, y +. vy

The function play implements the loop between steps 2 and 6. Starting
from the current state of the game, passed as argument, we begin by verifying
that the ball does not go beyond the bottom of the game window, by comparing
the y-coordinate to the constant Draw.down. If the ball does so, the game ends
with a message:

let rec play (x, y) (vx, vy) =
if y <= Draw.down then begin
Printf.printf "Game over!\n";
exit O
end;

If the game has not ended, we display the ball and the paddle using the function
Draw.game, which returns the x-coordinate of the paddle.
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Program 11 [breakout.ml] — Breakout without Bricks (2/2)

let bounce (x, y) (vx, vy) xp =
let vx

if x Draw.left || x >= Draw.right then -. vx else vx in

A
]

let vy
if y <= float Draw.thick && x >= xp &&
x <= xp +. float Draw.paddle || y >= Draw.up
then -. vy else vy
in
(vx, vy)

let new_position (x, y) (vx, vy) = x +. vx, y +. vy

let rec play (x, y) (vx, vy) =
if y <= Draw.down then begin
Printf.printf "Game over!\n";
exit O
end;
let xp = Draw.game x y in
let vx, vy = bounce (x, y) (vx, vy) (float xp) in
let x’, y’ = new_position (x, y) (vx, vy) in
play (x’, y’) (vx, vy)

let O =
Draw.init () ;
let speed = 0.1 in
let vx = speed *. Random.float 1. in
let vy = speed *. Random.float 1. in
play (Draw.right /. 2., float Draw.thick) (vx, vy)
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let xp = Draw.game x y in

Next, we calculate the new coordinates of the velocity vector, and then those
of the ball.

let vx, vy = bounce (x, y) (vx, vy) (float xp) in
let x’, y’ = new_position (x, y) (vx, vy) in

We return to step 2 by a recursive call to the function play with the new state
of the game as argument.

play (x’, y’) (vx, vy)
The main part of the program opens the game window by a call to Draw.init.

let () =
Draw.init();

It then creates a random velocity vector (vx, vy):

let speed = 0.1 in
let vx = speed *. Random.float 1. in
let vy = speed *. Random.float 1. in

Finally, the game begins with a call to the function play, placing the ball on
top of the paddle and at the center of the window:

play (Draw.right /. 2., float Draw.thick) (vx, vy)

Additional Information
Separate Compilation and Linking

The command line given above to compile Breakout can be decomposed into
several commands. We can begin by compiling the file draw.ml alone, with the
command:

> ocamlc -I ‘ocamlfind query graphics‘ -c draw.ml
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The compiler option -c specifies that we do not wish to construct an exe-
cutable, but only to compile the code. The result consists of two files, draw. cmi
and draw.cmo. The first contains typing information, and the second contains
code. This code is not self-contained. In particular, it references functions from
the module Graphics, which are not included in this file.

We can then compile the second file, with a similar command.

> ocamlc -c breakout.ml

Since this file references the module Draw, we had to compile the file draw.ml
first. The information needed for the type-checking of breakout.ml is contained
in the file draw.cmi. Here, too, the code obtained is not self-contained; the
file breakout.cmo references values and functions of the module Draw that are
contained in draw.cmo.

To obtain an executable, we must perform a linking operation, which consists
in putting together several pieces of code while verifying that every reference
can be resolved. Here, the three pieces involved are those of the OCaml li-
brary graphics.cma (which groups a set of cmo files together) and the two files,
draw.cmo and breakout.cmo.

> ocamlc -I ‘ocamlfind query graphics‘ -o breakout \
graphics.cma draw.cmo breakout.cmo

As we explained above, the order of file names on this command line is sig-
nificant. In particular, it must be compatible with the dependencies between
compilation units. Here, breakout.cmo depends on draw.cmo, which itself de-
pends on graphics.cma. Furthermore, it must be understood that an OCaml
program does not have a specific entry point. The code obtained after linking
simply executes the code of the different files passed on the command line, in
the order in which they appear.

Interfaces

The file draw.cmi produced by compilation contains the typing information of
all the values defined in the file draw.ml. This same information can be obtained
using the compiler option -i.
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Program 12 [draw.mli] — Interface for Module Draw

val left : float
val right : float
val down : float
val up : float

val paddle : int
val thick : int

val init : unit -> unit
val game : float -> float -> int

> ocamlc -I ‘ocamlfind query graphics‘ -i draw.ml
val left : float
val right : float

val game : float -> float -> int

We may, however, wish to make some of these values inaccessible to the rest of
the program. For example, we may wish to hide the function clear. To this end,
we can define an interface for draw.ml, in the form of a file draw.mli. Such a
file is given in program 12. We write it using the same syntax as that used by
the compiler option -i. We compile draw.mli before compiling draw.ml.

> ocamlc -c¢ draw.mli
> ocamlc -I ‘ocamlfind query graphics‘ -c draw.ml

The first command produces the file draw.cmi. The second produces draw.cmo
and verifies that it is compatible with draw.cmi, that is, that it defines values
having the names and types specified in the file draw.cmi. When there is a file
draw.mli, the compiler refuses to compile draw.ml until draw.mli has been
compiled. If we then try to use a value in breakout.ml that is not mentioned
in draw.mli, for example clear, an error is triggered.
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> ocamlc -c breakout.ml
Error: Unbound value Draw.clear

Interfaces are not only a means of limiting the visibility of values defined
in a compilation unit. They also enable separate compilation. This means that
the code of each compilation unit may be compiled independently of the code of
other units, because it depends only on their interfaces. Once draw.mli is com-
piled, we can compile either draw.ml or breakout.ml, in any order. Notably,
this makes it possible to divide the work amongst several developers once the
interfaces are in place. Furthermore, separate compilation helps avoid unneces-
sary recompilation of code. For example, a change in the code of the function
Draw.clear would only call for recompiling draw.ml, and then redoing the link-
ing operation. No other unit using Draw needs to be recompiled (for example,
breakout.ml).

Separate Compilation with dune

To compile our program with dune, we write the following configuration file:

(executable

(name breakout)
(modules draw breakout)
(libraries graphics))

The line (modules draw breakout) lists the modules necessary for the compi-
lation of the program. The tool dune will successively compile the modules Draw
and Breakout, as we did manually above. In particular, if an .mli file exists, it
is compiled before the corresponding .ml file. Furthermore, the line (1ibraries
graphics) indicates that the files must be compiled with the library Graphics.

Modules

We have used various modules thus far, including those of the standard library,
like Array and List, and the modules Draw and Breakout of the preceding
example. These modules always corresponded to compilation units, that is,
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to pairs of .ml1 and .mli files. The notions of module and interface are, in
fact, more precise than the notion of file; they correspond to constructs of the
language. Thus, we can define an interface I that contains a constant a and a
function £ with the following syntax:

module type I = sig
val a: int
val f: int -> int
end

We can then define a module M having this interface, with the following
syntax:

module M : I = struct

let a = 42
let b =3

let £f x=a *xx+Db
end

The compiler then performs the same operations as if we had written the inter-
face I in a filem.mli and the module Min a filem.ml. In particular, we access the
constant a with the notation M.a, while the constant b is not accessible outside
the module M.

2.11 Logo Turtle

3@'— Ideas introduced
o abstract types

e private types
e encapsulation
o functors

Our next program, turtle.ml, is a simplified version of the Logo turtle.
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Although the programming language Logo has fallen into disuse today, concep-
tually, it remains as interesting as ever. Its most salient feature is a turtle that
can be displaced using instructions of the form “forward 3 units” or “turn right
30 degrees,” and whose path is then displayed on the screen.

Figure 2.8: Example of a drawing using the Logo turtle.

We can thus easily trace a square by repeating the sequence “forward, then
turn left 90 degrees,” or even draw figure 2.8 through several repetitions of the
sequence “trace a square, then turn by 20 degrees.”

Our aim here is to implement some of the basic turtle operations, such as
moving forward, turning, and lifting the pen.

The following question arises naturally when writing the code of the turtle:
how do we represent the angle that determines the turtle’s direction?

We may choose to represent the angle in degrees or in radians, as an integer
or a floating-point number, and so forth. Here, we decided not to choose amongst
these options, and instead to parametrize the code by a module A that provides
the type of angles.

We begin accordingly by creating a signature for such a module, namely:

module type ANGLE = sig
type t
val of_degrees: float > t
val add: t >t > t
val cos: t -> float
val sin: t -> float
end
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The type t is that of angles. It has no definition; we say it is an abstract type.
We can, nevertheless, use it in the implementation of our turtle because we
are provided with the following: a function of_degrees, to convert an angle
expressed in degrees to a value of type t; a function add, to add two angles;
and, finally, sin and cos functions, to calculate the sine and cosine of an angle.

We can therefore write the Logo turtle as a module Turtle, parametrized
by a module A with signature ANGLE. Such a module is called a functor and is
defined thus:

module Turtle(A: ANGLE) = struct

Inside the module Turtle, the module A of signature ANGLE is visible and may
be used like any other module. For example, we can introduce a reference angle,
containing the current direction of the turtle, using:

let angle = ref (A.of_degrees 0.)

We can also write a function rotate_left to make the turtle turn d degrees
to the left:

let rotate_left d = angle := A.add 'angle (A.of_degrees d)

The complete code of the parametrized turtle is given in program 13 (see
below). There, we find references tx and ty which keep track of the the current
position of the turtle, and a function advance to make the turtle move forward.
The boolean reference draw indicates whether the turtle’s pen is up or down,
and is modified using the functions pen_up and pen_down.

To use the functor Turtle, we must begin by providing a specific module
with interface ANGLE. If we choose to represent angles in radians and floating-
point numbers, one such module Angle may be defined as follows:

module Angle: ANGLE = struct
type t = float
let add = (+.)
let pi_over_180 = atan 1. /. 45.
let of_degrees d = d *. pi_over_180
let cos = Stdlib.cos
let sin = Stdlib.sin
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Program 13 [turtle.ml] — A Logo turtle

module type ANGLE = sig
type t
val of_degrees: float —> t
val add: t -=> t > t
val cos: t —-> float
val sin: t -> float
end

module Turtle(A: ANGLE) = struct
let draw = ref true

let pen_down () = draw :
let pen_up () = draw :

true

false

let angle = ref (A.of_degrees 0.)
let rotate_left d = angle := A.add !angle (A.of_degrees d)
let rotate_right d = rotate_left (-. d)

open Graphics

let tx = ref 400.

let ty = ref 300.

let O open_graph " 800x600"; set_line_width 2;
moveto (truncate !tx) (truncate !ty)

let advance d =
tx := !tx +. d *. A.cos l!angle;
ty := !ty +. d *. A.sin !angle;
if !draw then lineto (truncate !tx) (truncate !ty)
else moveto (truncate !tx) (truncate !ty)

end
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end

We then obtain a module T by applying the functor Turtle to the module Angle,
which is written thus:

module T = Turtle(Angle)

Finally, we can use the module T to trace the figure 2.8 by writing, for
example:

let square d =
for k = 1 to 4 do T.advance d; T.rotate_left 90. done
let squares d a =
for k = 1 to truncate (360. /. a) do
square d; T.rotate_left a
done
let () = squares 100. 20.

Here, square d traces a square of side d and squares d a, a set of squares of
side d, with a rotation of a degrees between any two successive squares.

The reason for writing the module Turtle as a functor, parametrized by
the representation of angles, is that we can then apply it to other modules of
signature ANGLE, and thus obtain other turtles where the angles are represented
differently.

Additional Information

Abstract Types

In the above example, the type of angles A.t is an abstract type, because we
do not yet know how it will be implemented. We may equally use the notion
of abstract types to hide a concrete implementation, even when it is already
known. This is what we call encapsulation. Suppose, for example, that we wish
to define a module to manipulate integers between 0 and 30, and ensure that
all the integers we use lie within this interval. We begin by defining a signature
INT31 for such a module:

module type INT31 = sig
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type t

val create : int -> t

val value : t -> int
end

This signature declares an abstract type t, and two functions create and value.
We note that, by virtue of the abstract nature of the type t, a value of this type
can only be constructed using the function create. Next, we can construct a
module Int31 with this signature.

module Int31 : INT31 = struct
type t = int
let check x = if x < 0 || x > 30 then invalid_arg "Int31l.create"
let create x = check x; x
let value x = x
end

Inside this module, we give a definition to the type t, namely, int. Outside
the module Int31, by contrast, the type t remains abstract, that is, we do not
know that the values of type Int31.t are integers. In particular, we can enforce
the invariant that any value of type Int31.t lies between 0 and 30. We would
not have been able to do this if we had written type t = int in the interface
INT31.

The abstract nature of type t is illustrated by the way in which the values
are displayed by the OCaml interpreter:

# let x = Int3l.create 7;;
x : Int31.t = <abstr>

Here, the value displayed for x is <abstr>, which denotes the value of an
abstract type. Thus, x cannot be used like an integer:

# x + 10;;
Error: This expression has type Int31.t
but an expression was expected of type int

The type system therefore distinguishes the two types Int31.t and int.
Nevertheless, the value of x (namely, the integer 7) is exactly the same as if
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x had type int. Using an abstract type does not introduce any extra cost at
runtime. If we wish to add the value of x to 10, it is necessary to apply the
function Int31.value to x in order to get back a value of type int.

# Int31.value x + 10;;
- : int = 17

Private Types

As we have seen with the type Int31.t, an abstract type can be used to enforce
an invariant. Let us consider the example of a module Polar, used to represent
complex numbers in polar coordinates, with the type:

type t = { rho : float; theta : float; }

If we wish to enforce the invariant 0 < rho on this type, or to ensure that
0 < theta < 2w, one solution is to define an abstract type. However, in that
case, we would no longer be able to access the fields rho and theta from outside
the module Polar, and would therefore have to provide two accessor functions:

val rho : t -> float
val theta : t -> float

A more elegant solution consists in making the type t a private type. We give
the module a signature in which the definition of the type t is qualified with
private.

type t = private { rho : float; theta : float; }

The definition of the type t inside the module remains unchanged. The private
nature of the type t entails that it is no longer possible to construct a record of
type Polar.t outside the module. Thus, if we write the expression { Polar.rho
= 1.; Polar.theta = 0. }, the following error is triggered:

Error: Cannot create values of the private type Polar.t

However, it remains possible to construct values of this type inside the mod-
ule Polar. We may therefore provide one—or several—functions to create values
of type t, for example:
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val create : float -> float -> t

We may implement this function inside the module in a way that enforces the
invariant: We may either choose to fail if the values of rho and theta do not
satisfy the invariant, or normalize the values so that they do. Private types
are useful because their definition is not hidden, so that the structure of their
values is accessible, but the construction of these values is still disallowed. In
our example, we can access the fields rho and theta with the usual notation in
an expression or a pattern matching. Furthermore, it would not be possible to
modify a mutable field of a private record. The notion of privacy is not limited
to record types.

Iterators and Abstract Types

Iterators allow the traversal of a data structure (see section 2.9 Converting
Integers from an Arbitrary Base). In case of concrete types, such as lists, we
always have the option of directly defining a recursive function. By contrast,
in case of abstract types, this is no longer possible. It is therefore a good idea
to provide an iterator as well, in the form of a function iter or fold. If, for
example, a module S provides an abstract type for sets of integers—Ilet us call
it set—it could also provide a function:

fold: (int -> ’a -> ’a) -> set -> ’a -> ’a

We can use this function to calculate the sum of the elements of a given set,
even though we do not know its representation.

Functors

Functors allow us to construct data structures parametrized by other data struc-
tures. The OCaml standard library contains four examples of data structures
defined as functors: Hashtbl.Make, Set.Make, Map.Make, and Weak.Make. Part
IT of this book also contains numerous such examples. Functors can also help us
write algorithms parametrized by data structures or even by other algorithms
(see the various examples in Part III). In general, functors are an elegant way of
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reusing code, by writing it in the most generic way possible. Despite numerous
differences, they are comparable to C++ templates.

2.12 Playing a Musical Score

3@'— Ideas introduced
e algebraic types

e pattern matching

Our next program (see page 104), music.ml, plays a musical score. The
simple scores that we are going to play are represented grapically as in figure 2.9.

le 60

1N

[ YN
QL
|
| YEES

Figure 2.9: Musical score.

There are several types of signs here:

o Notes are determined by their pitch (or position) on the score and their
duration. We are only interested in notes of two specific durations: half
notes and quarter notes. Half notes are twice as long as quarter notes.

o Silences, for which we similarly consider only those that have the durations
of half and quarter notes.

To these signs, we add the tempo, which determines the number of quarter notes
per minute. In the example above, the tempo is 60 quarter notes per minute.

To play the notes, we need to know their respective frequencies (in Hz). To
facilitate this calculation, we represent the pitch of a note not by its position on
the score, but rather by using the following two pieces of information:

e a main note—do, re, mi, fa, sol, la, or si;
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e an octave 0, 1, 2, 3, etc.

This representation allows us to determine the frequency of a note easily, using
the following formula:

f=fox2°
Here, fy is the frequency of its main note in the octave 0 and o is its octave.
Table 2.10 gives the frequencies in octave 0 for the main notes.

Frequency (Hz)

Note for octave 0
do 33
re 37
mi 41
fa, 44
sol 49
la 55
si 62

Figure 2.10: Frequencies for octave 0 of the main musical notes.

In order to represent all the elements of a score, our program begins by
defining several types. The main notes are represented by the type note as
follows °:

type note = Do | Re | Mi | Fa | Sol | La | Si

This is an enumerated type, which defines a finite domain made up of seven
elements (Do, Re, etc.), called constructors. Syntactically, OCaml requires that
the name of a constructor begin with an uppercase letter.
Once we have defined this type, we may manipulate values of type note by
simply using the names of their constructors:
# Re;;
- : note = Re

5 . . . . .
°Here, we use the French naming system of musical notes, which is used in many other
countries as well.
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Program 14 [music.ml] — Playing a Musical Score

type note = Do | Re | Mi | Fa | Sol | La | Si

type pitch = { note : note; octave : int }

type duration = Half | Quarter

type symbol = Note of pitch * duration | Rest of duration
type score = { symbols : symbol list; metronome : int }

let frequency { note = n; octave = o} =

let fO =
match n with

| Do —> 33
| Re -> 37
| Mi —> 41
| Fa -> 44
| Sol -> 49
| La -> 55
| Si -> 62

in

f0 * truncate (2. ** float o)

let millisecondes d t =
let quarter = 60000 / t in
match d with
| Half -> quarter * 2
| Quarter -> quarter

let sound t s =
match s with
| Note (p, 4) ->
let £ = frequency p in
Graphics.sound f (millisecondes d t)
| Rest r ->
Graphics.sound 0 (millisecondes r t)

I
t
o

I

let play_score { symbols = 1; metronome
List.iter (sound t) 1
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The pitch of the notes is represented using records of type pitch with two
fields, note and octave, which must contain non-negative integers.

type pitch = { note : note; octave : int }

The durations, which are of type duration, are represented by the two
constructors Half (half notes) and Quarter (quarter notes).

type duration = Half | Quarter

To represent the two kinds of signs that may appear on musical scores, we
define the type symbol as follows:

type symbol = Note of pitch * duration | Rest of duration

This is an algebraic type, which allows us to distinguish between notes and
silences by means of two constructors, Note and Rest. Unlike the constructors
of enumerated types note and duration, the constructors Note and Rest have
arguments. In case of Note, the arguments are of type pitch and duration.
Rest has an argument of type duration. For example, to create a silence of
quarter-note duration, we write:

# Rest Quarter;;
- : symbol = Rest Quarter

Similarly, to create a note re in octave 1 of half-note duration, we write:

# Note ({ note = Re; octave = 1 }, Half);;
- : symbol = Note ({note = Re; octave = 1}, Half)

Finally, scores are represented by the record type score, composed of a list
of signs and a tempo that gives the number of quarter notes per minute.

type score = { symbols : symbol list; metronome : int }

The first function of the program calculates the frequency associated with
the pitch of a note based on the formula and the table of frequencies given above.

let frequency { note = n; octave = o } =

Given a note n of type note and an octave o, the function frequency begins
by determining the frequency £0 of the main note n using the pattern matching
construct match n with as follows:
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let fO =

match n with
| Do -> 33
| Re —> 37
| Mi -> 41
| Fa -> 44
| Sol —> 49
| La -> 55
| Si -> 62

in

This construct returns different values depending on the constructor used to
create n. Thus, if n is the constructor Do, the construct match n with returns
the integer 33. Else, if n is the constructor Re, it is the integer 37 that is
returned, and so forth. The main frequency £0 is then used to calculate the
frequency of the note:

f0 * truncate (2. **x float o)

The second function calculates the time (in milliseconds) corresponding to
a duration d (a half or quarter note), for a given tempo t.

let milliseconds d t = ...

We begin by calculating the time of a quarter note, (quarter), for the given
tempo:

let quarter = 60000 / t in

Next, depending on the duration d, we return quarter * 2 milliseconds for
a quarter note, and quarter milliseconds for a half note:

match d with
| Half -> quarter * 2
| Quarter -> quarter

The following function, sound, either plays a musical note or a silence:

let sound t s = ...
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Given a tempo t and a symbol s, sound pattern matches on s to determine if
it is a musical note or a silence:

match s with
| Note (p, d) ->

| Rest r —>

This pattern matching construct allows us not only to discern the constructor
used to create s, but also to retrieve the arguments of this constructor. Thus,
if s corresponds to the first pattern Note (p,d), the two variables p and d
represent, respectively, the pitch and duration associated with this constructor.
In the second pattern, the variable r represents the silence associated with the
constructor Rest. In both cases, the variables introduced by the patterns have
a scope limited to the expression on the right-hand side of the arrow ->.

When s is of the form Note (p, d), we calculate the frequency f associated
with the pitch p of the note using the function frequency. Then, we use the
function Graphics.sound to emit a sound of frequency f for a duration of
(milliseconds d t):

| Note (p, d) —->
let £ = frequency p in
Graphics.sound f (millisecondes d t)

When s is a silence of the form Rest r, we emit a sound of zero frequency
during (milliseconds r t) milliseconds.

| Rest r —>
Graphics.sound O (millisecondes r t)

Finally, the last function plays the notes of a score one by one, using the function
sound:

let play_score { symbols = 1; metronome = t } =
List.iter (sound t) 1



108 Chapter 2. First Steps with OCaml

Additional Information
Pattern Matching

In general, the pattern matching construct match v with generalizes what we
saw earlier in case of lists (section 2.8 Reversing the Order of Lines in a Text).
It contains k branches, each branch associating a pattern with an expression:

match v with
| pattern_1 -> e_1
| pattern_2 -> e_2
[ ...
| pattern_k -> e_k

The value v is first evaluated and is then compared, from top to bottom, with
each pattern. The only expression evaluated by this construct is the e_i corre-
sponding to the first pattern compatible with the shape of v.

The syntax of patterns is very expressive. It allows us to decompose complex
values with ease, for example values defined using the following types t and u:

type t = A of int * float | B of string
type u={a : t; b : int * t }

Thus, the pattern { b = (_, A (x, _)) } allows us to retrieve the integer 1
passed as argument to the constructor A in the following value:

{ a=B "foo"; b = (10, A(1, 4.5)) }

Informally, the pattern { b = (_, A (x, _)) }isread as “arecord whose field
b contains a pair, the second component of which is a value constructed using
A with two arguments, the first of which is named x.”

OCaml can also verify the exhaustivity of pattern matching, ensuring that all
possible cases are indeed covered. Thus, for any value v of type u, the compiler
detects that the following pattern matching is not exhaustive:

match v with
| {a=A,x;b=(,By) }-> ...
| {a=A>C, x); b=(, Ay, D)} -—>...
| {a=Bx; b=(,By)}—> ...
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It even indicates that values of the form { a=B _; b=(_, A (_, _)) } are
not handled by this pattern matching, which could lead to a runtime error.
By contrast, the compiler verifies that the following construct is exhaustive,
although this is not obvious a priori:

match v with
| {a=4A,x);b=(,By)} > ...
| {a=A,x);b=(0C,AH, D)) T > ...
| {a=Bx; b=(,By)}-—>...
| {a=_ b= (, A, ) r—> ...

The pattern matching construct also allows us to associate the same expres-
sion with several patterns. These patterns, called or patterns, take the following
form:

match v with
| pattern_1 | pattern_2 | ... | pattern_k -> e
I

The only syntactic constraint is that each pattern must introduce the same
variable names, and these must have the same type. For example, we may write
the following or pattern on values of type u:

match v with
| {a=Ak, D}l {b=(, ))}—> ...
|

It is equally possible to associate variable names to the sub-parts of a pattern
using the as notation, as in the following example:

match v with
| {a=B_;b=1(, (A(y, J)as=z)} > (y, z)
|

Here, the variable z references the value that is matched by the (sub-)pattern
A (y, _). Thus, the application of this pattern matching to { a = B "foo";
b = (10, A(1, 4.5)) } will construct the pair (1, A(1, 4.5)).

Finally, pattern matching may be extended with arbitrary boolean condi-
tions, using the when notation as follows:
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match v with
| pattern_1 when e -> e_1

For example, we can match values of type u having a field a of the form A(x, _),
with x greater than 10, as follows:

match v with
| { a=A(, _) } when x> 10 —> ...
I

It is important to note that the exhaustivity analysis does not take into account
these boolean conditions and that all patterns constrained by such expressions
are simply ignored.

Algebraic Types

It is also possible to define polymorphic algebraic types. To do so, we must
indicate the list of type variables (or parameters) that appear in the definition.
Consider the following example:

type (a, ’b) t = C of ’a * int | D of ’b | E of int

Here, the type t is parametrized by two variables ’a and ’b. The constructors
C and D are polymorphic. Thus, as in the case of a polymorphic function, these
constructors may be applied to arguments of any type:

# let v = C("foo", 3);;
val v : (string, ’a) t = C("foo", 3)

The type ’a list of polymorphic lists predefined in the OCaml standard
library is an example of a polymorphic algebraic type. If the syntax allowed it,
it could be defined by:

type ’a list = [1 | :: of ’a * ’a list

Another example of a polymorphic algebraic type is the type option of the
standard library defined by:

type ’a option = None | Some of ’a
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It serves in particular to represent a value not yet initialized, or an optional
result. For example, the following function returns either None, when it is not
possible to divide x by y, or else Some (x/y):

let division x y = if y = O then None else Some (x / y)

# division 2 O;;
- : int option = None

2.13 Quadtrees

-\@'- Ideas introduced

o trees, binary trees

e sharing

Our next program (page 114), quad.ml, manipulates black-and-white square
images of size 2" x 2™. If the image is completely black or white, it is represented
using a constant denoting its color. Otherwise, it is decomposed into four sub-
images, each of size 2"~! x 2"~! following the order indicated in figure 2.11.

413
1|2

Figure 2.11: Breaking up an image.
The image is the union of the four sub-images. In our program, the type
quad corresponds to this representation.
type quad = White | Black | Node of quad * quad * quad * quad

The constants White and Black respectively denote an image that is either
completely white or completely black. The constructor Node corresponds to an
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image decomposed into four sub-images, which are the four arguments of this
constructor.

Consider the image in figure 2.12. It is represented by the following value of
type quad:

Node (Node (Black, Black, Black, White),
Black,
Node (Black, Black, Black, White),
White)

Figure 2.12: An image of size 4 x 4.

Graphically, we may also represent this value as follows:

//N o —
Node Black Node White

Black Black Black White Black Black Black White

This is why we speak of trees in relation to such values.

Let us now write a function checker_board, which constructs a quadtree
corresponding to a 2™ x 2™ checkerboard. Thus, checker_board 3 corresponds
to the image in figure 2.13.

We proceed by recursion on n. If n is 0, we make an arbitrary choice and
return a black square.

let rec checker_board = function
| 0 -> Black

If n =1, we return a checkerboard of size 2 x 2:



2.13. Quadtrees 113

Figure 2.13: An 8 x 8 checkerboard.

| 1 -> Node (White, Black, White, Black)

Finally, if n > 1, we construct a 2"~ ! x 2"~1 checkerboard that we use four
times over to construct a checkerboard of size 2™ x 2™.

| n -> let q = checker_board (n - 1) in Node (q, g9, 9, 9)

Let us now write a function draw that draws the image represented by a
quadtree. This function takes as arguments the coordinates of the square in
which we wish to draw the image: the position (x,y) of the bottom-left point of
the image, and the side length w of the square. We proceed recursively on the
structure of the quadtree.

let rec draw x y w = function

If the tree consists of only one leaf, we distinguish between two cases: For a
white leaf, we do nothing; for a black leaf, we shade the square defined by x, y,
and w.

| White -> ()
| Black -> Graphics.fill rect x y w w

If, however, we are in the case of the constructor Node, we begin by calculating
the side length of the four sub-images, namely, w/2.

| Node (ql, 92, g3, g4) —>
let w=w/ 2 in

Then, we draw the sub-images with four recursive calls to draw. In each case, we
pass the coordinates of the bottom-left corner of the corresponding sub-image.
draw x y w ql;
draw (x + w) y W q2;
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Program 15 [quad.ml] — Quadtrees

type quad = White | Black | Node of quad * quad * quad * quad

let

let

rec checker_board = function

0 -> Black

1 -> Node (White, Black, White, Black)

n -> let q = checker_board (n - 1) in Node (q, 9, 9, 9)

rec draw x y w = function
White ->

O
Black ->

Graphics.fill _rect x y w w
Node (ql, 92, 93, q4) —>

let w=w / 2 in

draw x y w ql;
draw (x + w) y W q2;
draw (x + w) (y + w) w g3;
draw x (y + w) w g4

() = draw 0 0 256 (checker_board 3)
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draw (x + w) (y + w) w q3;
draw x (y + w) w qé

In this way, we can draw an 8 x 8 checkerboard in a square of side 256 by calling
draw O 0 256 (checker_board 3).

Additional Information
Constructors with Records

With the type quad of quadtrees, it is easy to make a mistake in the order of the
sub-trees of the constructor Node. We have to be very careful and constantly
keep in mind the figure 2.11. An alternative consists in naming the four sub-
trees, as we do with record types:

type quad =
| White
| Black
| Node of { sw: quad; se: quad; ne: quad; nw: quad }

Both within a pattern and when constructing a value, we use the syntax of
records to manipulate the arguments of the constructor Node. Thus, we con-
struct a node as follows:

Node { nw = a; sw = b; se = c; ne =d }

As we see here, the declaration order of the fields is not important. As in case
of records, we can use pattern matching to retrieve their values:

match q with
I

| Node { sw; se; ne; nw } —> ...
However, we cannot write the following:

match q with

|
| Node r —> ...
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This is because there is no record as such, only a syntax to name the four
arguments of the constructor Node.

To understand the difference, let us compare the constructor Node above
with the constructor C of the type t below:

type r = { a: int; b: bool; c: int }
type t = C of r |

Here, the constructor C has a single argument of type r, which is a record. This
value can be retrieved and, for example, passed to a function which takes a value
of type r:

match ... with
| Cr > fr

This, however, has a cost. The constructor C contains a pointer to a record al-
located previously, which means two allocations are needed instead of one. And
accessing the components of the constructor C requires two memory accesses,
the first to access the record and the second to access the field.

Invariants

We may wish to guarantee the property that a quadtree is never made up of
four leaves of the same color, since that would be an unnecessarily complicated
representation. To enforce this invariant, we must make quad either an abstract
or a private type. As alternatives to the constructors Black, White, and Node,
we must then provide two constants black and white, and a function node,
defined so as to guarantee the invariant.

let node = function
| White, White, White, White -> White
| Black, Black, Black, Black -> Black
| q1, 92, 93, 94 -> Node (ql, 92, 93, q4)

This is known as a smart constructor.
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Sharing

The attentive reader will have noticed that the function checker board makes
a single recursive call, reusing its result four times. What we have constructed is
thus not a tree, but rather a DAG. A depiction of the result of checker_board 3
that more accurately reflects its memory representation is therefore:

Node

Node

Node

N T

White Black White Black

In particular, checker_board n executes in O(n) time and space. By con-
trast, drawing its result takes O(4") time because the function draw traverses
the four sub-images successively. In other words, the function draw traverses
a tree without taking into account the sharing that exists in memory. Section
11.4 Hash-consing explains how to exploit such sharing.

Binary Trees

In a binary tree, each internal node contains exactly two sub-trees. The leaves,
like the nodes, can be labeled. For example, binary trees with internal nodes
labeled by integers correspond to the type:

type tree = Leaf | Node of tree * int * tree
Similarly, trees with leaves labeled by strings correspond to the type:
type tree = Leaf of string | Node of tree * tree

The reader will find numerous examples of such trees in the pages that follow.
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n-ary Trees

The number of sub-trees of an internal node is not necessarily fixed. It may
vary and can even be unbounded. In this case, we may represent the sub-trees
of a node by a list of trees. Thus we write:

type tree = Node of tree list

It is interesting to note that we no longer need a specific constructor to represent
leaves because the value Node [] fulfills this role. Of course, we may label the
nodes of such a tree if we wish. An example may be found in section 5.4 Prefix
Trees.

2.14 Solving the N-Queens Problem

o Ideas introduced

o backtracking

e persistence

We are interested here in the classic N-queens problem: N queens are to be
placed on an N x N chessboard such that none of them are threatened by the
others. Figure 2.14 shows one of the 92 solutions when N = 8.

More precisely, we are interested in the problem of enumerating all solutions,
without taking into consideration the symmetries of the problem. We proceed
in a relatively brute fashion by exploring all possibilities, noting nevertheless
that a solution must necessarily have one and only one queen on each line of the
chessboard. In light of this, we try to fill the chessboard line by line, placing a
queen each time in such a way that it is not threatened by the queens already
placed. Thus, if we have placed three queens on the first three lines of the
chessboard, we then search for a valid placement on the fourth line as follows:
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W

g

g

W

Figure 2.14: One solution of the 8-queens problem.

Wy

~ | IE

If we find one, we place a queen there and continue the search on the following
line. Otherwise, we go back one step and begin again. A solution is obtained
each time we manage to place a queen on the last line. By proceeding in such
a systematic manner, we are sure to find all solutions. This technique is called
backtracking.

For each line of the chessboard, our program will keep track of the columns
in which a queen may be placed. Thus, instead of trying all the N columns
of the current line, we would be able to examine far fewer than N and would
therefore backtrack sooner. We illustrate this idea for N = 8.

Let us suppose that we have already placed W

queens on the first three lines. Only five Wy (1)
columns need be considered in the fourth line W

(at the bottom of the chessboard). [ ¥ ] ¥ [
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Program 16 [queens.ml] — The N-Queens Problem

module S = Set.Make(struct type t = int let compare = compare end)
let map f s = S.fold (fun x s -> S.add (f x) s) s S.empty
let rec upto n = if n < O then S.empty else S.add n (upto (n-1))

let rec count cols dl d2 =
if S.is_empty cols then
1
else
S.fold
(fun c res ->
let d1 = map succ (S.add c d1) in
let d2 = map pred (S.add c d2) in
res + count (S.remove c cols) dil d2)
(S.diff (S.diff cols d1) d2)
0

let () =
let n = int_of_string Sys.argv.(1l) in
Format.printf "%d@." (count (upto (n - 1)) S.empty S.empty)
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Furthermore, three positions in the fourth line
are threatened by queens already placed along = 2)
a left diagonal. These three positions need not
be considered.

Similarly, two positions in the fourth line are
threatened by queens already placed along a = 3)
right diagonal. These two positions need not
be considered.

)

There are thus six positions on the fourth line

that cannot be used, leaving only two to be (4)
id. ther th ight.

consider, rather than eig ” T W

Our program will proceed recursively, keeping track at each instant of three
sets of columns: the set cols of columns that remain to be considered; the set d1
of columns that should be avoided since queens placed there would be threatened
along a left diagonal; and the set d2 of columns that should be avoided since
queens placed there would be threatened along a right diagonal. In our example,
numbering the columns starting from the right, we have cols = {0,2,5,6, 7},
d1 = {3,5,6}, and d2 = {0, 3}, as shown in the figures above (respectively in
(1), (2), and (3)). The set of columns where queens can be placed is obtained by
calculating the set-theoretic difference cols\d1\d2, which gives the set {2, 7},
as shown in figure (4).

To manipulate such sets of integers, we use the module Set.Make of the
OCaml standard library. This is a functor that we instantiate with a type
equipped with a total order. (The code of such a functor will be explained later
in this book, in the section AVL of chapter 5.)

We choose here the usual order on the integers, provided by the function
compare of the library Std1lib.

module S = Set.Make(struct type t = int let compare = compare end)
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The resulting module S provides a data structure S.t that represents a set of
integers, a constant S.empty corresponding to the empty set, and operations
such as S.add (adding an element), S.remove (removing an element), S.diff
(set-theoretic difference), etc. An important property of this data structure is
its persistence. This means that the operations applied to this data structure
do not modify it, but instead return new data structures. Thus, if we have a set
s of type S.t, then the expression S.add 4 s denotes a new set (containing 4
and all the elements of s), while the set s remains unmodified.

Let us now write our program using a recursive function count that takes
as arguments the three sets cols, d1, and d2 described above:

let rec count cols dl d2 =

This function returns the number of solutions that are compatible with these
arguments. The search ends when cols is empty. We then indicate that a
solution has been found.

if S.is_empty cols then 1 else

Otherwise, we calculate the set of columns in which queens can be placed
using the expression S.diff (S.diff cols di1) d2, as explained above. Then,
we traverse the elements of this set using the iterator S.fold, where the accu-
mulator is the current number of solutions found.

S.fold
(fun c res —> ...)
(S.diff (S.diff cols d1) d2)
0

For each column ¢ where a queen can be placed, it suffices to call count recur-
sively with the three sets adjusted accordingly. To adjust cols, it suffices to
remove the element c, using S.remove. To adjust d1 and d2, we use S.add to
add the column c to each of them, and then shift their elements by one unit as
appropriate. To do this, we define a function map that applies a function f to
all the elements of a set s, that is, it constructs the set {f(z) | € s}. We may
write it, for instance, using S.fold.

let map f s = S.fold (fun x s -> S.add (f x) s) s S.empty
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Given this function, the set d1 may be adjusted using map succ, where succ
is the predefined function fun x -> x + 1. Likewise, the set d2 is adjusted
with map pred, where pred is the predefined function fun x -> x - 1. The
function passed as argument to S.fold therefore has the following form:

(fun ¢ res ->
let d1 = map succ (S.add c d1) in
let d2 = map pred (S.add c d2) in
res + count (S.remove c cols) dl d2)

With this, the function count is complete. It is important to note here the
key role played by the persistence of the sets cols, d1, and d2. Indeed, these
sets are reused for each value of ¢, and must therefore not be modified by the
operations S.add and S.remove.

To solve the N-queens problem, it suffices to call count with cols equal to
the set {0,1,..., N — 1}, and d1 and d2 each equal to the empty set. To this
end, we define a function upto that constructs the set {0,1,...,n}.

let rec upto n = if n < O then S.empty else S.add n (upto (n-1))

The main part of the program retrieves the value of N from the command line
and then displays the result obtained by count.

let O =
let n = int_of_string Sys.argv.(1l) in
Format.printf "%d@." (count (upto (n - 1)) S.empty S.empty)

We can thus enumerate the 365,596 solutions of the 14-queens problem in less
than a minute.

Additional Information

The data structures that you find in the literature on algorithms are, for the most
part, imperative in nature: They are modified in-place by the operations they
provide. Arrays and linked lists are the first examples that come to mind. Thus,
writing to an array’s cell replaces the previous value by a new one. Something
similar occurs when we add an element to a linked list such as:
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| [1]efe[2][ef i e[4] |

The operation consists in modifying two of the pointers, as follows:

[Tl [2Te—lo 3o 4] |

As in case of the array, we have modified the structure of the list in-place. In
both cases, it is possible to return to the previous state, but it requires another
in-place modification.

A persistent data structure, by contrast, is a data structure whose operations
never modify their arguments; new values are returned instead. Of course, we
could render a data structure persistent by making a copy of it systematically,
but this would be grossly inefficient. There are other, more efficient means of
rendering an imperative data structure persistent. See, for instance, section 4.4
Persistent Arrays.

There is an entire class of data structures for which persistence is both possi-
ble and efficient, namely, immutable data structures, which cannot be modified
once constructed. For such data structures, it is possible to avoid unnecessary
copies through sharing. This is easiest to illustrate in case of lists.

If we define a list 1 by let 1 = [1; 2; 3], then, in terms of its memory
representation, 1 is a pointer. It points to a first block that contains 1 and a
pointer to a second block, and so on and so forth:

1
N
[L[eF—{2][eF—(3[00]

If we now define a list 1’ by adding another element to the list 1, with the
declaration let 1’ = 0 :: 1, we have the following situation:

1’ 1

ol e[ {3]0]
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The application of the constructor : : has the effect of allocating a new block,
whose first element is 0 and whose second element is a pointer having the same
value as 1. The variable 1 continues to point to the same blocks as before.
In general, any function that we may write on lists has the property of not
modifying the lists passed as arguments.

It is very important to understand that the above involves sharing. The dec-
laration of 1’ allocates a single block (because only one constructor is applied),
and the blocks forming 1 are reused without modification. We have two lists of
three and four elements respectively, namely [1;2;3] and [0;1;2;3], but only
four memory blocks. In particular, no copy is made. In general, OCaml never
makes copies of values, unless you explicitly write a function to do so. Such
a function would be useless in case of lists because a list cannot be modified
in-place. Functions that make copies of values are not useful unless the data
structures involved are mutable.

It is now clear why it is harder to add an element to the end of a list rather
than to its head. This is because an in-place modification of the list 1 would be
required:

[1] e 2[et——{3[e}---~{0[ 0]

To add an element to the end of a list, we must make a copy of every block
of the list. This is in fact what is done by the following function append, which
concatenates two lists (see exercise 2.24):

let rec append 11 12 = match 11 with
| [0 ->12
| x :: 1 ->x :: append 1 12

We observe that this function creates as many blocks as there are in 11 and
shares only those of 12. Thus, if we declare let 1’ = [4; 5] and concatenate
1 and 1’ with let 1°’ = append 1 1’, we will have the following situation:
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Copies of the the blocks of 1 have been made and those of 1’ have been shared.

Accordingly, lists must be used whenever the relevant operations are addition
and removal from the front (stack structure). When we need to access and/or
make modifications at arbitrary positions, it is preferable to use another data
structure.

Crucially, the elements of the list are not themselves copied by the function
append. In fact, the variable x in the code of append denotes an element of an
arbitrary type and is not itself copied. This does make a difference when dealing
with lists of integers. However, if we have a list 1 with three elements of a more
complex type, for example the list [(1,2,3); (4,5,6); (7,8,9)], then these
will be shared between 1 and append 1 [(10,11,12)]:

1 1’
N

All this may appear unnecessarily expensive if we are used to lists that are
modified in-place, which is the traditional approach in the context of imperative
languages. However, this would be to underestimate the practical advantages of
persistence. Besides, it is important to note that the concept of persistence can
be easily implemented in an imperative language. We only have to manipulate
linked lists exactly as the OCaml compiler does. Conversely, we can certainly
manipulate lists that are modifiable in-place in OCaml, for example by defining
the following type:

type ’a mlist = Nil | Cons of ’a * ’a mlist ref
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Here, the second argument of the constructor Cons is a reference. Unlike im-
perative languages, OCaml provides the possibility of defining immutable data
structures in a natural manner that is also safe. (Even if we code a persistent
data structure in C, the type system cannot prevent in-place modification, since
all data in C is mutable).

Finally, we must not forget that unused memory is automatically recovered.
Consider for instance an expression such as:

let 1 = [1;2;3] in append 1 [4;5;6]

The three blocks of 1 are effectively copied during the construction of the list
[1;2;3;4;5;6] but may be recovered immediately as they are no longer refer-
enced anywhere. (Chapter 3 offers more details on memory management.)

The Practical Advantages of Persistence

Persistence has many practical advantages. To begin with, it aids reasoning
about the code and its correctness: Since the values manipulated by the pro-
gram are immutable, we can reason mathematically about them. We can use
equational reasoning without even worrying about the evaluation order. It is
thus easy to verify the correctness of the function append once we have stated
what it is supposed to do (namely, that append 11 12 constructs the list formed
from the elements of 11, followed by the elements of 12). A simple recursion
on the structure of 11 suffices. If, however, we are dealing with lists that are
modifiable in-place and a function append that modifies the last pointer of 11
to make it point to 12, then the correctness argument is clearly more difficult.
The contrast is even more flagrant when a list is to be reversed. The correctness
of a program is important and must always take precedence over its efficiency.
After all, nobody would want a program that is fast but incorrect.

Persistence is not only useful for correctness, it is also a powerful tool in
contexts where backtracking is necessary. Suppose, for example, we write a
program to find the way out of a maze using a function find that takes as
argument a persistent state and returns a boolean indicating a successful search.
A function possible_moves returns the possible moves from a particular state
as a list. As the datatype is persistent, another function, move, returns the state
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resulting from a move and the current state. We also assume that a boolean
function is_exit returns whether a particular state corresponds to the exit. We
can then write the function find in the following way:

let rec find e =

is_exit e || try_move e (possible_moves e)
and try_move e = function

| [1 -> false

| d :: r -> find (move d e) || try_move e r

Here, try_move is a function that tries the possible moves in a list, one by
one. It is the persistence of the data structure encoding the state that allows
us to write such concise code. If the state was a global data structure modified
in-place, we would have to perform the move before calling find recursively in
try_move. We would also have to undo this move in case of failure before trying
other possible moves. The code would then look something like this:

let rec find () =

is_exit () || try_move (possible_moves ())
and try_move = function
| [ -> false
| d :: r -> (move d; find ()) || (undo_move d; try_move r)

This is indubitably less clear and more error-prone. Note that this is not an
artificial example; backtracking is a programming technique regularly used when
implementing graph traversals, coloring, enumeration of solutions, etc.

Consider a second example of the usefulness of persistence. Imagine a pro-
gram that manipulates a database. At any moment, there is only one instance
of this database. A priori, there is therefore no need to use a persistent data
structure for it. Let us assume that the modifications performed on the database
are complex, that is, involving a large number of operations, some of which can
fail. We then find ourselves in a difficult situation if we need to undo the effects
already performed before the failure. Schematically, the code could look like
this:

try
. perform modifications ...
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with e ->
. restore the database to a coherent state,
then handle the error ...

If we use a persistent data structure for the database, it may be stored in a
reference. Let us call it db. The operation that modifies the database sets the
value of this reference:

let db = ref ( ... initial database ... )
try

db := ... operation that modifies the database !db ...
with e —>

. handle the error ...

From then on, there is no need to undo anything. The modification, however
complex it may be, constructs a brand new database. Only once this construc-
tion is complete is the reference db modified so that it points to the new database.
This final modification is atomic and cannot fail. If any exception is raised dur-
ing the modification itself, the reference db remains unchanged. The automatic
memory manager will then recover the memory that was unnecessarily allocated
during the modification.

Interfaces and Persistence

The datatype of lists is obviously persistent because it is a type with a known
definition, that is, it is concrete and immutable. When an OCaml module
implements a data structure, declared as an abstract type, its persistent or
imperative nature is not evident. Of course, the programmer can be informed
of this fact by means of an appropriate comment in the interface. In practice,
however, it is the types of the operations that provide this information. Consider
the example of a persistent data structure that represents finite sets of integers.
The interface of such a module looks like this:

type set
val empty : set



130 Chapter 2. First Steps with OCaml

val add : int -> set -> set
val remove : int -> set -> set

The persistent nature of sets is implicit in the interface: The operations add and
remove return a value of type set, that is, a new set. The fact that the empty
set empty is a constant and not a function makes the persistence even clearer.
All occurrences of empty will be shared irrespective of its representation. This
would not be possible with a mutable data structure.

A data structure for sets of integers that are modified in-place would instead
have an interface of the form:

type set

val create : unit -> set

val add : int -> set -> unit
val remove : int -> set -> unit

Here, the function for addition, add, does not return anything because it adds
an element in-place to the data structure, and it is the same for the other
operations. The value empty is replaced by a function create that takes an
argument of type unit. Each call to create must construct a new instance of
the data structure so that the in-place modifications of one do not affect the
others.

Unfortunately, the type system of OCaml does not prevent the mixing of
both kinds of data structures. Thus, you can give the type int -> set -> set
to a function that adds an element to a set through side effects, for example
by returning the set passed as argument. Conversely, you can give the type
unit -> set to a function empty that returns a persistent empty set. In both
cases, it is useless and potentially dangerous.

This does not mean, however, that a persistent data structure must nec-
essarily be coded without any side effects. The good definition of persistent
is:

persistent = observationally immutable
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In other words, it is not purely applicative, in the sense of an absence of side
effects. We only have an implication in one direction:

purely applicative = persistent

The opposite is false: There are persistent data structures that make use of
side effects. This book contains several examples of such data structures. The
situation is illustrated in figure 2.15.

persistent structures Y non persistent structures

immutable
structures

N\

Figure 2.15: Different classes of data structures.

2.15 Exercises

Drawing a Cardioid

2.1 Modify program 2 to plot the set of points in figure 2.1.
2.2 Write a program that draws the figure below.
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The Mandelbrot Set

2.3 Modify the drawing of the Mandelbrot set by coloring points that are not
in the set based on the first value of 7 for which :U? + yf > 4. The color may
be chosen, for example, by linearly interpolating between two predefined colors,
and then using the function Graphics.rgb (see section 2.10 Breakout without
Bricks) and a simple rule of three.

2.4 Modify the code of the preceding exercise as follows: Once the drawing
is done, choose a point in the set using the mouse. Redo the drawing centered
around this point and at one-tenth the scale.

2.5 Write a program that draws a Koch snowflake. The snowflake is obtained
by tracing three Koch curves along the three sides of an equilateral triangle. A
Koch curve of depth n between two points A and B is defined as follows: For
n = 0, it is the segment linking A and B.

A B
For n > 0, the segment [A, B] is divided into three segments of equal length,

[A,C], [C,E], and [E, B]. A point D is defined as the third vertex of an equi-
lateral triangle CED:

A C E B
We then draw four Koch curves of depth n — 1 along the four segments [A, C],

[C, D], [D, E], and [E, B].
By choosing an initial depth that is sufficiently large, we get a drawing of

the following shape:

A B
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2.6 Let ug be an integer greater than 1 and (u,) the sequence defined by:

"  up/2 if u,, is even
17 34, +1 otherwise

Write a program that reads the value of ug using read_int and displays the
successive values of the sequence (u,,) as long as u,, > 1. (The Collatz conjecture
states that for any value of ug, we always reach the cycle 1 - 4 — 2 —
1 — .... Stated in 1928, this conjecture continues to defy the best efforts of
mathematicians.)

2.7 The problem of the tower of Hanoi consists in shifting n discs of decreasing
diameter, stacked one on top of the other, from one location to another, by using
a third location temporarily. Only one disc may be moved at a time, by taking
it off the top of a stack, and it may only be placed over a larger disc.

Write a program hanoi that reads the value of n and then displays a valid
sequence of moves to solve the problem, for example as follows:

> ./hanoi

4

moving disk from 1 to
moving disk from 1 to
moving disk from 3 to
moving disk from 1 to

w NN W

Sieve of Eratosthenes

2.8 Write a function sum: int array -> int that calculates the sum of the
elements of an array, first with a for loop, then with a recursive function.
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2.9 Write a function occurs: int array -> int -> bool that, for an array
of integers a and an integer value v, determines if v appears in a. Write two
variants of the program, one with a while loop and the other with a recursive
function.

2.10 Write a function binary_search: int array -> int -> bool that, for
an array of integers a sorted in increasing order, and an integer value v, deter-
mines if v appears in a. Use binary search so as to have complexity O(logn),
where n is the length of the array a.

2.11  Write a function shuffle: int array -> unit that randomly shuf-
fles the elements of an array using the following algorithm, called the “Knuth
shuffle,” where n is the size of the array:

for ¢ from 1 ton —1
let j be a random integer between 0 and ¢ (inclusive)
exchange the elements at indices ¢ and j

You may use Random.int k to obtain a random integer between 0 and k — 1.
Of course, this algorithm may be used for arrays of any type.

Drawing a Curve

2.12 Write a function sum: (int -> int) -> int -> int -> int that takes
a function f, and two integers ¢ and j as arguments, and calculates the following
sum:

ol

=i
2.13 Write a function dicho of type:

dicho : (float -> float) -> float -> float -> float

that searches for the zero of a monotonic function f on an interval [a,b] by
dichotomic search. The idea is as follows: Calculate the midpoint x of [a,b],
and compare the signs of f(a) and f(z). Depending on the result, repeat the
calculation on the interval [a, x] or [x,b]. Stop when a and b are sufficiently close
to each other. You can assume that [a,b] contains a zero of f.
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Copying a File

2.14 Modify program 7 so that it correctly handles the case in which one of the
two files cannot be opened. This triggers an exception of the form Sys_error s,
where s is a string explaining the nature of the error (file does not exist, per-
mission denied, etc.). This message should be displayed before terminating the
program using exit 1.

2.15 In languages like C and Java, the statement break exits the nearest
enclosing loop, and the statement continue jumps to the next iteration of the
loop. Thus, the following C code displays 0124567:

for (int i = 0; i < 10; i++) {
if (i == 3) continue;
if (i == 8) break;
printf ("%d", 1i);

}

Explain how to translate these two statements into OCaml. You may use two
exceptions, Break and Continue, to this end.

Inverting the Lines of a Text

2.16 Write a function mult : int list -> int that calculates the product
of all the elements of a list of integers. Make sure to return 0 at the first
occurrence of the integer 0.

2.17 Redo the previous exercise, this time raising an exception if 0 is encoun-
tered, so as to avoid unnecessarily multiplying the first elements of the list.

2.18 Redo exercise 2.16 by writing the function mult as a tail-recursive func-
tion.

2.19 Write a function insert : int -> int list -> int 1list that inserts
an integer into a list of integers sorted in increasing order. Avoid making an
unnecessary copy of the part of the initial list that lies beyond the point of
insertion.
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2.20 Using the above function insert, write a function insertion_sort of
type int list -> int list that sorts a list of integers in increasing order
using following algorithm, known as insertion sort: Beginning with the empty
list, insert each element successively, using the function insert. Insertion sort
is described in detail in chapter 12.

Converting Integers from an Arbitrary Base

2.21 Write a functionmem : ’a -> ’a list -> bool that determines whether
an element is present in a list, using the equality operator =. This function exists
in the standard library, under the name List.mem.

2.22 Write a function count : ’a -> ’a list -> int that counts the num-
ber of occurrences of an element in a list, using the equality operator =.

2.23 Rewrite the function count of the last exercise using an iterator.

2.24 Write a function append : ’a list -> ’a list -> ’a list that con-
catenates two lists. If I; = [x1;...;2,] and la = [y1;. .. ; Ym], then the result of
append [j lp must be the list [x1;...;2;Y1;...;ym] of length n + m. Proceed
by recursion on the first list, thus performing n recursive calls. The OCaml
standard library provides this function both under the name List.append and
as the infix operator @.

2.25 Using the above function append, write a function rev of type ’a list
-> ’a list that reverses the order of elements of a list, that is, such that
rev [r1;...;%n] = [Tn;...;x1]). In the next section, we will discuss a more
efficient method of implementing this function.

2.26 Write a function subseq: ’a list -> ’a list -> bool that deter-
mines if a list wy is a sub-sequence of another list ws, that is, if wy; can be
obtained by removing zero or more elements of wsy. For example, [1;5;4;1] is a
sub-sequence of [3;1;1;5;0;4;1].

2.27 Write a function exists: (’a -> bool) -> ’a list -> bool that
takes a boolean function p and a list [ as arguments and determines if [ contains
at least one element = such that p(z) is true.

2.28 Using List.fold_left, write a function forall: (’a -> bool) ->
’a list -> bool that determines whether all the elements of a list of type
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’a list satisfy a condition given by a function of type ’a -> bool. What is
the problem with this solution? Propose a more efficient version.

2.29 Write a function filter: (’a -> bool) -> ’a list -> ’a list that
takes a boolean function p and a list [ as arguments, and returns the list of all
the elements z of [ for which p(z) is true. Preserve the order of the elements.
This function exists in the standard library under the name List.filter.

2.30 Using an iterator, write a function max_seq: bool list -> int that
returns the length of the longest sequence of consecutive true values in a given
list.

2.31 Write a function first: (’a -> bool) -> ’a list -> ’athat returns
the first element of the list passed as argument satisfying the given condi-
tion. If such an element does not exist, the function should raise the exception
Not_found.

2.32 Write an iterator fold_pairs of type:
fold_pairs: (a -> ’b -> ’b -> ’a) -> ’a -> ’b list -> ’a

The iterator takes as argument a function f, a value v, and a list [z1;...; 2],
and returns:

f(f( . ‘f(f(v,xl,xQ),l’Q,fi;), cee ,.’L‘n_l,ﬂfn),xn,ﬂfl)

In other words, the function traverses all pairs of consecutive elements (z;, z;+1),
where the list is considered to be circular.

2.33  Propose a function to create a matrix init_matrix, analogous to func-
tion Array.init, of type:

init_matrix: (int -> int -> ’a) -> int -> int -> ’a array array
2.34  Write a traversal function:
iter_matrix: (int -> int -> ’a -> unit) -> ’a array array -> unit

that applies a given function to all the elements of a matrix. The first two
arguments of the function are the indices of the corresponding element. Explain
why it is more efficient to traverse the matrix row-wise rather than column-wise.
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Breakout without Bricks

2.35 Given a file a.ml that contains let () = Printf.printf "A\n" and
a file b.ml that contains let () = Printf.printf "B\n", compile these two
files separately and verify that different results are obtained depending on the
order in which the files are passed to the linker.

2.36 Given six files a.mli, a.ml, b.ml, c.ml, d.mli, and d.ml, and knowing
that A and B depend on C, and that C depends on D, give all possible ways of
compiling and linking a program containing the four compilation units A, B, C,
and D.

2.37 Rewrite the code of Breakout in a single file with two submodules Draw
and Breakout. Give the module Draw the same interface as that defined in
draw.mli.

Logo Turtle

2.38 Redo exercise 2.5 that draws a Koch snowflake using the Logo turtle.

5

A B

Hint: Write a recursive function von_koch: int -> float -> unit whose first
parameter is the number of recursive steps and the second the length of the
segment [A, B].

2.39 Rewrite the functor Turtle so that it is also parametrized by a module
of signature:

val open_graph: int -> int -> unit

val draw_line: int -> int -> int -> int -> unit
Here, open_graph w h opens a window of dimensions wx h and draw_line x1 y1 2 y2
draws a segment between the points (z1,y1) and (z2,y2). Then, implement a
module with such an interface using Graphics.

2.40 We would like to define a module to represent files endowed with reading
and writing permissions. To this end, we introduce a type permission.
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type permission = Read | Write

Define a module Access to manipulate access rights. This module will provide
an abstract type t, a value of type t, default, representing read and write
access, and two functions get and set that allow, respectively, to get and set a
permission.

val get : t —-> permission -> bool
val set : t -> permission -> bool -> t

Next, define another module File to represent a file endowed with access rights.
This module will export a private record type t, containing the file name
in a field of type string and the access rights in a mutable field of type
Access.t. You will provide a function create : string -> t taking the
file name as argument, a function chmod to modify the access rights, a func-
tion open_in : t -> in_channel to open a file for reading, and a function
open_out : t -> out_channel to open a file for writing. The last two func-
tions will raise an exception PermissionDenied in case of insufficient permis-
sions.

2.41 Write multiple modules to manipulate monetary values in different cur-
rencies. All the modules should have the same signature:

module type MONEY = sig
type t = private { i : int; f : int }
val create : int -> int -> t
val add : t >t >t

end

A monetary value is represented by an integer i and a fraction f, between 0
and 99, representing the number of cents. The integer i is signed. Write a
module Money implementing the signature MONEY. Derive from it two mod-
ules Euro and Dollar, both having the signature MONEY and the structure
Money, but with distinct types Euro.t and Dollar.t. Finally, write a function
euros_to_dollars : float -> Euro.t -> Dollar.t that, given an exchange
rate, converts euros to dollars.

2.42 Write a module to represent sets of integers by lists sorted in increasing
order, with the following signature:
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module type ISET = sig
type t
val empty : t
val add : int >t > t
val union : t -> t > ¢t
val mem : int -> t -> bool
end

What is the advantage of making the type t an abstract type?

2.43 Rewrite the code of the previous exercise in the form of a functor parametrized
by the type of elements and a function defining a total order on them, that is:

module type ELT = sig type t val compare: t -> t -> int end
module Set(E: ELT) : ... = struct ... end

Here, the value of compare z y is strictly negative if z < y, zero if z = y, and
strictly positive if z > y.

2.44 Apply the functor of the previous exercise to obtain sets of even integers,
giving these an arbitrary total order.

2.45 Write a data structure for polynomials of one variable. The idea is to
represent a polynomial using the sorted list of its monomials, each monomial
being represented by a pair of a coefficient and an exponent. Thus, the polyno-
mial X7 —3X*+2 is represented by the list [(1,7); (—3,4); (2,0)]. In order to be
generic with respect to the ring of coefficients, write the structure of polynomials
as a functor Poly parametrized by a module of signature:

module type Ring = sig

type t

val zero : t

val one : t

val add : t >t > ¢t

val mul : t >t > t

val equal : t -> t -> bool
end
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If R designates the argument of the functor Poly, the latter must provide the
following functions:

type t

val create: (R.t * int) list -> t
val add: t -=> t > t

val eval: t -=> R.t -> R.t

Here, t is the type of polynomials, create constructs a polynomial based on a
list of monomials, add adds two polynomials, and eval evaluates a polynomial
at a point. Hint: Begin with the function add (see exercise 2.42) and then use
it to write the function create.

2.46 Continue the previous exercise by adding two constants, zero and one,
and two functions, mul and equal, to the signature of the functor Poly. This
yields polynomials endowed with the structure of a ring. In other words, the
signature of the functor Poly can be written in terms of the signature Ring.
The construct include is a syntactic shortcut to include the definition of one
signature in another:
sig
include Ring
val create: (R.t * int) list -> t
val eval: t -> R.t -> R.t
end

It is thus possible to obtain polynomials of several variables by applying the
functor Poly several times in succession. For instance, the structure of polyno-
mials of three variables and integer coefficients is obtained as:

module P = Poly(Poly(Poly(Int)))

Here, it is assumed that Int implements the signature Ring for the integers.

Quadtrees

2.47 Write a function rotate: quad -> quad that turns an image anticlock-
wise by 90 degrees.
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2.48 Write a functionmirror: quad -> quad that constructs the mirror sym-
metry along the vertical axis of an image represented by a quadtree. Thus, the
function mirror allows switching between the following two images:

2.49 Write a function fractal: int -> quad that constructs a quadtree rep-
resenting a Sierpinski carpet fractal, by iterating the following process of decom-
position:

Solving the N-Queens Problem

2.50 Modify program 16 to return the first solution found, in the form of an
array a giving the column a[i] of the queen located on row i. When there is no
solution, the exception Not_found should be raised.



OCaml Concepts: A Closer
Look

What do you do if your program is ill-typed or consumes too many resources
(memory or time)? To make the right diagnosis, it is necessary to understand
the functioning of the compiler and the code it produces.

In this chapter, we address problems related to type-checking, memory use,
and execution time.

3.1 Type-Checking Algorithm

While the compiler automatically infers the types of all values defined in a
program, it may nevertheless be useful for programmers to have at least an
intuitive understanding of the typing rules of OCaml. This would help them
understand any error messages that may arise.

To compute the type of an expression, it suffices to traverse its definition from
left to right, beginning with the most generic type possible, ’a, and accumulating
type constraints.

Consider, for example, the following function definition:
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let £ x y = if x y then [] else [y + 1]
We begin by rewriting this definition as follows:

let £ = fun x -> fun y -> if x y then [] else [y + 1]
Next, we let:

val £ : ’a

Since f is an expression of the form fun x -> el, we deduce that ’a must be
the type of a function, ’al -> ’a2:

val £ : ’al -> ’a2

Similarly, el is a function of the form fun y -> e2, so that ’a2 is equal to a
type bl -> ’b2:

val f : ’al -> ’bl -> b2

We now extract the type constraints on the variables a1, b1, and ’b2 origi-
nating from the expression e2, which is equal to:

if x y then [] else [y + 1]

From the function application x y, we deduce that x is a function. In other
words, ’al is equal to a type >c1 -> ’c2. We therefore get:

val £ : (cl -> ’c2) -> ’bl -> b2

Next, since y is passed as argument to x, we deduce that the variable ’c1 is
equal to b1, so that the type of f is:

val £ : (bl -> °c2) -> bl -> ’b2

Furthermore, since x y is used as the condition in an if construct, we deduce
that ’c2 is equal to bool:

val £ : (°bl -> bool) -> ’bl -> ’b2

The first branch of the if returns the empty list []. Therefore, *b2 is equal
to ’d list:

val £ : (°bl -> bool) —-> ’bl -> °’d list
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Finally, the second branch [y + 1] provides the last two constraints. From the
addition y + 1, we deduce that y is of type int. The list [y + 1] therefore has
the type int list, and the variable ’d is equal to int. The complete type of
the function f is therefore:

val £ : (int -> bool) -> int -> int list

Let us now study the case of an ill-typed function. The function g below
takes two arguments, x and y. The type inference algorithm detects the following
error:

# let g x y = if x y then [x] else [yl ;;

Error: This expression has type ’a but an expression was expected
of type ’a -> bool
The type variable ’a occurs inside ’a -> bool

The initial steps in the typing of g are the same as those in case of £. Thus,
having scrutinized the expression x y, we deduce that g has the following type:

val g : (bl -> bool) -> ’bl -> ’b2

The first branch of the if returns the list [x]. Therefore, the variable ’b2
must be equal to (°bl -> bool) list. Similarly, the second branch returns
the list [y]l. So ’b2 must be of type bl list. Therefore, for g to be well
typed, the types (°’bl -> bool) list and bl list must be equal. This would
require the equation of types bl = ’bl -> bool to have a solution, which is
not possible in OCaml (unless we enable the option -rectypes of the compiler
or interpreter). We now understand the above error message: It indicates that
the variable y is of type ’a, whereas it should have type a -> bool, which is
not possible because the variable ’a appears within the type ’a -> bool.

In general, to determine the type of a program, or understand its typing
errors, it is necessary to know the type constraints imposed by the constructs
of the language. Here we present a (non-exhaustive) list of these constraints.
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If-then-else

In a conditional if el then e2 else e3, the expression el must be of type
bool, and the expressions e2 and e3 must be of the same type, whatever that
may be. The type of the conditional is that of e2 (and therefore also that of
e3).

If-then

A conditional expression if el then e2 (without the else branch) has type
unit. The expression el must be of type bool and e2 of type unit.

While

In a loop while el do e2 done, the expression el must be of type bool and
e2 of type unit. The while loop is of type unit.

For

In a loop for i = el to e2 do e3 done, the expressions el and e2 must be
of type int and the expression e3 of type unit. The for loop is of type unit.

Sequence

In a sequence el; e2, the expression el must be of type unit while e2 may be
of any type. The type of e2 gives the type of the sequence. If el is not of type
unit, we may write let _ = el in e2 or ignore el; e2.

Declaration

In a local declaration let p = el in e2, the pattern p and the expression el
must be of the same type. The expression e2 may be of any type. This is also
the type of the declaration. In a global declaration let p = e, the type of p
must be that of e.
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Function

A function of the form function p -> e or fun p —-> e is of type t1 -> t2,
where t1 is the type of the pattern p and t2 is the type of the expression e.

Application

The application el e2 requires that el be of type t1 -> t2 and that e2 be of
type t1. The type of the result of the application is t2.

Pattern Matching

Consider the pattern matching construct:

match e with
| pl when bl -> el
(N
| pk when bk -> ek

The associated constraints are that the expressions el, ..., ek must all have the
same type, and that the expressions b1, ..., bk must all be of type bool. The
patterns p1, ..., pk must all have the same type as e. The global type of this
construct is that of the expressions el, ..., ek

Exception

Consider a try-with block of the form:

try
e
with
| p1 > el
[ ...
| pk -> ek
Here, the expressions e, el, ..., ek must all be of the same type. The patterns
pl, ..., pk must designate exceptions (of the predefined type exn). The type of

the try-with block is that of the expression e.
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3.2 Runtime Model

As a rule, to make the best use of a programming language, it helps to under-
stand its runtime model. OCaml is no exception in this regard. By runtime
model, we mean the time (see the next section) and space complexity of the
different constructs of the language. Even if we can often ignore these complexi-
ties by remaining at a higher level of abstraction, it is worthwhile to understand
them.

Value Representation

We begin by explaining the memory representations of OCaml values. An
OCaml value occupies exactly one memory word (32 or 64 bits, depending on
the architecture). If we consider this word as an integer, we may distinguish
two cases, depending on whether the integer is even or odd:

e if it is an odd integer 2n + 1, we interpret it as the integer value n;
« if it is an even integer, we interpret it as a pointer.

In short, an OCaml value is either an integer or a pointer. If it is an integer,
it can represent a value of type int, a character, a boolean, or even a constant
constructor like [] or None. Note that this explains the limitation of the type
int to 31 bits (63 in a 64-bit machine), mentioned previously. If the value is
a pointer, it points to a block allocated in memory. A block occupies k + 1
memory words, with k& > 1. The first word of the block, called the header,
plays a particular role that we will explain later. The following k words contain
OCaml values, and we say that k is the size of the block. We will represent a
block of size 5 as follows:

Thus, the pair (1,2) is represented by a pointer to a block containing two
values, namely, the integer values 3 and 5 representing respectively the integers
1 and 2:
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L 13]5]

More generally, an n-tuple is represented by a pointer to a block of size n. Arrays
and records are also represented in memory by pointers to blocks. Thus, the
array [11; 2|] and the record {a=1; b=2} have exactly the same representation
in memory as the pair (1,2). We explained previously that a reference was
nothing but a particular case of records, with a single field contents (see the
additional information in section 2.6 Tracing a Curve). We deduce from this
that the value ref 1 is represented in memory in the form of a block of size 1,
that is:

3]

The mutable nature of the field contents means that the value contained in
this block, here 3, can be modified in place. The same is true for the values of
an array.

Let us now consider the representation of concrete types. The idea is simple:
Constant constructors are represented by integers and other constructors by
(pointers to) blocks. Consider, for example, the type:

type t = A | Bof t *t | C| D of char

The two constant constructors A and C are represented by the integers 1 and 3, re-
spectively. The two non-constant constructors B and D are represented by point-
ers to blocks of size 2 and 1, respectively. Thus, the valueB (A, B (D ’a’, C))
corresponds to three blocks, as follows:

.
i 193 [i%]

Here, the value 195 corresponds to 2 x 97 + 1, where 97 is the code of the
character ’a’.

For faster access, a pointer to a block points to its first field rather than
its header. The latter contains the tag of the constructor, here B or D. This
information is used particularly when pattern matching.
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Consider the type of lists as a second example: The constant constructor []
is represented by the integer 1. The constructor : : is represented by (a pointer
to) a block of size 2. The list 1 :: 2 :: 3 :: [] is therefore represented in
memory as follows:

CIs[s CIs+— L7l

We observe that OCaml lists are not fundamentally different from the linked
lists used in C or Java. When an OCaml program manipulates lists (passing
them as arguments of functions, returning them, etc.), it only manipulates the
pointers to the blocks, exactly like a C or Java program would. The essen-
tial difference is that OCaml only permits the construction of well-formed lists
since pointers are not explicit in the language. Where programmers using C
or Java have to think about checking whether a pointer is null, programmers
using OCaml would use a pattern matching construct that would force them to
consider this case, and with a very concise syntax at that.

In general, the header contains the tag of the block. Beyond the cases we have
already illustrated, the header can also identify a floating-point number, an array
of floats, a string, an object, a function, etc. Note that the tag provides far less
information than the type of the value. In general, the memory representation
of OCaml values does not include typing information. The OCaml standard
library provides a module Obj that can be used to explore this representation.
We can thus test whether a value is represented as a block and, if so, retrieve its
tag, size, fields, etc. This module must be used with caution given its strongly
untyped nature.

Notation

In what follows, we will simplify the graphical representation of OCaml values:
Headers will not be drawn, and integer values will not be transformed using
n + 2n + 1. Thus, the list [1;2;3] will be represented simply as:

[A[eF——{2[e——{3] ]
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Comparison Operators

The equality operator = that we have already used several times may be applied
to any two values, provided that they are of the same type. Thus, we can use it
to compare values of the following type:

# type ty =D | A of int | B of bool | C;;
type ty = D | A of int | B of bool | C

# A1=A1;;

- : bool = true

# D =B true ;;

- : bool = false

This operator compares the structures of two values and therefore corresponds
to the usual mathematical notion of equality. It is called the structural equality
operator. Its negation is written as <>.

OCaml also provides another equality operator, ==. It is called the physical
equality operator. Its negation is written as !=. The operator == compares values
as integers, even if these integers represent memory addresses. Accordingly, we
can observe that two constructor applications allocate two different memory
blocks:

# A1l==A1;;
- : bool = false

Now that we know how OCaml values are represented, we can further de-
duce that = and == coincide on values like integers, characters, and constant
constructors. In case of more complex types, predicting the result of a compar-
ison using physical equality is more difficult. It would be necessary to have a
precise understanding of how the compiler manages memory allocation.

The physical equality operator always finishes in constant time, whereas
structural equality can take an arbitrary amount of time and even loop on
cyclic data. Let us illustrate this point with an example. We construct a cyclic
list 1 using a feature of OCaml that permits us to define a value using let-rec:

# let rec 1 =1 :: 1 ;;
1 : int list = [1; 1; 1; ... ]
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The evaluation of 1 == 1 terminates whereas that of 1 = 1 does not.

# 1 == M
- : bool = true
#1=1;;

OCaml provides other structural comparison operators: on the one hand, <,
> <=, and >= of type a -> ’a -> bool; and on the other hand, an order rela-
tion Stdlib.compare of type ’a -> ’a -> int, compatible with the preceding
operators.

# C<A1;;

- : bool = true

# A1 < B true ;;

- : bool = true

# Stdlib.compare (A 1) (B true);;
- ¢ int = -1

The comparison operators are based on the uniform representation of values
explained previously. However, their definition remains arbitrary and entirely
linked to the internal representation of values in the language. It remains,
nevertheless, useful to have a “generic ” order relation, even if it is arbitrary.

For example, we can use Stdlib.compare to construct complex structures
that require an order relation, such as sets:

# module S = Set.Make(
struct type t = ty
let compare = Stdlib.compare
end) ;;

Here, the definition of Std1lib.compare is not important as long as it is an
order relation. However, if a specific notion of comparison is needed, it would
have to be defined.

Other Generic Functions

OCaml provides other generic functions, such as:
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e a hash function Hashtbl.hash of type ’a -> int;

o marshalling functions, mentioned previously (see the additional informa-
tion in section 2.7 Copying a File).

Automatic Memory Management

As in other languages, like Lisp and Java, memory management in OCaml is
automated. This means that the programmer explicitly indicates allocations
(by constructing an array or a record, applying a constructor, etc.) but not
deallocations. Deallocation is performed automatically by the garbage collector
(GC). The functioning of the GC is intimately linked with the representation
of OCaml values. On the one hand, the GC can distinguish between pointers
and other values by examining the parity of the value. On the other, in case
of a block, the header contains the information needed by the GC: the tag (as
was explained above), the size of the block, and a few bits to mark the block as
being in use. Thus, in a 32-bit architecture, the header is of the following form:

31 ... 10 9 8 7 ... O
’ size \GC\ tag

As the size of a block is encoded in 22 bits, it is relatively limited (up to
222 — 1, that is 4194 303). This is, for instance, the maximum size of OCaml
arrays. It can be obtained using Sys.max_array_length. The maximum size of
strings is four times larger, because strings have a more compact representation
than arrays. Thus, Sys.max_string_length = 2% — 5 = 16777211. In a 64-
bit machine, by contrast, these limits are well beyond what can be allocated in
memory (respectively 2°4 — 1 and 2°7 — 9).

Representation of Functions

Whenever a function may be used as a first-class value (see section 2.6 Tracing
a Curve), it is represented by a pointer to a block. We speak then of closure. A
closure contains two things:

e a pointer to the code to be executed;
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e the values of variables susceptible of being used by this code, termed the
environment.

The construction of a closure therefore consists in allocating a block whose size
is determined by that of the environment, that is, by the number of free variables
in the body of the function. Conversely, the application of a closure f to a value
v consists in calling the function indicated by the code pointer of f and passing
two arguments to the function, namely, the environment (in the form of the
closure f itself) and the value v. Consider the following example:

let diff_quotient dx f x = (f (x +. dx) -. f x) /. dx
let derivative = diff_quotient 1e-10
let my_cos = derivative sin

The value derivative is a function obtained by partially applying the function
diff_quotient. It is represented by a closure whose code pointer corresponds

to fun f -> fun x -> ..., and whose environment contains the value of dx,
namely, 1e-10. Similarly, the value of my_cos is a closure whose code pointer
corresponds to fun x -> ..., and whose environment contains the values of dx

(namely, 1e-10) and £ (namely, sin). The value sin is another example of a
closure, whose environment is empty.

3.3 Analyzing the Execution Time of a Program

From the preceding discussion, we may deduce a certain number of facts con-
cerning the time complexity of OCaml operations:

e The application of a non-constant constructor is proportional to the num-
ber of fields, since it consists in assigning the constructor arguments to the
fields of a block. As the number of arguments of a constructor is known
statically, this operation takes constant time and space.

e The application of a function also takes constant time, irrespective of how
the function was constructed. Of course, we speak here of the application
operation only, and not of the cost of evaluating the arguments or the
function itself; these may be arbitrarily expensive.
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In what follows, we offer several practical and theoretical tools to measure and
analyze the execution time of a program.

Measuring Execution Time

It is easy to measure the total execution time of a program using a watch or,
better yet, with a tool provided by the operating system. The execution time
of part of an OCaml program, can be measured just as easily, and with great
precision, using the function Unix.times of the module Unix. This function
returns a record whose field tms_utime contains the time that has elapsed since
the start of the program. This is a floating-point number, expressed in seconds,
with precision greater than a millisecond. By calculating the difference between
the two values returned by this function at two different points of the program,
we deduce the precise execution time of that part of the code. We would typically
write something like:

let start = (times ()).tms_utime in

let stop = (times ()).tms_utime in

We can then calculate the elapsed time using stop -. start. Exercises 3.3
and 3.4 focus on writing generic code for such measurements.

Informal Notions of Complexity

It is useful to measure the execution time of a program to evaluate its effi-
ciency, for example, to compare it with another program, as well as to determine
whether it can be used to solve a given problem. If we write a program that
sorts an array of n entries, we may measure its execution time for small values
of n and then try to extrapolate to larger values. If, for example, we are able
to sort n = 1000 entries in a hundredth of a second, and if we observe that the
execution time is multiplied by a factor of 4 each time that n is doubled, then
we may estimate that we would need over two and a half hours to sort a million
entries.

The complexity of a program, or more generally of an algorithm, is defined as
the number of elementary operations that it must perform as a function of the
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f(n) =
n logn n  nlogn n? nd 2"
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Figure 3.1: Execution time of f(n) operations, assuming a billion operations
per second. Note that “—” indicates that the time is less than one second and
“oo0” that it is greater than one year.

size of the input data. In the above example, the complexity may be expressed
as a function f of the number n of entries: f(n) is the number of elementary
operations performed to sort n inputs. By elementary operations, we mean the
operations that are atomic for the machine, for example, addition. If we assume
that a machine these days performs a billion operations per second, figure 3.1
gives the execution time of f(n) operations for different functions f.

In practice, the precise nature of the elementary operations and their re-
spective cost is not important. We can term any operation whose time cost is
constant an elementary operation. This includes arithmetic operations, function
and constructor applications, assignments, etc. It suffices to retain the following
principle: A million elementary operations can be performed instantaneously, a
billion in a few dozen seconds, and a trillion over several hours.

Complexity Analysis

Rather than experimental evaluations, we can analyze the code of a program
to calculate the number of elementary operations that it will perform. Let us
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suppose, for example, that our sorting program is written as two nested loops,
such as:

for i =1 ton -1 do
for j = i downto 1 do

Here, we assume that the omitted code (denoted by . ..) contains only a finite
number of elementary operations, say C. We can then deduce that the total
complexity is exactly:

n—1

f(n) :Zcm:on(”gl).
=1

This confirms our experimental observation that doubling n causes f(n) to be
multiplied by approximately four. In practice, it is rarely this simple to analyze
the complexity. Certain operations are only performed in certain cases, depend-
ing on checks performed by the program, which in turn depend on the inputs.
We generally settle for the calculation of the worst-case complexity, which pro-
vides an upper bound on the total number of operations performed. We may
also calculate the average complexity over the set of possible inputs of size n,
for a given distribution of these inputs.

Big O Notation

In practice, we use the big O notation to bound the complexity of a program.
To express that a function f, defined on the natural numbers, does not grow
faster than another function g, also defined on the natural numbers, we write:

This means that there is a constant C' such that f(n) < Cg(n) for large enough
n, or, more formally:

3C3N, ¥n = N, f(n) < Cy(n)
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If f(n) denotes the complexity of an algorithm in terms of a parameter n, we
say that “the complexity of the algorithm is in O(g(n))” if f(n) = O(g(n)). In
the example involving sorting, the complexity is in O(n?).

An algorithm whose complexity is in O(1) is executed in constant time,
independently of the size of the data. It therefore involves a constant number
of elementary operations, for example, two additions and a multiplication. An
algorithm is said to be: logarithmic if its complexity is in O(logn); linear if
it is in O(n); linearithmic if it is in O(nlogn); quadratic if it is in O(n?) and,
more generally, polynomial if there is a constant k such that its complexity is in
O(nF); and exponential if it is in O(2").

In general, we do not seek to exhibit the constants C' and N hidden in the
notation O. We are only concerned with the asymptotic order of magnitude,
for example, when deciding whether one algorithm is better than another. Of
course, for a specific value of n, an algorithm in O(n?) can certainly take less
time to execute than another in O(logn), by virtue of the constants behind
the O’s.

Amortized Complexity

It is often worthwhile to calculate the total complexity of a sequence of n oper-
ations and then divide by n, in order to obtain the average cost of each opera-
tion. This average cost may prove inferior to the worst-case complexity. We call
the average complexity thus obtained amortized complexity, as opposed to the
worst-case complexity. We give examples of amortized complexity in chapters 4
and 6.

3.4 Exercises
Type-checking Algorithm

3.1  Are the following functions well typed? If so, what is their type? If not,
explain why.

let f1l x = let y=!x+ 2 iny
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for i = 1 ton do i + 4 done

= if n = m then 1 else 2

match 1 with [J >[I | y ::
=letz=x+1iny || z
let z = ref x in z + 1

i=xto 10 do y :
Z =Xy z

3.2 Consider the two functions below:

let foo x
let bar x

x.a := (snd x.b) + 1
x.c <- (fst x.b) :: x.c

Define ’a t as a record type so that we have:

val foo :
val bar :

)

)

a t -> unit
a t —-> unit

s —> [s]
> 10

x :: !y done; 'y

Analyzing the Execution Time of a Program

3.3 Write a function time:

(unit -> unit) -> float that measures the

execution time of the function passed as argument. Use the function Unix.times
as explained above.

3.4 Write a function timeb:

(unit -> unit) -> float that does the fol-

lowing: executes the function passed as argument five times, measuring the
execution time each time; eliminates the smallest and largest of the values ob-
tained; and returns the mean of the three remaining values.

3.5 Write a program that produces the table in figure 3.1.
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Part 11

Data Structures






Arrays

One of the simplest data structures is the array, represented by the OCaml type
array. In this chapter, we present several variations on this data structure.
We show how to construct resizeable arrays, compact arrays of booleans, arrays
with an efficient concatenation operation, and persistent arrays.

4.1 Resizeable Arrays

A resizeable array is an array whose size can be increased or decreased at any
time by means of an operation resize. The signature of such arrays is given in
program 17. (We will use resizeable arrays in chapters 5 and 6.)

The idea behind the implementation of resizeable arrays is simple: We use
a normal array to store the elements, and if it becomes too small, we allocate
a larger array into which we copy the existing elements. To avoid spending too
much time allocating and copying, we allow the backing array to be larger than
needed, with the elements beyond a certain index left unused.

The type of resizeable arrays is therefore a record containing an ordinary
array in a field data and the number of elements in use in a field size.

type ’a t = {
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Program 17 — Minimal Signature for Resizeable Arrays

module type ResizeableArray = sig
type ’a t
val length : ’a t —> int
val make : int -> ’a -> ’a t
val resize : ’a t -> int -> unit
val get : ’a t -> int -> ’a
val set : ’a t -> int -> ’a -> unit
end

mutable size: int;
mutable data: ’a array;

}

Thus, if v is such a resizeable array, we may represent the situation as follows:

——vVv.size —>
v.data ’ ... elements ... | ... unused ... ‘
<——Array.length v.data——

Accordingly, we will maintain the following invariant throughout:
0 <v.size < Array.length v.data

If we wish to increase the size of the array v, there are two possibilities to
consider. If the new size does not exceed the capacity of the array v.data,
it suffices to modify v.size. Otherwise, we allocate a new, sufficiently large
array and copy the elements of v.data into it. We then assign this new array
to v.data. Whenever we wish to decrease the size of the array v, it suffices to
modify v.size.

There is, however, a slight difficulty regarding this last point. Pointers to
elements that are no longer in use should not be retained, so that the GC is able
to collect them whenever possible. We therefore need a value of the right type
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to replace the elements that are no longer in use. To this end, we will require
that a default value be provided when the array is created. We will save it in a
third field of the record. We thus arrive at the following type:

type ’a t = {
default: ’a;
mutable size: int;
mutable data: ’a array;

¥

Let us now write the code for the different operations. The length of the
resizeable array is given by the field size.

let length a = a.size

To create a new resizeable array, it suffices to use Array.make, and to store the
size and the default value.

let make n d = { default = d; size = n; data = Array.make n 4 }

In general, we will maintain the following invariant on the type t: Every element
beyond index size, that is, every unused element, contains the value stored in
the field default.

To access the i-th element of a resizeable array a, it is necessary to verify
that the index is valid, as the array a.data may contain more than a.size
elements.

let get a i =
if i < 0 || i >= a.size then invalid_arg "get";
a.data. (i)

Note that once this verification has been done, we could use Array.unsafe_get
to access a.data for greater efficiency. The assignment operation is analogous:

let set a i v =
if i < 0 || i >= a.size then invalid_arg "set";
a.data. (i) <- v

All the subtlety lies in the function resize, which modifies the size of a
resizeable array a. Several scenarios are possible. If the new size s is less than
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Program 18 — Resizeable Arrays

type ’a t = {
default: ’a;
mutable size: int;
mutable data: ’a array;

3

let length a = a.size

let make n d = { default = d; size = n; data = Array.make n 4 }
let get a i =

if i < 0 || 1 >= a.size then invalid_arg "get";

a.data. (1)

let set a i v =
if i <0 || i >= a.size then invalid_arg "set";
a.data.(i) <- v

let resize a s =
if s <= a.size then
Array.fill a.data s (a.size - s) a.default
else begin
let n = Array.length a.data in
if s > n then begin
let n’ = max (2 * n) s in
let a’ = Array.make n’ a.default in
Array.blit a.data 0 a’ 0 a.size;
a.data <- a’
end
end;
a.size <- s
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or equal to a.size, it suffices to replace the elements between s and a.size-1
by a.default.

let resize a s =
if s <= a.size then
Array.fill a.data s (a.size - s) a.default

We could also reallocate the elements into a smaller array (see exercise 4.2).
If, however, s is larger than a.size, it is necessary to check whether the array
a.data is large enough to contain s elements. We therefore compute the size n
of the array a.data and compare it with s.

else begin
let n = Array.length a.data in
if s > n then begin

If s is greater than n, it is necessary to resize the array. Here, we choose the
strategy of doubling the size of the array a.data. (See exercise 4.1 for another
strategy.) Since that may not suffice, we calculate the new size as the maximum
of 2 * nand s.

let n’ = max (2 * n) s in

To be perfectly safe, it would be necessary to limit the new size to the maximum
size of arrays, that is, Sys.max_array_length, and to fail if the value s is too
large. This is left as an exercise for the reader.

We then allocate a new array of size n’ into which we copy the elements of
a.data that are in use. For this, we use the function Array.blit, which copies
a portion of one array into another.

let a’ = Array.make n’ a.default in
Array.blit a.data 0 a’ 0 a.size;

Then, we replace the array a.data by the new array.

a.data <- a’
end
end;
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When s <= n, there is nothing more to be done. Finally, in all scenarios, we
end by updating the field size.

a.size <- s

This completes the implementation of resizeable arrays. The code is given in
full in program 18 (see page 166).

Complexity

Resizeable arrays are typically used when the number of elements to be stored
is not known beforehand (see exercise 4.3). Let us suppose that we begin with
a resizeable array of length 0 and increase its length n times by one unit, to
end up with an array of length n. The naive strategy of giving the array data
exactly the same length as the resizeable array entails that each resize with a
length 7 would have cost ¢. The total cost would then be quadratic:

_ n(n+1)

L+24-fn=—7F— = 0(n?).

However, the strategy implemented by resize here is more subtle, consisting
in (at least) doubling the size of the array whenever it needs to be increased.
The total cost is then linear, which may be shown as follows: Let us assume,
without loss of generality, that n > 2. Let k = |logy(n)], that is, 28 < n < 2FF1,
Beginning with an empty array, we will have executed a total of k 4 2 resizings
to arrive at an array data of the final size 281, After the i-th resizing, where
i=0,...,k+ 1, the size of the array is 2°. The i-th resizing therefore has cost
2¢. The total cost is then:

k+1 )
ZT =2k2 _ 1 < 4n.
=0

In other words, some of the resize operations have constant cost (when resizing
is not actually necessary). Others, by contrast, have non-constant cost, but the
total complexity remains linear. Averaging over the n operations, it is as if each
addition had constant cost. The extension of a resizeable array by one unit
therefore has amortized complexity O(1).
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4.2 Bit Vectors

If a program needs to manipulate a set of integers included within a reasonable
interval, and if persistence is not required, then an array of booleans may be
used. This is what we did, for instance, in section 2.5 Sieve of Eratosthenes.
However, given that a boolean is represented by one memory word (32 or 64 bits
depending on the architecture), a lot of memory is wasted. While a single bit per
element would suffice, an array of booleans occupies 32 or 64 times that amount.
The bit vector data structure is useful precisely in this regard: it enables the
use of a single bit per element.

The signature of such a data structure is exactly the same as that of arrays,
except that elements are of type bool. The beginning of such a signature is
given in program 19 (see below).

The implementation consists in using an ordinary array of integers and stor-
ing several booleans in each of the integers: 31 booleans in a 32-bit architecture
and 63 booleans in a 64-bit architecture. (Recall that OCaml reserves one bit
of each integer for use by the GC.) We begin by letting bpi be the number of
booleans stored in each integer.

let bpi = Sys.word_size - 1
The maximum size of a bit vector is therefore given by the following value:
let max_length = Sys.max_array_length * bpi
To represent a bit vector, we introduce the following type t:

type t = {
length : int;
bits : int array;

}

The field length contains the actual number of booleans present in the bit
vector, as this is not necessarily a multiple of bpi. The field bits contains the
array of integers. If by, b1,...,bypi—1 are the first bpi elements of an array of
booleans, they are represented in the first cell of the array bits by the integer

bo 4 2by + -+ 2%
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Program 19 — Minimal Signature of Bit Vectors

module type Bitv = sig

type t

val create : int -> bool -> ¢t

val length : t -> int

val get : t -> int -> bool

val set : t -> int -> bool -> unit
end

The following bpi elements are represented in the same manner by the second
integer of the array bits, and so forth. When the number of elements is not a
multiple of bpi, some of the high-order bits of the last integer of the array are
not used. To allow comparing bit vectors structurally, we enforce the following
invariant on the representation:

unused high-order bits are 0 (4.1)

We can thus use the OCaml operations = or <> on bit vectors, irrespective of
how they are constructed.

Creation

Let us begin with the function create, which constructs a bit vector of size n,
where all the elements have the same value b. Except for the last integer, all the
elements of the array bits will contain the same value: 0 if b is false or —1if b
is true. This is because in the two’s-complement representation, —1 is written
in binary using only the digit 1, that is, —1 = (1---1)3. The function create
therefore begins by defining this initial value, 0 or —1, depending on the value
of b.

let create n b =
let initv = if b then -1 else 0 in
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The number of elements of the array bits is then determined by the Euclidean
division of n by bpi.

let g =n / bpi and r = n mod bpi in

If the remainder r is 0, then all elements of the array are fully used, and it
suffices to construct an array of size q initialized with initv.

if r = 0 then
{ length = n; bits = Array.make q initv }

If the remainder r is not 0, we need to construct an array of q + 1 integers. All
the elements contain initv, except for the last one, whose high-order bits must
be 0 to respect the invariant. More precisely, if b is true, then the last element
of the array must have exactly r low-order set bits. This is easily obtained using
the expression (1 1sl r) - 1. This completes the function create:

else begin
let a = Array.make (q + 1) initv in
if b then a.(q) <- (1 1sl r) - 1;
{ length = n; bits = a }

end

The complete code is given in program 20.

Reading

To read the n-th element of a bit vector we must first determine the index ¢ of
the corresponding integer in the array, and then the index j of the corresponding
bit within this integer. The values of 7 and j are obtained from the Euclidean
division of n by bpi. Given the i-th element of the array, in order to extract the
j-th bit, it suffices to shift this integer j positions to the right using 1lsr, and
then test its least significant bit. We end up with the following function:

let get v n =
let i =n / bpi and j = n mod bpi in
(v.bits.(i) 1sr j) land 1 <> 0
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Program 20 — Creation of a Bit Vector

let create n b =
let initv = if b then -1 else 0 in
let q =n / bpi and r = n mod bpi in
if r = 0 then
{ length = n; bits = Array.make q initv }
else begin
let a = Array.make (q + 1) initv in
if b then a.(q) <- (1 1sl r) - 1;
{ length = n; bits = a }
end

Equivalently, we could also perform a bitwise and operation against the integer
containing a single set bit in the j-th position, which is obtained using the
expression 1 1sl j:

v.bits. (i) land (1 1sl j) <> 0

Writing

To assign a value b of type bool to the n-th element of a bit vector v, we begin
by determining its position exactly as we did for reading, via the Euclidean
division of n by bpi.

let set vnb =
let i =n / bpi and j = n mod bpi in

We then consider the two possible cases separately. If b is true, that is, if the
j-th bit of v.bits. (i) must be set to 1, we perform a logical or against the
integer containing a single set bit in the j-th position.

if b then
v.bits. (i) <- v.bits.(i) lor (1 1sl j)
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Program 21 — Reading and Writing in a Bit Vector

let get v n =
let i =n / bpi and j = n mod bpi in
(v.bits.(i) 1sr j) land 1 <> O

let set vn b =
let i =n / bpi and j = n mod bpi in
if b then
v.bits. (i) <- v.bits.(i) lor (1 1sl j)
else
v.bits.(i) <- v.bits.(i) land lnot (1 1sl j)

Otherwise, we must set the j-th bit to 0, which can be done using a logical and
against an integer with all bits set, except the j-th.

else
v.bits.(i) <- v.bits.(i) land lnot (1 1sl j)

The complete code of the functions get and set is given in program 21. The
two operations clearly have cost O(1).

Set-Theoretic Operations

Bit vectors come into their own when they are used to represent sets. In par-
ticular, the union, intersection and complement operations can be implemented
efficiently by the corresponding bitwise operations.

Consider, for example, the logical and operation of two bit vectors, inter,
which also computes the intersection of the corresponding sets. This operation
is only meaningful when the two bit vectors are of the same size. We begin by
verifying this.

let inter vl v2 =
let 11 = vl.length in
if 11 <> v2.length then invalid_arg "Bitv.inter";
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Program 22 — Operations and and not on bit vectors

let inter vl v2 =
let 11 = vl.length in
if 11 <> v2.length then invalid_arg "Bitv.inter";
let b = Array.mapi (fun i ei -> ei land v2.bits.(i)) vl.bits in
{ length = 11; bits = b }

let normalize v =
let r = v.length mod bpi in
if r > 0 then
let s = Array.length v.bits - 1 in
v.bits.(s) <- v.bits.(s) land (1 1sl r - 1)

let compl v =
let b = Array.map lnot v.bits in
let r = { length = v.length; bits = b } in
normalize r;
r

Once we know that both vectors are of the same size, we implement the logical
and operation itself. For this, we may use the function Array.mapi, which
constructs an array by applying a function to all the elements of another array.

let b = Array.mapi (fun i ei -> ei land v2.bits.(i)) vl.bits in
{ length = 11; bits = b }

This completes the function inter. We can similarly write the function union,
which computes the set-theoretic union, by performing a logical or.

Note that the invariant (4.1) is respected, because and and or preserve the
unused high-order Os. This is not the case with bitwise operations like negation
or exclusive or. In these cases, it is necessary to re-establish the invariant by ze-
roing the unused high-order bits a posteriori. Let us write a function normalize
to do this. We begin by letting r be the number of bits in use in the last integer
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of the array.

let normalize v =
let r = v.length mod bpi in

If this number is not zero, we must zero out all bits of index r and higher. This
can be implemented using a mask containing exactly r low-order set bits, that
is,1 1sl r - 1.

if r > 0 then
let s = Array.length v.bits - 1 in
v.bits.(s) <- v.bits.(s) land (1 1sl r - 1)

This completes the function normalize.
We can easily derive from this a function compl that computes the bitwise
negation of a bit vector, that is, the complement of the corresponding set.

let compl v =
let b = Array.map lnot v.bits in
let r = { length = v.length; bits = b } in
normalize r;
r

The functions inter and compl are summarized in program 22 (see page 174).
They have cost O(n) in time and space, where n is the size of the bit vectors
concerned.

Among other useful set-theoretic operations, we may also consider iteration
over all elements. For a bit vector, this boils down to iterating over the set of
indices for which the corresponding boolean is true. Such an iteration may be
expressed as a function of the form:

val iteri_true : (int -> unit) -> t -> unit

To implement this function, we iterate over the elements of the array using
Array.iteri. For each element, we iterate over the set bits with a loop that
successively tests each bit. We obtain the following code:

let iteri_true f v =
Array.iteri
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Program 23 — Iteration Over the Set Bits of a Bit Vector

let iteri_true f v =
Array.iteri
(fun i ei —>
let index = i * bpi in
let rec visit x =
if x <> 0 then begin
let b = x land -x in
f (index + ntz b);
visit (x - b)
end
in
visit ei)
v.bits

(fun i ei ->
let index = i * bpi in
for j = 0 to bpi - 1 do
if ei land (1 1sl j) <> O then f (index + j)
done)
v.bits

It is not necessary to consider the case of the final element of the array separately,
because the invariant guarantees precisely that the unused bits are 0.

Although correct, this solution is relatively inefficient, because it successively
tests all bits of the array. We would like the cost of the iteration to decrease if
there are fewer set bits. In other words, we need an efficient means of iterating
over the set bits of an integer.

As it so happens, the two’s-complement representation allows extracting the
low-order set bit of an integer x easily by performing a logical and of x and -x
(see exercise 4.5). This gives an efficient means of iterating over the set bits
of an integer, by successively extracting and zeroing each set bit in increasing
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order.

There remains, however, one difficulty: The expression x land -x does not
return the index i of the low-order set bit in x, but instead returns 2'. We
therefore need to calculate the base 2 logarithm of this value or, equivalently,
the number of low-order Os. For this, let us suppose that we are given a function
ntz, for number of trailing zeros, that calculates the number of low-order 0s of
an integer.

We may then rewrite the part of the code of iteri_true that examines the
set bits of ei with the help of a recursive function visit instead of a for loop.

let rec visit x =
if x <> 0 then begin
let b = x land -x in
f (index + ntz b);
visit (x - b)
end
in
visit ei
The function visit ends as soon as its argument is 0, that is, when it does not
contain any set bit. Otherwise, we extract the low-order set bit, b. We call £
on the corresponding index index + ntz b, and then call visit again on x-b,
which is x with the b-th bit zeroed out. The complete code of iteri_true is
given in program 23 (see page 176). The function ntz is the focus of exercise 4.6.
Finally, let us write a function cardinal: t -> int, which calculates the
number of set bits in the bit vector, that is, the cardinal of the set. It suffices
to calculate the sum of the number of set bits in each element of the array. If
we assume we are given a function pop of type int -> int that calculates the
number of set bits of an integer, then the function cardinal is easily obtained.

let cardinal v =
Array.fold_left (fun n x -> n + pop x) O v.bits

The function pop (short for population count) remains to be written. We can
write it by extracting the bits one by one, again thanks to the expression
x land -x:
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let pop x =
let rec count n x =
if x = 0 then n else count (n + 1) (x - (x land -x)) in
count 0 x

We can render this function more efficient by tabulating it (see exercise 4.12).

Other Operations on Bit Vectors

To be complete, a bit vector library should also provide other operations. On
the one hand, it should provide the same operations that we use for arrays, like
append, sub, £il11, and blit. On the other hand, it should also offer arithmetic
operations that interpret a bit vector as an integer of n bits, such as addition,
shifts, and conversions to and from the different integer types of OCaml. Some
of these operations are proposed in exercises 4.8-4.11.

For Further Information

Warren’s Hacker’s Delight [24] details numerous techniques to manipulate
the bits of an integer, such as the ones we have used to implement Patricia
trees and bit vectors. In particular, the book gives several variations of the
functions ntz and pop.

4.3 Ropes

This section presents the rope data structure. This data structure was originally
introduced as an alternative to strings, to address the following issues:

e Strings are not persistent; they are immutable in OCaml, but this is not
necessarily the case in other languages, like C for instance.

e Strings are limited in size, especially when OCaml is used on a 32-bit
machine, where the limit is 224 — 5 characters.
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e Concatenation and substring extraction have a significant cost, partic-
ularly in space, as they involve copying the contents of the underlying
string.

To address these issues, the rope data structure draws on a simple idea: A rope
is nothing but a binary tree whose leaves are (ordinary) strings and whose inner
nodes should be interpreted as concatenations. A rope therefore corresponds to
the following type:

type t =
| Str of string
| App of t * t

For example, one possible value by which the string "a very long string"
may be represented is the following:

App
VRN
Str "a ver" App

N

Str "y long" Str" string"

Two considerations lead us to refine the proposed type t. On the one hand,
numerous algorithms require efficient access to the length of a rope, particularly
to decide whether to descend along the left or the right subtree of an App node.
It is therefore advisable to decorate each internal node with the length of the
rope. On the other hand, it is important to share substrings between ropes
themselves as well as with the ordinary strings used to construct the ropes.
Hence, rather than having the Str node point to a complete OCaml string, we
prefer to have it designate a substring of an OCaml string. A substring of a
string s is represented by a triple (s,0,n), denoting sf[o..0 + n — 1], that is, the
portion of s of length n starting at offset 0. We thus obtain the following type:

type t =
| Str of string * int * int
| App of t * t * int
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A node App(ri,r9,n) represents the concatenation of the two ropes r; and 7o,
whose total length is n. We could also have stored the sizes of r1 and 79 in
the node. However, retaining only the total size is more economical in terms of
memory space, and there is no loss of efficiency in practice.

Genericity

We notice that the notion of rope is not related to that of string. Instead of the
type string, we could equally use arrays or lists of characters or, more generally
still, sequences of values of a type other than that of characters. In fact, all we
need is a data structure of sequences of a certain type of characters. We can
then construct ropes whose leaves consist of these sequences.

The resulting data structure has the same signature as that with which we
started, namely, the signature of sequences for the same type of characters.

Program 24 gives a minimal signature STRING for a data structure of strings.
The abstract type t is that of strings, and the type char, that of their characters.
This signature contains only the operations that are needed to implement the
rope structure. They are compatible with those of the OCaml module String.

Program 24 — Generic String Signature

module type STRING = sig

type t

type char

val length : t -> int

val empty : t

val make : int -> char > t

val get : t -> int -> char

val append : t >t > t

val sub : t -> int -> int -> ¢t
end

We introduce a signature ROPE for ropes in program 25. This signature
includes the module S of strings that will be the leaves of the ropes. The
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Program 25 — Signature of Ropes

module type ROPE = sig
module S : STRING
include STRING with type char = S.char
val of_string : S.t -> t
val set : t -> int -> char > t
val delete_char : t -> int > t
val insert_char : t -> int -> char -> t
val insert : t -> int > t > t
end

signature ROPE provides the same operations as those of strings, for the same
type of characters, which can be translated as follows:

include STRING with type char = S.char

Ropes are immutable. Update operations (set, etc.) return new ropes.
The rope structure is naturally implemented as a functor parametrized by a
module X of signature STRING:

module Make(X : STRING) : (ROPE with module S = X) = struct

The module obtained by applying this functor has the signature ROPE with
module S = X, which specifies that its module S is the module X passed as
argument of the functor. The code thus begins by defining S to be equal to X:

module S = X

The type of characters of the rope is the same as that of strings:
type char = S.char

The type of ropes is as presented earlier:

type t =
| Str of S.t * int * int
| App of t * t * int
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We will enforce several invariants on this type. On the one hand, for every rope
of the form Str (s, o, n), we have the inequalities:

0<o, 0<n and o+n<S.length s

On the other hand, for every rope of the form App (u, v, n), we have the
inequalities:

0 <length u, 0 <1length v and n = length u+ length v

Basic Operations

By definition of the type t, the length of a rope can be computed in constant
time.

let length = function
| Str (_,_,n)
| App (_,_,n) > n

The construction of the empty rope is straightforward using the empty string:

let empty =
Str (S.empty, 0, 0)

More generally, the rope corresponding to a string s is given by:

let of_string s =
Str (s, 0, S.length s)

Importantly, the type S.t must itself be persistent in order to guarantee both
the persistent nature of ropes and the correctness of rope operations. This is
the case when S.t is the type string, as strings in OCaml are immutable.

To access the i-th character of a rope, it suffices to go down the tree until
the target leaf is reached. We assume that the index is valid. The recursive part
of the operation is then written as follows:

let rec unsafe_get t i = match t with
| Str (s, ofs, _) ->
S.get s (ofs + i)
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Program 26 — Basic Operations on Ropes

module Make(X : STRING) : (ROPE with module S = X) = struct
module S = X
type char = S.char

type t =
| Str of S.t * int * int
| App of t * t * int

let empty = Str (S.empty, 0, 0)

let length = function
| str (_,_,n)
| App (_,_,n) > n

let of_string s = Str (s, 0, S.length s)
let make n ¢ = of_string (S.make n c)

let rec unsafe_get t i = match t with
| Str (s, ofs, _) ->
S.get s (ofs + i)
| App (t1, t2, _) ->
let nl = length tl1 in
if i < nl then unsafe_get tl i else unsafe_get t2 (i - nl)

let get t i =
if i < 0 || i >= length t then invalid_arg "get";
unsafe_get t i
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| App (t1, t2, _) ->
let nl1 = length t1 in
if i < nl then unsafe_get t1 i else unsafe_get t2 (i - nl)

We see here the importance of being able to retrieve the size of t1 in constant
time. The complexity of this operation is therefore bound by the height of the
tree. As we will see later, ropes can be balanced so as to minimize this height.

We define a function get that also checks whether the index is valid, as a
wrapper around unsafe_get.

let get t 1 =
if i < 0 || i >= length t then invalid_arg "get";
unsafe_get t i

These basic operations on ropes are presented together in program 26 (see
page 183).

Concatenation

A priori, the concatenation of two ropes t1 and t2 is as simple as applying the
constructor App and calculating the total length, that is:

let append tl1 t2 =
App (t1, t2, length tl + length t2)

We note that this operation thus takes constant time. However, iterated con-
catenations may cause the number of nodes, and hence the height of the tree,
to increase rapidly, to the detriment of other operations.

Two ideas allow us to control the number of nodes and the height of the
tree. The first idea consists in actually concatenating “small” leaves (i.e. short
strings) when they are found side by side in the tree. We may choose, for
example, to concatenate the leaves s1 and s2 in the three situations illustrated
in figure 4.1. The first situation corresponds to the concatenation of a rope
whose right branch is the small leaf s1, with another small leaf s2. The second
corresponds to the concatenation of two small leaves, s1 and s2. The third is
the mirror image of the first.
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Figure 4.1: Possible situations with adjacent leaves.

To determine whether the leaves are small enough to be concatenated, we
use a constant:

let small_length = 256

The constant is arbitrary and should be chosen depending on the specific use
of the rope structure. Exercise 4.15 proposes making this constant a parameter
of the functor.

To implement the concatenation of two leaves, we define the following general
function that concatenates fragments of two strings, s1 and s2:

let append_string sl ofsl lenl s2 ofs2 len2 =
Str (S.append (S.sub sl ofsl lenl) (S.sub s2 ofs2 len2),
0, lenl + len?2)

We now give the code of the function append, which implements the con-
catenation of two ropes t1 and t2.
We begin by considering the case in which one of the two ropes is empty.

let append tl1 t2 = match t1, t2 with
| str (_,_,0), t | t, Str (_,_,0) —>
t

Next, we consider the three possible cases in which two small leaves are found
side by side. The simplest case is that in which t1 and t2 are the leaves in
question. We then use the function append_string:
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| Str (s1, ofsl, lenl), Str (s2, ofs2, len2)
when lenl <= small_length && len2 <= small_length ->
append_string sl ofsl lenl s2 ofs2 len2

The two other cases are similar:

| App (t1, Str (s1, ofsl, lemnl), _), Str (s2, ofs2, len2)

when ... > ...
| Str (s1, ofsl, lenl), App (Str (s2, ofs2, len2), t2, _)
when ... -> ...

Finally, the general case is simply the application of the constructor App, as we
discussed above:

| t1, t2 —>
App (t1, t2, length tl1 + length t2)

The entire code of append is given in program 27.
In the rest of the section, we will use the infix operator ++ to denote rope
concatenation.

let (++) = append

The second idea that allows us to control the height of ropes consists in
rebalancing the underlying trees. We could implement balancing incrementally
as the rope is constructed, using for example the same technique as for AVL
trees (see chapter 5). It would then be necessary to modify the last line of
the function append, to invoke a balancing function instead of the constructor
App. We may equally conceive of an a posteriori rebalancing implemented either
selectively, when the height of the tree becomes too large, or explicitly, when
the user requests it. Exercises 4.17-4.20 propose different ways of implementing
an a posteriori rebalancing.

Subrope Extraction

The next operation consists in extracting a rope fragment, defined by an offset
and a length. Extraction consists in retaining only those parts of the rope
that are within this fragment, possibly reconstructing Str nodes that partially
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Program 27 — Concatenation of Two Ropes

let small_length = 256

let append_string sl ofsl lenl s2 ofs2 len2 =

Str (S.append (S.sub sl ofsl lenl) (S.sub s2 ofs2 len2),
0, lenl + len2)

let append tl t2 = match tl, t2 with
| str (_,_,0), t | t, Str (_,_,0) —>
t
| Str (s1, ofsl, lenl), Str (s2, ofs2, len2)
when lenl <= small_length && len2 <= small_length ->
append_string sl ofsl lenl s2 ofs2 len2
| App (t1, Str (s1, ofsl, lemnl), _), Str (s2, ofs2, len2)
when lenl <= small_length && len2 <= small_length ->
App (t1, append_string sl ofsl lenl s2 ofs2 len2,
length t1 + lenl + len2)
| Str (sl1, ofsl, lenl), App (Str (s2, ofs2, len2), t2, _)
when lenl <= small_length &% len2 <= small_length ->
App (append_string sl ofsl lenl s2 ofs2 len2, t2,
lenl + len2 + length t2)
| t1, t2 —>
App (t1, t2, length tl1 + length t2)

let (++) = append
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overlap it. It is in fact preferable to specify the fragment to be extracted as
extending from an offset start (inclusive) to the offset stop (exclusive). We
assume that this is a valid and non-empty fragment, that is:

0 < start < stop < length t.

The extraction function, mksub, begins by considering the particular case in
which the fragment is the whole rope.

let rec mksub start stop t =
if start = 0 && stop = length t then
t

This allows, to the extent possible, the sharing of subropes between the result
of the extraction and the initial rope. Without this special case, these subropes
would all be reconstructed.

In the general case, we examine the shape of the rope t. If t is a leaf, it
suffices to modify the fragment specification:

else match t with
| Str (s, ofs, ) —>
Str (s, ofs+start, stop-start)

Note that this is a constant-time operation, which does not call S.sub, and that
it shares s between the initial rope and the result of the extraction. For a rope of
form App, there are three cases to be considered. The first is when the fragment
is completely contained in the left subrope. It then suffices to make a recursive
call.

| App (t1, t2, ) —>
let nl1 = length t1 in
if stop <= nl then mksub start stop til

Symmetrically, the fragment may be completely contained in the right subrope.
else if start >= nl then mksub (start-nl) (stop-nl) t2

Finally, the fragment may overlap both t1 and t2. It suffices then to concatenate
the fragment of t1 with that of t2.
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else mksub start nl tl ++ mksub O (stop-nl) t2

Note that neither of these fragments is empty, which respects the invariant of
mksub. Note also that t1 or t2 may be completely contained in the result, in
which case they will be shared by virtue of the first two lines of the function
mksub.

Next, we define an extraction function sub specified by an offset ofs and a
length len (similar to String.sub or Array.sub). It verifies the validity of the
arguments, and then handles the special case of an empty fragment or calls the
recursive function mksub.

let sub t ofs len =
let stop = ofs + len in
if ofs < 0 || len < O || stop > length t then invalid_arg "sub";
if len = O then empty else mksub ofs stop t

The entire code is given in program 28.

Update Operations

We now consider several operations to insert or delete characters in a rope. Since
ropes are persistent, these operations do not mutate them, but instead return
new ropes.

Let us consider for example the operation set, which inserts the character
c at offset i in a rope t. We begin by verifying that the offset i is valid, that
is, 0 <1 < length t.

let set t i ¢c =
let n = length t in
if i < 0 || i > n then invalid_arg "set";

Next, it suffices to extract the subropes to the left and right of the offset i, and
use concatenation to insert the character c.

subt O i++make 1 c ++subt (i +1) (n - i - 1)

We note, however, that this solution is not optimal, since it performs two recur-
sive traversals of the rope where one would have sufficed. Exercise 4.16 proposes
an improvement in this regard.
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Program 28 — Subrope Extraction

let rec mksub start stop t =
if start = 0 && stop = length t then
t
else match t with
| Str (s, ofs, ) ->
Str (s, ofs+start, stop-start)
| App (t1, t2, _) —>
let nl1 = length tl1 in
if stop <= nl then mksub start stop til
else if start >= nl then mksub (start-nl) (stop-nl) t2
else mksub start nl tl ++ mksub O (stop-nl) t2

let sub t ofs len =
let stop = ofs + len in
if ofs < 0 || len < O || stop > length t then invalid_arg "sub";
if len = O then empty else mksub ofs stop t
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Program 29 — Update Operations on Ropes

let set t i c =
let n = length t in
if i < 0 || 1 >= n then invalid_arg "set";
sub t 0 i ++ make 1 ¢ ++ subt (i + 1) (n - i - 1)

let insert t i r =
let n = length t in
if i < 0 || i > n then invalid_arg "insert";
subt 0 i ++r ++ sub t i (n - 1)

let insert_char t i c =
insert t i (make 1 c)

let delete_char t i =
let n = length t in
if i < 0 || i >= n then invalid_arg "delete_char";
subt 0i++subt (4 +1) (n-1i- 1)
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We may similarly define operations insert (which inserts a rope within
another at a given offset), insert_char (which inserts a character into a rope),
and delete_char (which deletes the i-th character of a rope). The entire code
of the four operations is given in program ?? (see previous page). This concludes
our discussion of the functor defining ropes.

Application: Text Editor

Ropes are an ideal structure for text editors, in particular to support very long
texts, which are rarely handled well by text editors, including the best-known
ones.

Rather than using a single rope to represent the text to be edited in its
entirety, we will use our functor for greater flexibility. Handling lines of text
using a single rope is awkward: Line breaks have to be found, or their offsets
recorded in a table that must be maintained in sync with the text. Instead,
we can use ropes whose elements are characters to represent lines, and a rope
whose elements are lines to represent the entire text.

We therefore begin by constructing a rope structure for lines. The argument
of the functor Make is based on the OCaml module String:

module Str = struct
include String
let get = unsafe_get

type char = Char.t

let empty = ""

let append = (7)
end

Note that we use String.unsafe_get rather than String.get, because every
access to the characters of a string contained in a rope is guaranteed to be valid.
We can thus avoid unnecessary checks. Ropes are obtained by applying the
functor Make as follows:

module Line = Make(Str)
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Next, we construct another rope structure for the whole text, whose “char-
acters” are lines. For this, it suffices to apply the functor Make once again, this
time using arrays for the leaves of our ropes.

module Text = Make(struct
type char = Line.t
type t = Line.t array
let empty = [|]]
let length = Array.length
let make = Array.make
let append = Array.append
let get = Array.unsafe_get
let sub = Array.sub
end)

We see here the usefulness of defining ropes as a functor, which allows us to
apply it twice on different arguments.

Let us assume, for simplicity’s sake, that the text manipulated by the editor
is stored in a reference containing a rope of type Text.t.

let text = ref

To insert a character c at offset ofs in line 1 of the text, it suffices to retrieve
the line with Text.get, to modify it using Line.insert, and finally to update
the text using Text.set:

let insert_char 1 ofs c =
let line = Text.get !text 1 in
let line’ = Line.insert_char line ofs c in
text := Text.set !text 1 line’

Similarly, to delete a character:

let delete_char 1 ofs =
let line = Text.get !text 1 in
let line’ = Line.delete_char line ofs in
text := Text.set !text 1 line’



194 Chapter 4. Arrays

Finally, to insert a new line at offset ofs in line 1 of the text, it suffices to cut
the line 1 at offset ofs with two calls to Line. sub, then insert the prefix in line
1 using Text.insert, and to place the suffix in line 1+1 using Text.set:

let insert_newline 1 ofs =
let line = Text.get !text 1 in
let prefix = Line.sub line O ofs in
let suffix = Line.sub line ofs (Line.length line - ofs) in
let r = Text.insert_char !text 1 prefix in
text := Text.set r (1 + 1) suffix

Note that it is not necessary to “shift” all the lines: we use insertion in the rope
of lines, just as we used insertion in the ropes of characters in insert_char.

Remark

Just as concatenation operations are suspended in ropes, extraction operations
too may be suspended. The resulting OCaml type would be as follows:

type t =
| Str of S.t
| Sub of t * int * int
| App of t * t * int

Everything then depends on the strategy used to choose between performing
the concatenation and subrope operations immediately or suspending them.

The extraction operation may, in fact, be suspended “for free,” by applying
the functor Make repeatedly to its own result, as follows:

module R1
module R2

Make (Str)
Make (R1)

In the ropes of the module R2, the leaves are ropes of R1. Hence, the function
R1.sub is only called when the leaf becomes sufficiently small. As long as this is
not the case, the operation remains suspended. With a small abuse of notation,
the types R1.t and R2.t could be said to correspond to the following definitions:
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type R1.t =
| R1.Str of string * int * int
| R1.App of R1.t * R1.t * int
type R2.t =
| R2.Str of R1.t * int * int
| R2.App of R2.t * R2.t * int

It is clear that the node R2.Str suspends the extraction on a value of type R1.t.
By iterating this process, we obtain a type equivalent to the preceding type t.

For Further Information

The rope data structure was introduced by Boehm, Atkinson, and Plass [5]
in relation to the development of the Cedar language. Their article notably
proposes an a posteriori rope rebalancing algorithm based on the numbers
of the Fibonacci sequence (see exercise 4.18).

4.4 Persistent Arrays

This section presents a persistent array data structure. Throughout this section,
we use the term “array” in its usual sense, to designate arrays that may be
modified in-place. In all other cases, we use the term “persistent array.”

The signature of persistent arrays is given in program 30. This is exactly
the same signature as for arrays, except that the function set returns a new
persistent array, without changing its argument.

A desirable property of persistent arrays is that they provide operations set
and get with the same efficiency—O(1)—as arrays, at least as long as their
persistent nature is not used. However, we accept that there is a price to be
paid for access to previous versions of the array. This section presents a data
structure that has this property.

The basic idea consists in using an array for the most recent version of
the persistent array, together with extra information to allow us to go back to
previous versions. To this end, we introduce the following two mutually recursive

types:
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Program 30 — Signature of Persistent Arrays

module type PersistentArray = sig

type ’a t

val init : int -> (int -> ’a) -> ’a t

val length : ’a t -> int

val get : ’a t -> int -> ’a

val set : ’a t -> int -> ’a -> ’a t

val iteri : (int -> ’a -> unit) -> ’a t -> unit
end

type ’a t = ’a data ref
and ’a data =
| Arr of ’a array
| Diff of int * ’a * ’a t

The type ’a t is that of persistent arrays. It involves a reference to data of
type ’a data, which indicates its nature: either an immediate value Arr a,
where a is an array, or an indirection Diff (i,v,p), representing a persistent
array elementwise identical to the persistent array p, except at index ¢ where
the value v is to be found.

We illustrate the use of this data structure with an example. Consider
the following series of declarations that define a persistent array pa0O, then two
others, pal and pa2, obtained by two successive updates:

let pa0 = init 7 (fun i -> Char.chr (Char.code ’a’ + i))
let pal set pa0O 1 ’h’
let pa2 = set pal 2 ’i’

The situation after these three declarations is the following:

paz pai

2/'¢ 1/'b’
[a[hiTd e e — ) O O
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The last constructed persistent array, pa2, is a reference containing the value
Arr [|’a’;°h’;’i’;°d’;’e’; £’ ; g’ |]. The persistent array pal is a refer-
ence containing Diff (2, ’c’, pa2), and the array pa0, a reference containing
Diff (1, ’b’, pal). Let us assume now that we construct a fourth array pa3
as follows:

let pa3 = set pal 2 ’j’

We proceed in two steps: We begin by making sure that the persistent array on
which we perform the operation, pal, is of the form Arr a. For this, we invert
the chain of Diff nodes that leads from pal to the array a. We then have the
following situation:

paz pai pao

2/ 1/'b’
ulﬂW =0

In the second step, we create a new reference for pa3, containing Arr a, where a
has been modified to contain *j’ in the second cell. We finish by modifying the
reference pal so that it now contains Diff (2, ’c’, pa3). The final situation
is therefore as follows:

paz . pai pag
2/ 1/'b'
Va'l'w[i[d el f]e] O o e O
2/'c’
pas

We will now describe the code of the different operations on persistent arrays.
The creation of a new persistent array is straightforward:

let init n f = ref (Arr (Array.init n f))

For all other operations, we need a function reroot to invert a chain of Diff
nodes so as to ensure that a persistent array pa is of the form Arr a. We write it
as a recursive function reroot : ’a t -> ’a array that ensures this inversion
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of pointers and returns the array a. If pa is a reference to a value of form Arr a,
it suffices to return a.

let rec reroot pa = match !pa with
| Arr a —>
a

If, however, pa is a reference to a value of form Diff (i, v, pa’), we begin
by calling reroot recursively on the persistent array pa’.

| Diff (i, v, pa’) ->
let a = reroot pa’ in
It is then guaranteed that pa’ is a reference containing Arr a. It now suffices
to exchange the roles of pa’ and pa, that is, to store the value Arr a in pa,
after having modified a in place, and to store a value Diff in pa’, indicating
the previous value contained in a.

let old = a.(i) in
a. (i) <- v;

pa := Arr a;
pa’ := Diff (i, old, pa);
a

The definitions of the length and get operations are straightforward if we use
their equivalents in the Array module together with the reroot function.

let length pa = Array.length (reroot pa)

let get pa i = (reroot pa). (i)

The operation iteri is implemented by using the function Array.iteri,
which applies a function to all the elements of an array and to their indices.

let iteri f pa = Array.iteri f (reroot pa)

The function set remains to be written. It constructs a new persistent array
based on an existing persistent array pa, an index i and value v. We begin by
calling reroot on pa.

let set pa i v =
let a = reroot pa in
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We then proceed as we did in case of the function reroot, except that we
construct a new reference for the result:

let old = a.(i) in

a. (i) <- v;

let res = ref (Arr a) in
pa := Diff (i, old, res);
res

Note that at the end of this operation, the persistent array pa is one indi-
rection away from the array Arr a. The entire code of persistent arrays is given
in program 31.

For Further Information

The persistent array data structure is attributed to Henry Baker, who used
it to represent environments in Lisp closures efficiently [11, 4].

4.5 Exercises

Resizeable Arrays

4.1 Modify the function make so that it takes an argument increment of type
int option specifying a resizing strategy. If this argument is None, the function
resize applies the preceding strategy (doubling the size of the array). If, on the
other hand, increment is Some n, then resize increases the size of the array
by n elements (or more if necessary).

4.2  We may sometimes wish to reduce the size of the array, for example when
it is large compared with the number of elements actually in use or if it occupies
a lot of memory. Modify the function resize so that it halves the size of the
array when the number of elements is less than a quarter of the size of the array.
Show that the amortized complexity remains O(1).

4.3 Use a resizeable array to propose a stack structure with the following
interface:
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Program 31 — Persistent Arrays

type ’a t = ’a data ref
and ’a data =
| Arr of ’a array
| Diff of int * ’a * ’a t

let init n f = ref (Arr (Array.init n f))

let rec reroot pa = match !pa with
| Arr a —>
a
| Diff (i, v, pa’) —>
let a = reroot pa’ in
let old = a.(i) in
a.(i) <- v;

pa := Arr a;
pa’ := Diff (i, old, pa);
a

let length pa = Array.length (reroot pa)

let get pa i = (reroot pa). (i)

let iteri f pa = Array.iteri f (reroot pa)
let set pa i v =

let a = reroot pa in

let old = a.(i) in

a. (i) <- v;

let res = ref (Arr a) in

pa := Diff (i, old, res);

res
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module type Stack = sig
type ’a t
val make : int -> ’a -> ’a t
val length : ’a t -> int
val push : ’a t -> ’a -> unit
val pop : ’a t -> ’a

end

The call to make n d creates a stack containing n copies of the value d. The
function pop raises an exception when the stack is empty.

4.4 In the context of the preceding exercise, show that n calls to the operations
push and pop on a given queue have total cost O(n).

Bit Vectors

4.5 Justify the fact that the expression x land -x extracts the low-order set
bit of x for a non-zero integer x.

4.6 Write a function ntz: int -> int that calculates the number of low-
order zero bits of its argument. Hint: You can tabulate this function over a
byte and then use binary search.

4.7 Write a function blit_bits that copies bits ¢ to i +n — 1 of an integer x
to the position j of a bit vector v, that is, so that we have for every index k in
v:

Tipk— Hj<k<j+n,

blit_bits z i )k = i
( i 1sxzn1}])k {Uk otherwise

We will assume that the intervals i..i +n —1 and j..j + n — 1 are valid for x and
v, respectively.

4.8 Using the previous exercise, derive a function blit that copies the bits
i1..11 +n — 1 of a bit vector v1 into a bit vector vo at position is.

4.9 Using the preceding function blit, write a function sub that extracts the
bits i..i +n — 1 of an array in the form of a new bit vector of size n.
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4.10 Still using blit, write a function append that implements the concate-
nation of two bit vectors.

4.11 Write a function £i11 that assigns a constant value (0 or 1, given in the
form of a boolean) to bits i..i +n — 1 of an array. You can reuse the function
blit_bits with = equal to 0 or —1.

4.12  Write a function pop: int -> int that counts the number of set bits
of an integer by tabulating its values for all 8-bit integers. This function will be
four times faster than the one given in section 4.2 Bit Vectors.

4.13 The idea of a bit vector may be exploited to represent a subset of
{0,1,...,30} (respectively, {0,1,...,62} in a 64-bit architecture) by a single
integer. This is, moreover, a persistent data structure. Use this idea to write a
module of the following form:

module Bitset : Set.S type elt = int

Ropes

4.14 Add a function to the functor Make that allows you to iterate over all
leaves of a rope in infix order:

iter _leaves : (S.t -> int -> int -> unit) -> t -> unit

Each leaf is a string fragment corresponding to the three arguments of the
constructor Str.

4.15 Add the parameter small_length as an argument of the functor Make.

4.16 Rewrite the functions set, insert, and delete_char so that they per-
form only one recursive traversal of the rope.

4.17 In this and the following two exercises, we propose methods to rebalance
ropes a posteriori, that is, functions of the type:

val balance : t -> t

A simple method consists in constructing the list of all the leaves of the rope
in infix order and then constructing a complete binary tree based on this list.
Write a function balance following this idea.
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4.18 The balancing algorithm proposed in the above exercise minimizes the
height of the rope (as a tree) but does not take into consideration the length of
the different leaves. If a leaf contains a large number of characters, it would be
worthwhile to bring it closer to the root.

The article introducing ropes [5] proposes the following balancing method:
Use an array a of ropes, verifying the following invariant: if the rope a.(i) is
non-empty, its length belongs to the interval [F}, Fj1[, where Fj is the i-th term
of the Fibonacci series, defined by Fy = F1 = 1 and Fj49 = F11 + F, for all
n > 0.

Initially, all the ropes in a are empty. We then successively insert in a every
leaf of the rope to be balanced, in infix order, in the following manner, starting
from i = 2:

1. Let r be the rope obtained by concatenating the rope to be inserted with

a.(i).
2. If the length of r is in [F}, Fj+1[, assign r to a.(i) and then stop.

3. Otherwise, assign the empty rope to a.(7), increase i, and go back to step 1
with r as the rope to be inserted.

Once all leaves are inserted, the result is the concatenation of all the ropes in a.
Write a function balance that implements this algorithm.

4.19 Let r be the rope obtained by the algorithm described in the preceding
exercise, n its length, and h its height, where the height of a rope is defined
by h(Str _) = 0 and h(App(ri,72,-)) = 1+ max(h(r1),h(rz)). Show that
n > Fpyq. (Hint: Show that h(a.(i)) < i — 2 for every i.) From this, deduce
that the average distance of a character to the root of the rope r is less than
or equal to log,(n) + K for a certain constant K, where ¢ is the golden ratio

(14 5)/2.

4.20 This exercise presents an optimal strategy to rebalance a rope ¢y, known
as the Garsia-Wachs algorithm. The algorithm acts on a list of ropes ¢ equal to

(40,41, - - qm), as follows:

1. Initially, the list ¢ is the list of leaves of ¢g, in infix order.
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2. As long as the list ¢ contains at least two elements,

(a) determine the smallest index i, if it exists, such that length ¢; < length g;;1;
otherwise let i = m;

(b) remove ¢;—1 and ¢; from the list ¢ and form their concatenation c;

(c) determine the largest index j, if it exists, such that j < i and
length ¢;_1 > length c; otherwise let j = 0;

(d) insert c in the list ¢ just after g;_;.

3. Let ¢1 be the unique element left in ¢g. This rope is optimal, but its leaves
are not in the same order as in ¢g. The result is the rope co that has the
same leaves as ¢y and ¢y, in the same order as in ¢y, and at the same depth
as in cj.

Write a function balance that implements this algorithm. For more details on
this algorithm, consult The Art of Computer Programming [15, vol. 3, sec. 6.2.2].

Persistent Arrays

4.21 You may have noticed that the code of reroot and of set unnecessarily
recreates the value Arr a. Modify the two operations to avoid this.

4.22 Simplify the function set in the case of a call set pa i v, where the
index i already maps to v in pa.

4.23 The recursive call in the function reroot is not a tail call. This can create
problems if a persistent array is the result of a large number of modifications.
Rewrite the function reroot so that it contains only tail-recursive calls.



Sets and Dictionaries

Sets and dictionaries are the most frequently used data structures. This chap-
ter presents several ways of implementing sets. In each case, we discuss how
they may be adapted for dictionaries. Some data structures may be used with
elements of any type while others are more specialized, applicable to elements
of a particular shape (for example, lists) or type (for example, integers).

Some of these data structures are presented in a persistent version and others
in an imperative version. This is an arbitrary choice. Other choices are often
possible, such as persistent hash tables or imperative AVL trees. Some of these
variations are proposed in the exercises.

The choice of a data structure does not depend solely on its persistent or
imperative character. Other criteria determine this choice, such as the available
operations on the elements (for example, the existence of a total order), the
operations provided by the data structure (for example, a union operation), or
their respective cost (for example, the possibility of constructing a set in linear
time).
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5.1 Binary Search Trees

In this section, we implement persistent sets. A minimal signature for such sets,
PersistentSet, is given in program 32. The type of the elements is elt and
that of the sets is t. The empty set is represented by the value empty. The
operations add and mem respectively add an element and test the membership of
an element in a set. The function min_elt returns the smallest element of a set,
if such an element exists, and raises the exception Not_found otherwise. The
function remove removes an element from a set, if such an element is present,
and returns the same set otherwise. Finally, the operation cardinal returns the
number of elements of a set. Of course, a more realistic signature would contain
additional operations, such as union, intersection, and difference.

The data structure chosen here to implement this signature is that of a binary
search tree, that is, a binary tree such that every element contained in a node
is larger than every element in its left subtree and smaller than every element
in its right subtree. This organization allows searching for an element in time
proportionate to the height of the tree. This tree structure assumes, however,
that the elements can be compared to one another. For this, we require a
comparison function compare : elt -> elt -> int such as:

< 0 if x is strictly smaller than y,
compare x y est =0 if x is equal to y,
>0 if x is strictly larger than y.

We gather the type elt and the declaration of the function compare in a
signature Ordered shown in program 33. The code is then written as a functor
parametrized by a module of signature Ordered:

module Make(X : Ordered) : PersistentSet with type elt = X.t =
struct

The signature of the module returned by this functor is PersistentSet, where
we specify that the type elt of the elements is the type X.t.

Accordingly, in the body of the functor, we begin by introducing the type
elt as a synonym of the type X.t.
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Program 32 — Signature of Persistent Sets

module type PersistentSet = sig
type elt
type t
val empty : t
val add : elt => t > ¢t
val mem : elt -> t -> bool
val min_elt : t -> elt
val remove : elt >t > t
val cardinal : t -> int

end

Program 33 — Signature of Ordered Types

module type Ordered = sig
type t
val compare: t -> t -> int
end
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Figure 5.1: Two representations of the same binary search tree.

type elt = X.t

We then define the type t of sets as that of binary trees whose internal nodes
contain a value of type elt:

type t = Empty | Node of t * elt * t
Consider the following OCaml value:
Node (Node (Node (Empty, ’B’, Empty), ’D’, Empty),
) E ) s
Node (Empty, ’F’, Empty))
It corresponds to the left tree in figure 5.1, where only the value of type elt
in each node is shown, and where Empty is represented by L.
In what follows, we will not draw the children of a node when they are both
empty, as depicted in the right tree of the figure.

The value empty, denoting the empty set, is simply a synonym for the con-
structor Empty, that is, the empty tree.

let empty = Empty

Smallest Element

The structure of a binary search tree makes it easy to retrieve its smallest
element. It suffices to descend along the left branch as long as possible. The
function min_elt implements this traversal.

let rec min_elt = function
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| Empty -> raise Not_found
| Node (Empty, v, _) -> v
| Node (1, _, _) -> min_elt 1

Rather than the predefined exception Not_found, we could have declared and
used an exception specific to binary search trees.

Searching for an Element

Searching for an element x in a binary search tree proceeds recursively as follows:
If the tree is empty, we return false.

let rec mem x = function
| Empty ->
false

Otherwise, we compare x with the element v situated at the root of the tree. If
they are equal, the search finishes successfully. If x < v, we continue recursively
down the left subtree and, otherwise, down the right subtree.

| Node (1, v, r) —>
let ¢ = X.compare x v in
c=01]] if ¢ < 0 then mem x 1 else mem x T

Inserting an Element

Inserting an element x in a binary search tree t consists in finding the location
of x in t, following the same principle as when searching for an element. If t is
empty, it suffices to construct a tree that contains only x.

let rec add x t =
match t with
| Empty ->
Node (Empty, x, Empty)

Otherwise, we compare the element x with the root v of t. If they are equal,
we return the tree t unchanged to avoid introducing a duplicate.



210 Chapter 5. Sets and Dictionaries

| Node (1, v, r) —>
let ¢ = X.compare x v in
if ¢ = 0 then t

Otherwise, we recursively pursue the insertion to the left or to the right,
depending on the result of the comparison.

else if ¢ < 0 then Node (add x 1, v, T)
else Node (1, v, add x r)

Of course, this implementation of the insertion function may lead to highly
unbalanced trees. For example, if we successively add F, E, D, and B to the
empty tree, we get the “comb” shown in figure 5.2.

Figure 5.2: A binary search tree shaped like a comb.

Such shapes degrade the efficiency of subsequent search and insertion op-
erations. The worst case corresponds to that of the comb where, as shown in
the example, each internal node has only one non-empty subtree. Operations in
such trees are then proportionate to the number of elements. In the following
section, we will see that it is possible to limit the height of a binary search tree
so that it remains logarithmic with respect to the number of elements. The
complete code of the insertion function is given in program 34.

Removing an Element

To remove an element x from a binary search tree t, we proceed in the same
manner as when searching or inserting an element, that is, by recursive descent
towards the possible location of x. If t is empty, it suffices to return the empty
tree.
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Program 34 — Binary Search Trees (1/2)

type t = Empty | Node of t * elt * t

let rec min_elt = function
| Empty -> raise Not_found
| Node (Empty, v, __) -> v
| Node (1, _, _) -> min_elt 1

let rec mem x = function
| Empty ->
false
| Node (1, v, r) —>
let ¢ = X.compare x v in
c =0 || if ¢ < 0 then mem x 1 else mem X r

let rec add x t =

match t with

| Empty ->
Node (Empty, x, Empty)

| Node (1, v, r) —>
let ¢ = X.compare x v in
if ¢ = 0 then t
else if ¢ < O then Node (add x 1, v, r)
else Node (1, v, add x r)
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let rec remove x = function
| Empty ->
Empty

Otherwise, we compare x to the root v of t. If they are equal, we face a
problem: It is necessary to remove v, that is, to construct a tree from the left
and the right subtrees of t. To implement this operation, we assume that we
have written a function merge that performs this merging.

| Node (1, v, r) —>
let ¢ = X.compare x v in
if ¢ = 0 then merge 1 r

If x is different from v, we descend recursively along the left or the right
subtree to remove x. The code is similar to that of an insertion.

else if ¢ < 0 then Node (remove x 1, v, r)
else Node (1, v, remove x r)

The function merge, which merges two trees 1 and r, remains to be written.
The difficulty lies in determining a root for the resulting tree. One way of
proceeding consists in choosing the smallest element of r. Its value is obtained
using the function min_elt written earlier. We must then remove this element
from r, but this is precisely the operation that we are trying to implement.

Fortunately, the removal of the smallest element of a binary search tree is
much simpler to implement than the removal of an arbitrary element. Let us
write a function remove_min_elt for this. If the tree is empty, there is nothing
more to be done.

let rec remove_min_elt = function
| Empty -> Empty

If not, and if there is no left subtree, then the root is the smallest element,
and we return the right subtree.

| Node (Empty, _, r) -> r
Otherwise, we recursively remove the smallest element from the left subtree.

| Node (1, v, r) -> Node (remove_min_elt 1, v, r)
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Program 35 — Binary Search Trees (2/2)

let rec remove_min_elt = function
| Empty -> Empty
| Node (Empty, _, r) > r
| Node (1, v, r) —-> Node (remove_min_elt 1, v, r)

let merge tl1 t2 = match t1, t2 with
| Empty, t | t, Empty -> t
| _ -> Node (t1, min_elt t2, remove min_elt t2)

let rec remove x = function

| Empty ->
Empty

| Node (1, v, r) —>
let ¢ = X.compare x v in
if ¢ = 0 then merge 1 r
else if ¢ < 0 then Node (remove x 1, v, r)
else Node (1, v, remove X I)

We are now ready to write the function merge. If one of its two arguments is
empty, we return the other. Otherwise, we use min_elt and remove_min_elt,
and apply the idea mentioned previously.

let merge tl t2 = match tl1, t2 with
| Empty, t | t, Empty -> t
| _ -> Node (t1, min_elt t2, remove_min_elt t2)

The complete code for removing an element is given in program 35. Exer-
cise 5.7 proposes a slight improvement, which consists in avoiding the recon-
struction of the tree when the element to be removed is not actually present.
This optimization is also applicable in the function add.
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Dictionaries

We do not show here how to adapt this data structure to implement dictionaries
since this will be done in the following section for balanced binary trees.

5.2 AVL Trees

As we saw in the previous section, the height of a binary search tree can be
as high as the number of elements it contains, which is the case of the comb.
The efficiency of each operation is directly affected by this. The problem can
be resolved by balancing the binary search tree, that is, by trying to make its
height as small as possible. In practice, we look for a solution that is not too
costly at construction time, but which guarantees that the two subtrees of each
node contain the same number of elements up to a small multiplicative factor.
The solution discussed here is that of AVL trees, where the difference in heights
of the left and right subtrees of each node is never allowed to exceed 1.

We begin by modifying the type of binary search trees to store the height of
the tree as the fourth argument of the constructor Node.

type t = Empty | Node of t * elt * t * int
Consider the following tree BDEF:

It is represented by the following OCaml value:

Node (Node (Node (Empty, ’B’, Empty, 1), ’D’, Empty, 2),
)E’,
Node (Empty, ’F’, Empty, 1),
3)

To manipulate the height of an AVL tree, it is convenient to introduce a function
to retrieve it:
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let height = function
| Empty -> 0
| Node (_, _, _, h) ->h

It is similarly useful to introduce a function that creates a new node while
simultaneously computing its height:

let node 1 v r =
Node (1, v, r, 1 + max (height 1) (height r))

Such a function is what we call a smart constructor. It will be used in what
follows instead of the constructor Node. Of course, the height computed by
node is correct only if the heights stored in 1 and r are also correct. This will
be guaranteed by making the type of AVL trees abstract.

Smallest Element and Membership Testing

As an AVL tree is a binary search tree, the functions min_elt and mem remain
identical to those of program 34 (see page 211). The only difference is that they
discard the fourth argument of the Node constructor.

Balancing

We illustrate the balancing of an AVL tree with the help of an example. If we
insert the element A into the tree BDEF, we obtain the following tree ABDEF:

This tree is not balanced since the difference in height between the left
and right subtrees of the node E is two. Nevertheless, it is easy to restore the
balance of the tree. This can be done by performing local transformations that
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rotation droite

Figure 5.3: Right rotation in an AVL tree.

preserve the binary search tree property. An example of such an operation is
right rotation, illustrated in figure 5.3.

This operation replaces the root v by the root 1v of the left subtree and
shifts the subtree 1r containing the elements between 1v and v. Note that this
operation modifies only two nodes in the tree structure. The binary search tree
property is preserved: the subtree 11 remains to the left of 1v; the subtree r
remains to the right of v; and the subtree 1r remains to the right of 1v and to
the left of v. A left rotation may be performed symmetrically.

Thus, the tree ABDEF may be rebalanced by performing a right rotation on
the subtree with root D. We then obtain the following tree, which satisfies the
AVL condition.

A simple left or right rotation does not necessarily suffice to rebalance the
tree. For example, if we insert C, we obtain the following tree, which is not an
AVL tree.
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We can then try to perform a right rotation at the root E or a left rotation
at the node B. However, neither operation yields an AVL tree.

B E
/\ /\
A E D F
/\ /\
D F B L
/\ /\
C L A C

Nevertheless, the tree on the right can be easily rebalanced by performing a
further right rotation at the root E. We obtain the following AVL tree:

7N\
B E

/N /N
ACLEF

This double operation is called left-right rotation. Needless to say, there is
also a symmetrical right-left rotation.

These four operations, that is, the two simple rotations and the two double
rotations, suffice to rebalance any AVL tree following an insertion operation. We
gather the rebalancing code in a smart constructor balance with the following

type:
val balance : t -> elt >t -> t

It behaves exactly like the function node, except that it also guarantees that
the result will be balanced.

We begin by calculating the heights hl and hr of the left and right subtrees,
and consider first the case in which the imbalance is due to the left subtree 1:
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rotation droite

Figure 5.5: Double rotation in an AVL tree.

let balance 1 v r
let hl = height 1 in
let hr = height r in
if hl > hr + 1 then begin

As illustrated in figure 5.4, a simple right rotation suffices if the left subtree
11 of 1 is at least as tall as the right subtree 1r:

match 1 with
| Node(1l, 1lv, 1lr, _) when height 11 >= height 1lr ->
node 11 1lv (node 1lr v r)
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On the other hand, if 11 is shorter than 1r, we must perform a left-right
double rotation, as illustrated in figure 5.5.

| Node(1l, 1lv, Node(lrl, 1lrv, lrr, _),_)->
node (node 11 1v 1rl) lrv (node lrr v r)

Here too, the AVL property is guaranteed. Note that the imbalance can be
due to either 1rl or 1lrr, and that in both cases a left-right double rotation
suffices to restore the balance.

As 1 and r are both assumed to be AVL trees, there is no other possible cause
for imbalance when 1 is taller than r. This completes the pattern matching;:

| _ -> assert false
The case where the imbalance is due to r is handled symmetrically:

end else if hr > hl + 1 then begin
match r with
| Node (rl, rv, rr, _) when height rr >= height rl ->
node (node 1 v rl) rv rr
| Node (Node(rll, rlv, rlr, _), rv, rr, _) —->
node (node 1 v rll) rlv (node rlr rv rr)
| _ -

assert false

Finally, if the heights of 1 and r differ by at most one, we construct the node
without rebalancing:

end else
node 1 vr

The complete code of the function balance is given in program 36.

Insertion and Removal

We can now adapt the code for inserting an element (function add in pro-
gram 34), replacing each application of the constructor Node with an applica-
tion of the function balance. Similarly, we can adapt the code for removing
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Program 36 — Balancing an AVL Tree

let balance 1 v r
let hl = height
let hr = height

if hl > hr + 1 then begin

match 1 with

1
r

in
in

| Node (11, 1lv, 1lr, _) when height 11 >= height lr ->
node 11 1lv (node 1lr v r)

| Node (11, 1v, Node (1rl, 1lrv, lrr, _),_)—>
node (node 11 1lv 1rl) 1lrv (node lrr v r)

| ->

assert false
end else if hr > hl + 1 then begin

match r with

| Node (rl, rv, rr, _) when height rr >= height rl ->
node (node 1 v rl) rv rr

| Node (Node(rll, rlv, rlr, ), rv, rr, ) ->
node (node 1 v rll) rlv (node rlr rv rr)

| ->

assert false

end else
node 1 vr
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an element (functions remove_min_elt, merge, and remove), making the same
modification.

The code thus obtained is given in program 37. We emphasize that the
adaptions above only involve simple substitutions.

Comparison of Sets

The implementation of a total order on sets is important. It has the following
type:

val compare : t -> t -> int

In particular, this allows us to easily construct sets of sets by instantiating the
functor Make several times in succession, as follows:

module Int = struct

type t = int

let compare = Stdlib.compare
end
module IntSet = Make(Int)
module IntSetSet = Make(IntSet)

The comparison on sets cannot be done simply by using Stdlib.compare. In-
deed, two binary search trees may contain the same elements without having
the same structure. A simple solution would be to construct the list of elements
of each tree in the infix order and then compare them. This is, however, very
inefficient: On the one hand, constructing the list requires a lot of memory. On
the other, this construction can be wasteful if the lists differ near the beginning.
Chapter 9 proposes an efficient solution to this problem.

Complexity

To justify the claim that AVL trees are balanced, we now show that the height
of such a tree is always logarithmic in the number of elements.

Consider an AVL tree of height h. Let us try to estimate the number of its
elements, n.
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Program 37 — Insertion and Removal in an AVL Tree

let rec add x = function

| Empty ->
Node (Empty, x, Empty, 1)

| Node (1, v, r, _) as t —>
let ¢ = X.compare x Vv in
if ¢ = 0 then t
else if ¢ < O then balance (add x 1) v r
else balance 1 v (add x r)

let rec remove _min_elt = function

Empty -> Empty

Node (Empty, _, r, _) ->r

Node (1, v, r, _) -> balance (remove min_elt 1) v r

let merge t1 t2 = match t1, t2 with
| Empty, t | t, Empty -> t
| _ -> balance t1 (min_elt t2) (remove_min_elt t2)

let rec remove x = function

| Empty ->
Empty

| Node (1, v, r, _) ->
let ¢ = X.compare x v in
if ¢ = 0 then merge 1 r
else if ¢ < O then balance (remove x 1) v r
else balance 1 v (remove x r)
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If the tree is perfectly balanced, then n = 2" — 1. However, in general, we
have only n < 2% — 1. The smallest possible value of n would be attained in a
tree having one subtree of height A —1 and the other of height h—2. (The reason
is that, otherwise, we would still be able to remove elements from one of the two
subtrees while maintaining the AVL property.) Thus, if we let Nj, be the smallest
number of elements in an AVL tree of height h, we have N, = 1+ Nj,_1 + Np_o,
which can be rewritten as N + 1 = (Np—1 + 1) + (Np—2 + 1). Equivalently,
letting G, = Np, + 1, we have G, = Gp_1 + Gr_o. Here, we recognize the
recurrence relation that defines the Fibonacci sequence. As we also have Ny = 0
and N1 = 1, that is, Go = 1 and G; = 2, we deduce that G}, = Fj, 19, where (F;)
is the Fibonacci sequence.

A mathematical result tells us that F; > ¢'/ V5 — 1, where ¢ = 1+T\/5 is the
golden ratio. Hence:

n>Ny=Fho—1>¢"?/V/5 -2,
that is,
"2 /NVE < n+ 2.

Taking the base 2 logarithm of this inequality, we deduce the desired bound on
the height h as a function of the number of elements n:

logs V5

logy ¢ logy ¢ N
~ 1,44logy(n+2)—0,33

h < 2

logy(n +2) +

An AVL tree therefore has a height that is logarithmic in the number of elements.
This guarantees, in particular, O(logn) complexity for the searching, insertion,
and removal operations. This also guarantees that these operations will not
trigger a stack overflow.

Dictionary

A minimal signature for a persistent dictionary is given in program 38. It is very
similar to that of a set (program 32, at the start of the chapter). The type key
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Program 38 — Minimal Signature for Persistent Dictionaries

module type PersistentMap = sig

type key

type ’a t

val empty : ’a t

val add : key -=> ’a -> ’a t -> ’a t

val mem : key -> ’a t -> bool

val find : key -> ’a t -> ’a

val remove : key -> ’a t > ’a t
end

of keys replaces the type elt of elements, for greater clarity. The type t is now
polymorphic, its argument of type ’a being the type of the values associated
with the keys. The function add takes an additional argument. Finally, a new
function find returns the value associated with a key, and raises the exception
Not_found otherwise.

The adaptation of the structure of AVL trees to dictionaries consists in
adding the value associated with the key to each node, that is:

type ’a t = Empty | Node of ’a t * key * ’a * ’a t * int

Program 39 — Searching in an AVL Dictionary

let rec find k = function
| Empty ->
raise Not_found
| Node (1, k’, v, r, _) —>
let ¢ = X.compare k k’ in
if ¢ = 0 then v else if ¢ < O then find k 1 else find k r

The function mem is unchanged. The function find follows exactly the same
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schema as mem, except that the exception Not_found is raised if the key is not
present in the dictionary. Its code is given in program 39. All the other functions
on AVL trees (balance, add, etc.) are unchanged, except that elements are
replaced by key/value pairs.

Modules Set and Map

The OCaml standard library provides the modules Set and Map, implemented
using AVL trees, that are almost identical to those presented in this section. The
only difference is that the condition on the height of the subtrees is relaxed (2 for
OCaml versus 1 here). This choice is a compromise between the construction
cost and the efficiency of the operations. These libraries provide all set-theoretic
operations, such as union, intersection, inclusion testing, etc.

For Further Information

AVL trees were introduced by Georgy Adelson-Velskyi and Evgenii Landis
in 1962 [2]. The union and intersection operations on AVL trees are detailed
in an article by Adams [1]. There are other techniques to balance binary
search trees, notably red-black trees [7, 19] and 2-3-4 trees [21].

5.3 Hash Tables

An imperative data structure for sets can be implemented using an array of
booleans of size n if the elements are integers between 0 and n — 1. However,
this idea is not applicable to other kinds of elements, such as integers in a
different range, elements of a different type, or if the number of elements is
unbounded. We could also use a list, but searching is then costly.

We present here the hash table data structure, which combines these two
approaches. The idea consists in using a function f that maps each element
to an integer between 0 and n — 1. In general, it is difficult to find an f that
is injective. We will thus have to handle collisions, that is, cases where several
elements map to the same value under f. Rather than using an array of booleans,
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we will use an array where each cell contains a “bucket” of elements represented
as a list. Thus, an element x will belong to the set if and only if it belongs to
the bucket at index f(z). If the function f distributes the elements uniformly
across the different buckets, then the search operation will be efficient.
Consider, for example, a hash table representing the following set of strings:

{"","we like","the codes","in", "ocaml"}

Let us assume the table has n = 7 buckets. We also assume that there is
a function h, called the hash function, which associates a positive integer (or
zero) to each element. We can then define the function f as:

f(s) = h(s) mod n

The operation modulo guarantees that the value of f is indeed in the range
0..n — 1. In the case of strings, we can take h to be the length of the string.
If we use lists to represent buckets, we then obtain the structure shown in
figure 5.6. Thus, for example, bucket 2 contains the two strings "the codes"
and "in", respectively of length 9 and 2.

of—""Te]

&——{"the codes"|

oi—{"ocam1"| (1]

Sk W+~ O

Figure 5.6: A hash table containing strings.

The choice of the number of buckets n and of the hash function A is im-
portant. For example, if we wish to represent the set of the 80000 words of
the French dictionary, we must choose a value of n that is sufficiently large, of
the same order of magnitude as the number of elements, with a view to having
small buckets. It is also necessary to choose a subtler function h than simply
the length of the string, or else only a few buckets will be used.
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Program 40 — Signature for Imperative Sets

module type ImperativeSet = sig
type elt
type t
val create : unit -> t
val add : elt -> t -> unit
val mem : elt -> t -> bool
val remove : elt -> t -> unit
val cardinal : t -> int

end

We will now implement hash tables having the signature given in program 40.
The type elt is that of the elements and the type t is that of hash tables. The
function create returns a new table that is initially empty. The function add
adds an element and the function remove removes an element. The function
mem tests for the presence of an element and cardinal returns the number of
elements in the set.

To add an element to a hash table, it is necessary to have a hash function
hash of type elt -> int. To search for an element, it is also necessary to have
an equality function equal of type elt -> elt -> bool. Rather than using the
OCaml equality operator =, we prefer to let users choose their own comparison
function. The two functions hash and equal must verify the following condition:

Vx,y. equal x y = hash x = hash y

It is therefore natural to write hash tables as a functor parametrized by a
module of type HashType, whose signature contains these two functions (see
program 41 below).

The functor then takes the following form:

module Make(X: HashType): ImperativeSet with type elt = X.t = struct
type elt = X.t
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Program 41 — Signature Required for the Elements of a Hash Table

module type HashType = sig
type t
val hash : t —> int
val equal : t -> t -> bool
end

The type t of hash tables could be defined as follows:
type t = (elt list) array

However, it is also preferable to store the number of elements in the set, so as
to be able to implement the function cardinal efficiently. We therefore use a
record type containing, on the one hand, the number of elements in a field size
and, on the other, the array of buckets in a field buckets

type t = {
mutable size : int;
buckets : (elt list) array;

}

The function cardinal is then immediate.

let cardinal h =
h.size

To create a new hash table, it is necessary to choose the size n of the array.
Ideally, this size should be of the same order of magnitude as the number of ele-
ments that will be stored in the table. The user could provide this information,
for example in the form of an additional argument to create, but this is not
always possible. For the present, let us therefore consider a simplified situation
in which the size is an arbitrary constant.

let array_length = 5003
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We will see later how to eliminate the need for this arbitrary choice. The creation
of an empty hash table consists in the creation of an array of size array_length
containing only empty lists, and in initializing the field size to 0.

let create () =
{ size = 0;
buckets = Array.make array_length []; }

Searching for an Element

To search for an element x within a hash table h, we begin by writing a function
bucket_of that returns the bucket corresponding to x in h.

let bucket_of x h =
(X.hash x land max_int) mod (Array.length h.buckets)

Since the result of mod has the same sign as its first argument, we make sure
that the latter is not negative by clearing the sign bit!.

To search for an element x in a table h, we begin by determining the index i
of the bucket containing x with the function bucket_of.

let mem x h =
let i = bucket_of x h in

Next, we search for x in the list h.buckets. (i). For this we use the equality
function on the type elt, namely, X.equal.

List.exists (X.equal x) h.buckets. (i)

The complete code of mem is given below in program 42. Since the operation
of searching within a bucket is reused several times subsequently, we turn it into
a function, mem_bucket.

! Another solution, notably adopted in the hash tables of the OCaml standard library,
consists is using an array whose size n is a power of 2. The modulo operation can then be
implemented with land (n-1), which has the added advantage of being much cheaper than a
division.
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Program 42 — Searching in a Hash Table

let bucket_of x h =
(X.hash x land max_int) mod (Array.length h.buckets)

let mem_bucket x b =
List.exists (X.equal x) b

let mem x h =
let i = bucket_of x h in
mem_bucket x h.buckets. (i)

Inserting an Element

To insert an element x in a table h, we begin by retrieving the list b of the
bucket that may contain x.

let add x h =
let i = bucket_of x h in
let b = h.buckets. (i) in

If x is present in the bucket, then there is nothing more to be done. Otherwise,
we increase the field size and add x at the head of the list b.

if not (mem_bucket x b) then begin
h.size <- h.size + 1;
h.buckets. (i) <- x :: b

end

The complete code of add is given below in program 43.

Note: We could have directly added x to the list b without checking for its
presence beforehand. This would not modify the contents of the set (from the
point of view of mem), and insertion would then happen in O(1) time. On the
other hand, it would have become impossible to keep track of the field size, and
the operation cardinal would have become more costly. Furthermore, repeated
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insertions of the same element would have occupied more and more space in the
hash table, thereby reducing the efficiency of search operations. Alternatively,
to prevent duplicates, buckets may be represented using a more efficient data
structure than lists. We could, for example, use AVL trees, presented in the
previous section. This would nevertheless require an additional comparison
function on the type elt.

Program 43 — Inserting an Element into a Hash Table
let add x h =
let i = bucket_of x h in

let b = h.buckets. (i) in

if not (mem_bucket x b) then begin
h.size <- h.size + 1;
h.buckets.(i) <- x :: b

end

Removing an Element

Removing an element from a hash table proceeds as in the insertion operation.
The code of remove is given in program 44.

Program 44 — Deletion from a Hash Table

let remove x h =
let i = bucket_of x h in
let b = h.buckets. (i) in
if mem_bucket x b then begin
h.size <- h.size - 1;
h.buckets. (i) <- List.filter (fun y -> not (X.equal y x)) b
end
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When x is present in the bucket b, it is necessary to decrease the field size
and delete the occurrence of x in b. For this last operation, we use the function
List.filter so as to preserve only the elements of the bucket that are distinct
from x.

Resizing the Array Dynamically

The efficiency of the code that we presented above is satisfactory when the
order of magnitude of the number of elements of the set is known beforehand.
However, our structure is too simplistic if the number of elements can increase
arbitrarily. Efficiency decreases rapidly once the load factor of the hash table—
that is, the ratio between the number of elements in the table and the size of
the array—becomes large. To remedy this, it is necessary to resize the array
dynamically, depending on the load factor. For example, we may double the
size of the array once the load factor is greater than 1/2.

To do this, it is necessary to modify the definition of the type t slightly, so
as to make the field buckets mutable.

type t = {
mutable size : int;
mutable buckets : elt list array;

}

The initial value of the constant array_length remains arbitrary but will no
longer impact the efficiency of the operations. The user may, nevertheless,
continue to indicate an order of magnitude so as to avoid too many resizings.

The main modification is to the function add, where the array must be
resized when the load factor becomes too large.

let add x h =
let n = Array.length h.buckets in

if not (mem_bucket x b) then begin

if h.size > n/2 then resize h
end
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The test h.size > n/2 is done immediately after the insertion of x. If the
condition holds, we call a function resize that will take care of resizing the
array. This function proceeds as in section 4.1 Resizeable Arrays. It begins by
allocating a new array a, of size m = 2 x n.

let resize h =
let n = Array.length h.buckets in
let m
let a

2 *n in
Array.make m [] in

The size of the array having changed, the bucket number of an element is no
longer necessarily the same due to the change in the modulus. It is therefore
necessary to reassign each of the elements of h to their respective new buckets.
For this, we introduce a function rehash that adds the element x into its new
bucket.

let rehash x =
let i = (X.hash x land max_int) mod m in
a.(i) <= x :: a.(i)

in

It then suffices to execute rehash on all the buckets of the previous array
h.buckets:

Array.iter (List.iter rehash) h.buckets;

Finally, we replace the array h.buckets by a.

h.buckets <- a

The complete code of resize is given in program 45.

As the size of arrays is limited to Sys.max_array_length, it is a good idea
to verify that the length of the array created by the function resize is not too
large (see exercise 5.11).
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Program 45 — Resizing a Hash Table

let resize h =

let n = Array.length h.buckets in

let m = 2 *x n in

let a = Array.make m [] in

let rehash x =
let i = (X.hash x land max_int) mod m in
a.(i) <- x :: a.(i)

in

Array.iter (List.iter rehash) h.buckets;

h.buckets <- a

Complexity

The complexity of the operations on a hash table obviously depends on the hash
function. If, for example, this function always returns the same value, then the
hash table becomes a simple list, and the operations mem, add, and remove all
have cost O(N) if the table contains N elements. If, by contrast, the hash
function distributes the elements uniformly over the different buckets, and if
the number of buckets is sufficiently large, then we can hope that the size of
each bucket will be bounded by a small constant. In this case, the complexity
of each operation will be O(1).

The tuning of the hash function is done empirically, for example by measur-
ing maximal and average bucket sizes. On values such as integers, strings, or
even arrays of integers, we can use the polymorphic hash function Hashtbl.hash,
provided by the OCaml library, which gives good results. In the section 11.4
Hash-consing, we will see how to define an efficient hash function for more com-
plex values, such as lists or trees.

To maintain a bounded load factor, we have shown above how to dynamically
resize the hash table. Each operation that triggers a resizing obviously has cost
O(N), since each element has to be reintroduced individually into the new array
However, if we follow the above strategy, consisting in doubling the size of the
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array each time, then the cost is amortized over the entire sequence of operations,
exactly as in section 4.1 Resizeable Arrays. The operations mem, add, and remove
therefore have amortized cost O(1). A hash table is consequently an extremely
efficient data structure.

Dictionary

To adapt the hash table structure to represent dictionaries, we add the values
associated with the keys into the buckets. The lists become association lists and
the type t becomes:

type ’a t = {
mutable size : int;
mutable buckets : (key * ’a) list array;

}

To check for the presence of a key in a list of type (key * ’a) list, we
modify the function mem_bucket slightly, as follows:

let mem_bucket x b =
List.exists (fun (y,_) -> X.equal x y) b

All the other functions are subject to similar minor modifications. The only
new function that needs to be added is find. It looks for the value associated
with a key in the corresponding bucket, which boils down to searching in an
association list. We cannot use the predefined function List.assoc, because
here we must use the equality predicate X.equal. We therefore write a specific
function, lookup, for this. The code of find is given in program 46.

Module Hashtbl

The standard library of OCaml provides dictionaries implemented as hash tables
in the form of a functor Hashtbl.Make, analogous to the one we just wrote.
This data structure may be used to associate several values with a single key.
More precisely, it allows us to call the function add several times with the same
key, without losing the values with which the key was previously associated. For
example, if we execute the additions add h x v1 and add h x v2 sequentially
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Program 46 — Searching in an Associative Hash Table

let find x h =

let rec lookup = function
| [1 -> raise Not_found
| (k, v) :: _ when X.equal x k -> v
| _ :: b -> lookup b

in

let i = bucket_of x h in

lookup h.buckets. (i)

for a key x in a table h, then find h x will return v2. If we then perform
remove h x, this has the effect of deleting the last binding of x, and find h x
will then return vi. On the other hand, if we wish to replace the value v1 by
v2, we can use the operation replace.

The module Hashtbl also provides a polymorphic hash table data struc-
ture that relies on the polymorphic hash function Hashtbl.hash that has type
’a -> int and that is compatible with the structural equality operation =. This
way, we avoid having to use the functor Hashtbl.Make when the keys are, for
example, values of type int or string.

5.4 Prefix Trees

We are concerned in this section with a data structure used to represent sets
of words. By “word,” we mean here any OCaml value that can be seen as a
sequence of letters. The first data type that comes to mind for such values is
obviously the type string of strings, where the letters are values of type char.
However, other values may also be considered as words. For example, an integer
written in base 2 can be understood as a word formed of the letters 0 and 1.
More generally, we will assume that words are of type L.t list, where L is
a module of signature Letter, given in program 47, containing a type t that
represents letters. Apart from this type t, this signature assumes the existence



5.4. Prefix Trees 237

Figure 5.7: Prefix tree for the set {if,in, do, done}.

Program 47 — Minimal Signature of Letter Module

module type Letter = sig

type t
val compare: t -> t -> int
end

of a comparison function that we will need in what follows.

We use this decomposition into letters to represent sets of words with the
help of a data structure called a prefiz tree, also known as trie’. In these trees,
each branch is labeled by a letter and each node contains a boolean indicating
whether the sequence of letters leading from the root of the tree to this node is
a word belonging to the set. For example, the prefix tree corresponding to the
set of words {if,in, do, done} is represented in figure 5.7.

This data structure is useful to bound the time needed to search for a word
in a set by the length of the word, independent of the number of words in the
set.

In order to avoid depending on a particular implementation of the mod-

2This comes from the word retrieval.
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Program 48 — Signature of Persistent Sets

module type PersistentSet = sig
type elt
type t
val empty : t
val add : elt >t > t
val mem : elt -> t -> bool
val remove : elt -> t > ¢t
val inter : t >t > t
val compare : t -> t -> int
end

ule L, we define the prefix tree data structure as a functor parametrized by
L and returning a persistent set whose signature, PersistentSet, is given in
program 48.

module Make(L: Letter): PersistentSet with type elt = L.t list =
struct
type elt = L.t list

As mentioned earlier, the type elt of elements is defined as a list of letters, that
is, a list of type L.t list.

The idea behind prefix trees is to represent each node as a dictionary that
associates letters with subtrees, that is, with other nodes. We begin by intro-
ducing a dictionary M, whose keys are letters, by applying the functor Map .Make
to the module L.

module M = Map.Make(L)
We can then define the type t of nodes as follows:
type t = { word : bool; branches : t M.t }

The field word contains the boolean value indicating the presence of a word in
the set. The field branches contains the children of the node.
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Program 49 — Structure of a Prefix Tree

module Make(L : Letter) : PersistentSet with type elt = L.t list =
struct

module M = Map.Make(L)

type elt = L.t list
type t = { word : bool ; branches : t M.t; }

let empty = { word = false; branches = M.empty }
let is_empty t = not t.word && M.is_empty t.branches

let rec mem x t =
match x with
I ->
t.word
| i::12 —>
try mem 1 (M.find i t.branches)
with Not_found -> false

The empty set is represented by a tree empty consisting of a single node,
where the field word is false, and branches is the empty dictionary:

let empty = { word = false; branches = M.empty }

The code is given in program 49 along with a function is_empty that tests
whether a set is empty.
Searching for an Element

Searching for an element x proceeds recursively as follows: If the word x is the
empty list, the search ends, returning the boolean value contained in the root
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of the tree t.

let rec mem x t =
match x with
| [1 -> t.word

Otherwise, we pursue the search recursively within the subtree associated with
the branch labeled with the first letter i of the word x. If this branch does not
exist, the search ends immediately with a failure.

i ::1 ->
try mem 1 (M.find i t.branches)
with Not_found -> false

The code of the function mem is given in program 49.

Inserting an Element

Inserting a word x in a prefix tree t consists in descending along the branches
labeled with the letters of x, as was done when searching for an element.

If x is the empty word, the insertion ends and returns a tree t with a field
word set to true, indicating that x now belongs to the set.

let rec add x t =
match x with
[ 00 —>
if t.word then t else { t with word = true }

We avoid reconstructing the node when t.word is already true.

If x is a non-empty list of the form i: :1, we recursively insert 1 in the subtree
b associated with the letter i in t. If b does not exist, we perform the insertion
starting with an empty tree. The insertion ends with the creation of a new node
in which we associate the letter i with the subtree obtained recursively.

[ i::1 ->
let b = try M.find i t.branches with Not_found -> empty in
{ t with branches = M.add i (add 1 b) t.branches }
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The code of the function add is given in program 50.

Removing an Element

Removing an element x in a tree t proceeds, once again, with the same recursive
traversal. There is, however, a subtlety. Removing an element can leave the
tree in a state in which one branch is completely empty, that is, where the fields
word are all false. To avoid wasting space in this manner, we will enforce the
property that all leaves of a prefix tree must represent a word belonging to the
set. In other words, the boolean word of a leaf must always be true, with the
exception, of course, of the empty set, represented by a single node with the
boolean word set to false.

Let us now write the code of the function remove. If the argument x is the
empty list, it is deleted from t by switching the field word to false.

let rec remove x t =
match x with
| 0 ->
{ t with word = false }

Otherwise, x is of the form i::1 and we begin by recursively deleting the rest
of the word 1 from the subtree associated with i. If this subtree does not exist,
the function ends, directly returning t.

| 1 ::1 —>
try
let s = remove 1 (M.find i t.branches) in

with Not_found -> t

Next, if the tree s exists and is empty, we remove the branch associated with
i in t. Otherwise, we create a new binding between i and s.

let new_branches =
if is_empty s then M.remove i t.branches
else M.add i s t.branches

in
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Program 50 — Insertion and Removal in a Prefix Tree

let rec add x t =
match x with
I -
if t.word then t else { t with word = true }
| i::1 —>
let b = try M.find i t.branches with Not_found -> empty in
{ t with branches = M.add i (add 1 b) t.branches }

let rec remove x t =
match x with
[ -
{ t with word = false }
| i::1 —>
try
let s = remove 1 (M.find i t.branches) in
let new_branches =
if is_empty s then M.remove i t.branches
else M.add i s t.branches
in
{ t with branches = new_branches }
with Not_found -> t
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This guarantees that no branch of t will point to an empty tree. Finally, the
function ends by updating t with the new branches.

{ t with branches = new_branches }

The code of the function remove is given above in program 50.

Intersection of Prefix Trees

The intersection of two prefix trees is implemented with the help of two mutually
recursive functions inter and inter_branches. The function inter computes
the intersection of two trees t1 and t2 that are assumed to correspond to the
same prefix p. The word p belongs to the intersection if the roots of t1 and t2
both contain the word p. The branches of the intersection are calculated by the
function inter_branches.

let rec inter t1 t2 =
{ word = t1.word && t2.word ;
branches = inter branches t1.branches t2.branches }

The function inter_branches implements the intersection of two dictionaries
ml and m2. The idea is to enumerate the branches of m1 while checking, for
each branch, if a corresponding branch exists in m2. For this we use the function
M.fold, starting from an empty dictionary and considering each binding i — ti
of m1 in turn.

and inter_branches ml m2 =
M.fold
(fun i tim-> ... )
ml M.empty

For each binding, we recursively compute the intersection t of ti with the
tree bound to i in m2, if it exists. We add the binding i — t to m, taking care to
verify that t is not empty. If m2 does not contain the branch i, the intersection
is empty and m is left unchanged.

(fun i ti m ->
try
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Program 51 — Intersection of Prefix Trees

let rec inter t1 t2 =
{ word = t1.word && t2.word;
branches = inter_branches tl.branches t2.branches; }
and inter_branches ml m2 =
M.fold
(fun i ti m —>
try
let t = inter ti (M.find i m2) in
if is_empty t then m else M.add i t m
with Not_found -> m)
ml M.empty

let t = inter ti (M.find i m2) in
if is_empty t then m else M.add i t m
with Not_found -> m)

The complete code of the intersection function is given in program 51. The
union operation is left as an exercise.

Comparison

Prefix trees can be compared easily. To compare two trees t1 and t2, we begin
by comparing the two booleans t1.word and t2.word. In case of equality, it
is necessary to compare the two dictionaries t1.branches and t2.branches.
For this, we use the comparison function provided by the module M. This takes
as argument a function to compare the values in the two dictionaries, which
corresponds precisely to the function compare that we seek to define. This
function is therefore recursive.

let rec compare tl t2 =
let ¢ = Stdlib.compare tl.word t2.word in
if c<>0 then c else M.compare compare tl.branches t2.branches
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Complexity

Consider a prefix tree s containing N words in all, and consider a word z of
length M. The search for z in s necessitates at most M recursive calls to the
function mem, each having the same cost as that of searching in the dictionary
branches of the corresponding node. Since our dictionaries use the module Map
of the standard library of OCaml, the cost of searching is logarithmic in the
number of elements. The total cost is therefore proportionate to > log(B;),
where the B; are the sizes of the dictionaries encountered during the search.
We can bound each B; by N, since the property that each leaf ends with true
guarantees that a node with a dictionary of size B contains at least B different
words. Hence the complexity is at worst O(M log N). However, it can be a lot
less. If, for example, each B; equals two, then the complexity will be O(M),
while N can be as large as 2. More generally, if the set of letters considered
has a bounded size, as in case of the 26 letters of the alphabet for example, then
searching has complexity O(M). The insertion and removal operations have
similar complexity.

For the intersection of two prefix trees containing respectively N; and No
elements of length less than M, we can similarly bound the complexity by
O(N1M log No). If the number of letters is bounded, the complexity reduces
to O(NlM)

Dictionaries

A prefix tree encodes the presence of an element with a boolean contained in
each node. Adapting this structure to represent dictionaries therefore consists
in replacing the boolean by an optional value. We therefore define the following

type:
type ’a t = { value : ’a option ; branches : ’a t M.t }

The field value replaces the boolean field word. The necessary adaptations are
immediate: the function mem checks if the field value is different from None; the
function add replaces the current value (if present) by a new value; etc. The
code of the function find is given in program 52.
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Program 52 — Searching in a Prefix Tree

let rec find x t =
match x, t.value with

| [1, None -> raise Not_found
| [J, Some v -> v
| i :: 1, _ -> find 1 (M.find i t.branches)

5.5 Patricia Trees

We presented prefix trees in the preceding section. This data structure can be
used to represent sets of integers by identifying an integer with the word formed
by its binary digits. We call this a Patricia tree. Thus, the set {4,5,17} can be
seen as the following set of three binary words:

{(100)2, (101)2, (10001)2}

We can construct a prefix tree for these three words. We have two possible
Patricia trees, depending on whether we begin reading from the high- or the
low-order bit. In the first case, we speak of big-endian Patricia trees and in
the second, of little-endian Patricia trees®. In what follows, we consider only
little-endian Patricia trees, which means that we examine the bits starting from
the least significant one, that is, from right to left. Adopting the convention
that a 0 bit leads to the left subtree while a 1 bit leads to the right subtree, the
prefix tree obtained for the integers {4, 5,17} is represented in figure 5.8.

3The terms little-endian and big-endian were borrowed from Jonathan Swift’s Gulliver’s
Travels.



5.5. Patricia Trees 247
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Figure 5.8: Prefix tree for the integers {4,5,17}.

We observe immediately that there is a lot of redundant information. For
instance, the second bit of the three integers is always 0. Yet the prefix tree
contains a branching node at this level. This is also the case for the fourth bit in
the right subtree. We observe equally that it is useless to branch off when there
is only one element left in the tree. To obtain a more compact representation,
we will add a branching node to the tree only when necessary, that is, when
there is a difference in the bits of the two subsets of elements. More precisely, a
node will contain the bit to be tested as well as all the bits situated to its right.
We thus obtain the tree of figure 5.9, where the bit to be tested is underlined.

(1)2
RN

(100)2 (101)2

N

(10001), (101),
Figure 5.9: Patricia tree for the set {4,5,17}.
This tree signifies that we can begin by testing the first bit. If it is 0, we go

to the left subtree, which contains a single element, 4 = (100)9. If it is 1, we go
to the right subtree, which indicates that the third bit is to be tested, and that
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the two low-order bits are (01)y for this entire subtree. If the third bit is 0, we
reach the subtree containing only 17 = (10001)y. If it is 1, we reach the subtree
containing only 5 = (101)2. Note that the order of elements is not preserved
in the tree structure. (This would, however, be the case in big-endian Patricia
trees containing unsigned integers.)

It is important to note that a branching node such as (101)y contains two
distinct pieces of information: the bit that must be tested (here the third) and
the bits lying to its right (here (01)2). Only the first piece of information is
necessary to search for an element in the tree. Insertion, however, requires the
second piece as well. We will use two integers to represent a branching node
such as (101)2: a power of two to represent the bit to be tested (here (100)2)
and an integer representing the prefix, that is, the bits of order less than this
power of two (here (01)2). One integer alone would suffice (here (101)2), but
since it is not easy to extract the high-order bit, it is simpler to maintain the
two pieces of information separately. We adopt therefore the following type to
represent Patricia trees:

type t =
| Empty
| Leaf of int
| Node of int * int * t * t

The constructor Empty represents the empty tree; Leaf x is a leaf containing
an element x; and, finally, Node (p, b, 1, r) represents a branching point,
where p is the prefix, b the bit to test (a power of 2), and 1 and r the two subtrees.
In what follows we will guarantee the following well-formedness invariant: A tree
of the form Node does not contain a subtree of the form Empty.

Searching for an Element

To search for an element x in a Patricia tree, it suffices to descend along the tree
according to the branching bits, until a leaf is reached. We begin by writing a
function zero_bit that tests whether the bit b of x is 0, using a logical and and
assuming that the integer b is a power of 2.

let zero_bit x b =
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x land b ==
We can now write the function mem. Its definition is clear if the tree is empty.

let rec mem x = function
| Empty -> false

If we reach a leaf j, we check whether x is equal to j.
| Leaf j -> x = j

Finally, on a branching node, it suffices to determine if the bit corresponding to
x is 0 or 1 by using the function zero_bit.

| Node (_, b, 1, r) -> mem x (if zero_bit x b then 1 else r)

The code of mem is given in program 53.

Program 53 — Searching in a Patricia Tree

let zero_bit x b =
x land b ==

let rec mem x = function
| Empty -> false
| Leaf j —> x = j
| Node (_, b, 1, r) -> mem x (if zero_bit x b then 1 else r)

Note that this code descends systematically until a leaf is reached, though it
could sometimes stop earlier if the element x does not have the prefix expected
by a branching node. We have chosen here an approach that performs fewer
checks, which privileges situations in which a majority of searches have a positive
outcome. Exercise 5.22 considers the other option.

Inserting an Element

Inserting an element into a Patricia tree consists in descending along the tree
until the insertion position is found. We use an example to illustrate the two
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Figure 5.10: Insertion of 7 = (111)2 (on the left) or 13 = (1101)2 (on the right)
in the Patricia tree of figure 5.9.

cases that may come up. Let us assume that we are inserting 7 = (111)5 into the
tree of figure 5.9. The first branching node leads to the right subtree, because
the low-order bit is 1. However, in the second branching node, namely, (101)a,
the prefix does not coincide: It is (11)9 in the element to be inserted and (10),
in the subtree. It is therefore necessary to create a new branching node, namely,
(11)2, with the previous subtree to the left and the leaf 7 to the right. In the
end, we obtain the left tree of figure 5.10. On the other hand, if we insert not 7
but 13 = (1101)2, then we reach the leaf containing 5, which must be separated
into two distinct leaves, containing 5 and 13, which gives the tree on the right
in figure 5.10.

We begin by implementing a function branch that takes two trees t1 and t2
as arguments, and creates the corresponding branching node. The prefixes of
the two trees, pl and p2, are assumed to be different. It is therefore necessary to
determine the lowest-order bit at which p1 and p2 differ. For this, we proceed in
two steps: We begin by determining all the bits that differ, using the operation
pl 1lxor p2. Then, we extract the lowest-order set bit, which must exist. We
have already seen how to do this using a logical and between x and -x in section
4.2 Bit Vectors. Accordingly, we introduce a function rightmost_1_bit for
this.

let rightmost_1_bit x =
x land -x
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Program 54 — Insertion in a Patricia Tree

let rightmost_1_bit x =
x land -x

let branch pl tl1 p2 t2 =
let b = rightmost_1_bit (pl lxor p2) in
let p = pl land (b-1) in
if zero_bit pl b then
Node (p, b, ti1, t2)
else
Node (p, b, t2, tl)

let matches_prefix x p b =
x land (b-1) == p

let rec add x = function
| Empty —->
Leaf x
| Leaf j as t —->
if j == x then t else branch x (Leaf x) j t
| Node (p, b, 1, r) as t ->
if matches_prefix x p b then
if zero_bit x b then
Node (p, b, add x 1, r)
else
Node (p, b, 1, add x r)
else
branch x (Leaf x) p t
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Let us now write the function branch. We begin by calculating the branching
bit using rightmost_1_bit.

let branch pl t1 p2 t2 =
let b = rightmost_1_bit (pl lxor p2) in

Then, we calculate the common prefix p of p1 and p2. This is the set of bits of
order less than b, that we extract using a logical and with the mask b-1.

let p = pl land (b-1) in

We use p1 here to determine this prefix, but we could have also used p2. The
only thing that remains now is to determine which of the two, t1 or t2, must
be placed on the left, depending on the value of the bit b.

if zero_bit pl b then
Node (p, b, t1, t2)
else
Node (p, b, t2, tl)

Let us illustrate how the function branch works with p1 = (011101)y and
p2 = (110101)2. The result of p1 1lxor p2 is (101000)2. The bit b extracted
using rightmost_1_bit is therefore (001000)2. The mask b-1 is then (000111)a,
which gives the prefix p = (000101)s.

We next define a function matches_prefix that determines if an integer x
has the prefix defined by p and b.

let matches_prefix x p b =
x land (b-1) ==

We are now able to write the function add that inserts an element x in a Patricia
tree. The case of an empty tree is clear.

let rec add x = function
| Empty ->
Leaf x
In the case of a leaf j, we begin by checking if j is equal to x. If it is, there is

nothing more to be done. Otherwise, a branching node must be created for the
two leaves, using branch.
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| Leaf j as t ->
if j == x then t else branch x (Leaf x) j t

Finally, in case of a Node, we determine whether x has the prefix of this tree.

| Node (p, b, 1, r) as t ->
if matches_prefix x p b then

If this is the case, we pursue the insertion recursively in the left or the right
subtree, depending on whether the bit of x defined by b equals 0 or 1.

if zero_bit x b then
Node (p, b, add x 1, r)
else
Node (p, b, 1, add x r)

If, on the other hand, x does not have the prefix p, then it is necessary to create
a branching node with two subtrees, t and the leaf x. The function branch is
made precisely for this.

else
branch x (Leaf x) p t

This concludes the function add. The complete code is given in program 54 (see
page 251).

Removing an Element

Removing an element in a Patricia tree proceeds exactly as in case of insertion,
the only difference being that it is necessary to maintain the well-formedness
invariant. To this end, it suffices to introduce a smart constructor node that be-
haves like Node when its arguments are not Empty and performs a simplification
otherwise.

let node = function
| (_, _, Empty, t)
| (_, _, t, Empty) -> t
| (p, b, 1, r) -> Node (p, b, 1, 1)
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Program 55 — Removing an Element in a Patricia Tree

let node = function
| (_, _, Empty, t)
| (_, _, t, Empty) > t
| (p, b, 1, r) -> Node (p, b, 1, 1)

let rec remove x = function
| Empty ->
Empty
| Leaf j as t —>
if x == j then Empty else t
| Node (p, m, tO, tl) as t ->
if matches_prefix x p m then
if zero_bit x m then
node (p, m, remove x t0, t1)
else
node (p, m, tO, remove x t1)
else
t

By using the function node instead of the constructor Node, the definition of
remove is clear. It is given in program 55.

Union

One of the advantages of Patricia trees compared to AVL trees is that the
former lend themselves more easily to set-theoretic operations such as union.
Indeed, two Patricia trees that have many elements in common will typically
have the same, or similar, branching structures, thereby allowing an approach
that uses recursive descent. This stands in contrast with AVL trees, where the
root depends strongly on the manner in which the tree was constructed.

Let us implement the union of two Patricia trees, t1 and t2. We begin by
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considering the trivial cases. The simplest is that in which one of the trees is
empty.

let rec union tl1 t2 = match t1, t2 with
| Empty, t | t, Empty ->
t

Similarly, we can easily treat the case in which one of the two trees is a leaf,
by calling the function add.

| Leaf x, t | t, Leaf x —>
add x t

Next we must consider the general case, where t1 and t2 are both branching
nodes.

| Node (p1l, bl, 11, rl), Node (p2, b2, 12, r2) ->

There are three possible scenarios. The simplest case is that in which the prefixes
of t1 and t2 coincide exactly. In this case, it suffices to recursively perform the
union of the left and right subtrees respectively.

if bl == b2 && pl = p2 then
Node (pl, bl, union 11 12, union ril r2)

In the second case, one of the two prefixes is included in the other. Assume for
example that the prefix of t1 is included in the prefix of t2. This means that t1
tests a bit that is of lower order than that of t2, that is, bl < b2, and that the
bits of p2 below bl coincide with p1. In this case, all of t2 must be recursively
merged with the left or right subtree of t1, depending on the bit bl of the prefix
p2.
else if bl < b2 && matches_prefix p2 pl bl then
if zero_bit p2 bl then
Node (p1l, bl, union 11 t2, ril)
else
Node (p1, bl, 11, union rl t2)

We treat the symmetrical case, when the prefix of t2 is included in that of
t1, in a similar manner.
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else if bl > b2 && matches_prefix pl p2 b2 then

The last case is that in which the prefixes differ completely, neither being
included in the other. This means that the elements of t1 are disjoint from the
elements of t2, and it suffices to create a new branching node with t1 on one
side and t2 on the other, which is exactly what is done by the function branch.

else
branch pl tl1 p2 t2

The complete code of union is given below in program 56. The intersection,
difference, and inclusion test operations are written in a similar manner (see
exercise 5.23).

Comparison

Patricia trees can be compared easily. Indeed, two Patricia trees containing the
same elements must have the same structure. Hence, the structural comparison
functions of OCaml can be directly used on Patricia trees. In this way, we obtain
an equality and a total order on the type t with the operator = and the function
Stdlib.compare.

Complexity

The cost of searching, inserting, and removing elements in Patricia trees is pro-
portionate to the number of bits of the integer considered. The cost is thus
constant. Note, however, that this cost can reach 64 comparisons on a 64-bit
machine, which, in the case of an AVL tree, would correspond to a structure
containing more elements than can be represented in the memory of the com-
puter. We therefore cannot deduce from this that a Patricia tree is better than
an AVL tree in general. A Patricia tree can require more comparisons than an
AVL tree. Indeed, a Patricia tree containing 30 elements can have a comb struc-
ture while the corresponding AVL tree would be balanced. Nonetheless, Patricia
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Program 56 — Union of Two Patricia Trees

let rec union t1 t2 = match t1, t2 with
| Empty, t | t, Empty ->

iz
| Leaf x, t | t, Leaf x —>
add x t

| Node (p1, bl, 11, r1), Node (p2, b2, 12, r2) —>
if bl == b2 && pl = p2 then
Node (pl, bl, union 11 12, union rl r2)
else if bl < b2 && matches_prefix p2 pl bl then
if zero_bit p2 bl then
Node (pl, bl, union 11 t2, rl)
else
Node (p1, bl, 11, union rl t2)
else if bl > b2 && matches_prefix pl p2 b2 then
if zero_bit pl b2 then
Node (p2, b2, union tl1 12, r2)
else
Node (p2, b2, 12, union tl r2)
else
branch pl tl1 p2 t2



258 Chapter 5. Sets and Dictionaries

trees remain an interesting structure when we have to implement operations like
union, intersection, or comparison.

Dictionaries

It is easy to adapt the type of Patricia trees to make dictionaries out of them.
Indeed, it suffices to add a second argument to the constructor Leaf.

type key = int
type ’a t =
| Empty
| Leaf of key * ’a
| Node of int * int * ’a t * ’a t

The adaptations needed for the different functions are clear. Exercise 5.27 pro-
poses writing the function find.

For Further Information

Patricia trees were introduced in 1968 by Morrison, [18], who forged the term
Patricia as an acronym for Practical Algorithm To Retrieve Information
Coded In Alphanumeric. More recently, Patricia trees have been studied in
the context of a functional language by Okasaki and Gill [20].

The technique of hash-consing, presented in chapter 11, allows the associ-
ation of unique integers with values of certain types. We can then exploit
Patricia trees to represent sets of values of this type, notably if we have to
implement costly operations like the union or comparison of sets.

5.6 Exercises

Binary Search Trees

5.1 Write a function height that calculates the height of a tree.

5.2 Write a function cardinal: t -> int that returns the number of ele-
ments of a binary search tree.
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5.3 Write a function max_elt: t -> elt analogous to min_elt.

5.4 Write a function floor: elt -> t -> elt that returns the largest ele-
ment of a binary search tree less than or equal to a given element, if it exists,
and raises the exception Not_found otherwise.

5.5 Write a function iter: (elt -> unit) -> t -> unit that traverses the
elements of a binary search tree in increasing order.

5.6 Write a function elements: t -> elt list that returns the elements of
a binary search tree in increasing order.

5.7 When calling add with an element already present or remove with an
element that is absent, the efficiency of the two functions can be improved by
directly returning the tree passed as argument. Rewrite the functions add and
remove using this idea. You can raise an exception to signal that the tree is
unchanged, taking care not to catch it at every recursive call, but only at the
level of the initial call.

5.8 If you use the idea of the preceding exercise, it becomes easy to keep track
of the cardinal of a binary search tree. You can, for example, use a record that
stores the cardinal next to the tree. Rewrite the type t, and the functions add
and remove in this way.

AVL Trees

All the previous exercises on binary search trees may be taken up again with
AVL trees.

5.9 Write the function add for a dictionary implemented with an AVL tree.
What should be done if a key is already associated with a value?

Hash Tables

5.10 The computation of (X.hash x) mod (Array.length h.buckets) would
be incorrect if X.hash x returns a negative value, since the result would be nega-
tive. Explain why (abs (X.hash x)) mod (Array.length h.buckets) is not
a solution.
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5.11 Modify the function resize so that the size m of the new array does not
exceed Sys.max_array_length.

5.12 In case of a dictionary, rather than using an association list of type
(key * ’a) list to represent the buckets, you could use a more compact type,
namely:

type ’a bucket = Nil | Cons of key * ’a * ’a bucket

Show that you would thus economize a third of the memory words. Rewrite the
functions on hash tables using the type ’a bucket.

5.13 Using persistent arrays, implement a data structure of persistent hash
tables.

Prefix Trees

5.14 Write the function cardinal on prefix trees.

5.15 Write a function min_elt that returns the smallest element of a pre-
fix tree with respect to the lexicographic order derived from L.compare. You
can use the fact that the iterators of the module Map traverse the bindings in
increasing order of the keys.

5.16 Improve the efficiency of the functions add and remove using the idea of
exercise 5.7.

5.17 The function mem is not tail recursive since the recursive call is contained
in a try-with. Remedy this problem by only catching the exception Not_found
at the top of the function.

5.18 Rather than using the module Map of the OCaml standard library, the
functor Make can take an additional argument M of signature

Map.S with type key = L.t

Rewrite the functor Make in this manner.

5.19 Write the function union on prefix trees. You can use two mutually
recursive functions as we did in case of the function inter.
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5.20 Write a variant of prefix trees where the dictionary branches is imple-
mented with an array, for example, when words are formed from the characters
’a’.’z’.
5.21 The T9 input method of early mobile phones facilitates typing text on
their numeric keyboards: Instead of pressing several times on a key to produce
each letter, a single press suffices, and the phone proposes the words that cor-
respond to the sequence of pressed keys, based on a dictionary that the phone
has in memory.

For example, when you press the keys 2, 6, 6, 7, 8, 8, 3, 7 successively, you
obtain the word computer, assuming the following mapping from keys to letters,

2 +— abc, 3 +— def, 4 — ghi, 5 — jkl, 6 — mno, 7 — pqrs, 8 — tuv, 9 — wxyz.

A sequence of keys may correspond to more than one word. For instance, the
sequence 2, 2, 5, 3, 7 corresponds to both baker and cakes, and the sequence 3,
3, 2, 7 corresponds to both dear and fear.

You can use prefix trees to represent such dictionaries. We thus have a data
structure that allows us to search efficiently for all the words in the telephone’s
dictionary that correspond to a given sequence of key presses.

To this end, it is necessary to modify the data structure presented in this
chapter slightly. First of all, we must assume that the decomposition of words
is not necessarily injective. In other words, two different words may now be
represented by the same sequence of letters. We will assume the existence of a
module implementing this decomposition, with the following signature:

module type Word = sig
type t
type letter
val decomposition: t -> letter list
val compare : t -> t -> int
end

Next, in order to store all the words whose decomposition corresponds to the
same prefix, we must replace the boolean field word, which indicates a complete
word, by a field containing a set of matching words. The beginning of the
module Make will therefore have the following form:
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module Make(L : Letter) (W : Word with type letter = L.t)
PersistentSet with type elt = W.t =

struct
module S = Set.Make(W)
module M = Map.Make(L)

type elt = W.t
type t = { words : S.t ; branches : t M.t }

Complete the code of the functor Make.

Patricia Trees

5.22 Modify the function mem on Patricia trees (program 53) so that it fails
as soon as x does not possess the prefix corresponding to the node Node.

5.23 Write functions inter, diff, and subset on Patricia trees, implementing
respectively the intersection, the difference, and the inclusion test, taking the
function union as a model.

5.24 Write all the operations of big-endian Patricia trees, that is, where the
bits are examined from left to right rather than from right to left. The main
difficulty is writing the function leftmost_1_bit which is not as simple as
rightmost_1_bit.

5.25 Write a library of Patricia trees, independently of the little-endian or big-
endian nature, as a functor parameterized by those elements that differ between
the two implementations.

5.26 Improve the representation of prefix trees by factoring out common
prefixes as is done in Patricia trees. Thus, for the set of words {do, doing,
dominate, domino} will have the following representation:
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do
. true
VRN
doing in
false
a 0
dominate domino

The root indicates that the first two letters must be do and that the correspond-
ing word, do, is in the set. We move down the tree according to the value of the
third letter. For i, we reach a leaf containing the word doing. For m, we reach
a new branching node that indicates that the two following letters must be in
and that the corresponding word, domin, is not in the set. According to the
value of the sixth letter, we obtain either the leaf dominate or the leaf domino.

5.27 Write the function find for dictionaries represented using Patricia trees.
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Queues

This chapter presents several data structures known as queues. A queue is a
data structure whose elements are taken out in the order in which they were
inserted, thus corresponding precisely to the usual notion of queue. We can also
associate elements with priorities, in which case the elements are no longer taken
out in the order in which they were inserted. This is called a priority queue.

6.1 Imperative Queues

This section presents a data structure of imperative queues based on linked lists.
The signature of this structure is given in program 57 (see following page). The
idea is as follows: If a queue gq contains the elements 1, 2, 3, inserted in this
order, then it is represented by a circular linked list in which each element points
to the following one in the queue, and the last element points to the first. To be
able to insert and remove elements in constant time, it suffices to keep a pointer
to the final element of the queue, here, 3. We therefore have the following
situation:
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Program 57 — Minimal signature for imperative queues.

module type ImperativeQueue = sig
type ’a t
val create : unit -> ’a t
val is_empty : ’a t -> bool
val push : ’a -> ’a t -> unit
val pop : ’a t -> ’a

end

p

N

wle—o
e

Thus, to insert a new element, 4, it suffices to insert it after 3, that is, between
3 and 1, and to shift the pointer to 4.

q

We access the first element, here 1, by following the pointer contained in the
final element. To remove the first element, it suffices to make the final element
point to the second one, here 2, which is obtained by following two pointers.

q

|
i Be—EE—Gl)

We begin by introducing a type ’a cell to represent the cells of the linked
list, in the usual way.

type ’a cell = { elt : ’a; mutable next : ’a cell }
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We then represent a queue by a reference to the last cell. A problem arises when
it comes to representing the empty queue, for which we would not want to have
any list cells at all. We choose therefore to represent a queue with a reference
to a value of type ’a cell option, where None represents the empty queue.

type ’a t = ((’a cell) option) ref
The implementation of the functions create and is_empty is clear.

let create () =

ref None
let is_empty q =
'q = None

Inserting an Element

Inserting an element x into a queue q follows the scheme mentioned above. If q
is empty, we create a circular list of one element and modify q so that it points
to this element. We use here the possibility afforded by OCaml of constructing
a cyclic value with let rec.

let push x q = match !'q with

| None ->
let rec ¢ = { elt = x; next = c } in
q := Some c

If q is not empty, we create a new cell ¢ containing x, that we insert between
the final and first elements, and then modify q so that it points to this new cell.

| Some last —>
let ¢ = { elt = x; next = last.next } in
last.next <- c;
q := Some c

Extracting an Element

To extract the first element of a queue q, we begin by testing whether q is empty.
In this case, we raise an exception.
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let pop q = match !q with
| None ->
invalid_arg "pop"

When q is not empty, it is convenient to treat the case in which q contains only
one element separately. Here, the final element points to itself. It thus suffices
to empty the queue, giving it the value None and returning the only element
that it contained.

| Some last when last.next == last —>
q := None;
last.elt

In the general case, when q contains at least two elements, we begin by de-
termining the first element of the queue, first. We then remove it from the
linked list by making the final element point to the second one. The value to be
returned is contained in the cell first.

| Some last ->
let first = last.next in
last.next <- first.next;
first.elt

The complete code is given in program 58 (see following page).

Complexity

It is clear that the operations create, is_empty, push, and pop all execute in
constant time. A queue containing N elements occupies three words per element
in memory (being a record with two fields, elt and next), plus two words for
the reference.
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Program 58 — Imperative queues using linked lists.
type ’a cell = { elt : ’a; mutable next : ’a cell }
type ’a t = ’a cell option ref

let create () =
ref None

let is_empty q =
!q = None

let push x q = match !q with

| None ->
let rec ¢ = { elt = x; next = ¢ } in
q := Some c

| Some last ->
let ¢ = { elt = x; next = last.next } in
last.next <- c;
q := Some c

let pop q = match !q with

| None ->
invalid_arg "pop"

| Some last when last.next == last ->
q := None;
last.elt

| Some last ->
let first = last.next in
last.next <- first.next;
first.elt
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For Further Information

The module Queue of the OCaml standard library also uses a singly linked
list, but in a slightly different way. First, it uses a type with two construc-
tors, Nil and Cons, instead of using the combination of a record type and
an option type. Second, it maintains two pointers, to the first and last
elements, rather than using a circular list.

6.2 Persistent Queues

In this section, we present a data structure of persistent queues. The signature
of such a structure is given in program 59. We see, in particular, that the
operations push and pop return a modified version of the data structure.

A naive idea would consist in representing a queue by a list. This solution
is unfortunately very inefficient, because either the insertion or the extraction
operation would have to be performed at the end of the list. To implement
these two operations more efficiently, a simple idea consists in using not one
but two lists. The first list contains the elements at the front of the queue, in
order. The second list contains the elements at the back of the queue, in reverse
order. In this way, both insertion and extraction are done at the head of a list.
For example, the queue containing the elements 1, 2, 3, 4, 5, inserted in this
order, may be represented by the two lists [1; 2] and [5; 4; 3]. However,
the queue could equally be represented by the two lists [1] and [5;4;3;2], or
even by [1;2;3;4;5] and [], which are all equivalent representations of the
same queue.

We therefore introduce the type of persistent queues simply as a synonym
for a pair of lists.

type ’a t = ’a list * ’a list

The first list represents the front of the queue. The second represents the back of
the queue. The definitions of the empty queue empty and the function is_empty
are clear.

let empty = [1, []
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Program 59 — Minimal signature for persistent queues.

module type PersistentQueue = sig

type ’a t

val empty : ’a t

val is_empty : ’a t -> bool

val push : ’a -> ’a t -> ’a t

val pop : ’a t -> ’a * ’a t
end

let is_empty = function
I 01, [0 -> true
| _ -> false

To insert an element x, it suffices to add it to the head of the second list.

let push x (o, i) =
(o, x :: 1)

Extraction is a more delicate operation. There are three possible cases.
First, when the queue is empty, we raise an exception.

let pop = function
I, -

invalid_arg "pop"

Second, when the first list, which represents the front of the queue, contains at
least one element, it suffices to extract this element.

| x :: o, 1 —>
x, (o, i)
Third, when all the elements are in the back of the queue, it suffices to reverse

the list i and proceed as in the previous case, where the element to be extracted
was at the head of the list. The tail of the list thus obtained becomes the
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new front of the queue, and the back of the new queue no longer contains any
elements.

| O, i >
match List.rev i with
| x :: 0o > x, (o, [1)

Since the list i is not empty, the list List.rev i is also not empty. Rather
than write a non-exhaustive pattern matching, which would trigger a compiler
warning, we indicate explicitly that the case of an empty list cannot occur.

| [1 -> assert false

The complete code is given in program 60.

Complexity

It is clear that the operations is_empty and push execute in constant time. The
operation pop can, however, have cost O(N) for a queue containing N elements.
This is the case when all the elements are at the back of the queue so that the
list has to be inverted. Nevertheless, if we consider a sequence of M successive
push and pop operations, starting from an empty queue, then the total cost
cannot be greater than O(M). Indeed, each element may be involved in, at
most, one list reversal. The pop operation therefore has amortized cost O(1).
The space complexity is the same as in case of imperative queues, with three
words per element of the queue.

6.3 Imperative Priority Queues

In this section and the next, we will consider queues in which the elements are
associated with priorities. In such queues, called priority queues, the elements
are removed in the order fixed by their priority rather than in the order in which
they were entered. We present here an imperative data structure of priority
queues, whose signature is given in program 61 (see the following page).

In this interface, the notion of minimality coincides with the notion of great-
est priority. Unlike with ordinary queues, here we distinguish the access and
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Program 60 — Persistent queues represented by pairs of lists.

type ’a t = ’a list * ’a list

let empty
a,

let is_empty = function
| [1, [1 -> true

| _ -> false

let push x (o, i) =
(o, x :: 1)

let pop = function

|00, 0 ->
invalid_arg "pop"
| x :: o, i —>
x, (o, i)
0O, i >
match List.rev i with
| x :: 0o > x, (o, [1)

| [ -> assert false
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removal of the first element using two separate operations. This is for the sake of
efficiency, as will be explained later. Accordingly, the function get_min returns
the element of the queue with the highest priority, and the function remove_min
removes it.

To implement an efficient priority queue, it is necessary to use a more com-
plex data structure than in case of ordinary queues. One solution consists in
organizing the elements as a heap. A heap is a binary tree in which the ele-
ment stored at each node has a higher priority than the two elements situated
immediately below it. The element with the highest priority is therefore found
at the root. Thus, a heap containing the elements {3,7,9,12 21}, ordered by
magnitude, may have the following shape:

/ N\
21 9

We note that there are other heaps containing the same elements. However,
for the sake of efficiency, it is preferable to choose a heap of minimal height.
Heaps represented by complete binary trees (in which all levels are filled except,
perhaps, the last one) have minimal height. It turns out that a complete binary
tree can be easily represented using an array. The idea consists in numbering
the nodes of the tree from top to bottom and left to right, beginning from 0.
The result of this numbering of the heap above yields the following labeling;:

3(0)
/ N\
Ty 129
/ N\
213 9

This numbering permits the representation of the heap in an array of five ele-
ments as follows:
001 2 3 4

13]7[12[21] 0|
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Program 61 — Minimal signature for imperative priority queues.

module type ImperativePriorityQueue = sig
type t
type elt
val create : unit -> t
val is_empty : t -> bool
val add : elt -> t -> unit
val get_min : t -> elt
val remove_min : t -> unit
end

In general, the root of the tree occupies the cell at index 0, and the roots of the
two subtrees of the node stored at cell ¢ are stored in cells 2¢ + 1 and 2¢ + 2,
respectively. Conversely, the parent of node ¢ is stored at |[(i — 1)/2].

One problem remains: We do not know the size of the priority queue before-
hand and therefore cannot fix in advance the maximum size of the array. An
elegant solution consists in using resizeable arrays. Such arrays were presented in
section 4.1 Resizeable Arrays. It then suffices to write a functor parametrized by
a structure of resizeable arrays. A signature for such arrays, ResizeableArray,
is given in program 17, at the start of chapter 4. As far as the elements are
concerned, we require a type equipped with a total order and a default value.
The corresponding signature, OrderedWithDummy, is given in program 62.

The functor of priority queues then takes the following form:

module Make(X: OrderedWithDummy) (A: ResizeableArray)
: ImperativePriorityQueue with type elt = X.t =
struct

Module X is then that of elements, and module A that of resizeable arrays.
The types elt and t are respectively synonyms for X.t and elt A.t.

type elt = X.t
type t = elt A.t
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Program 62 — Ordered elements with a default value.

module type OrderedWithDummy = sig
type t
val compare: t -> t -> int
val dummy : t

end

In fact, a heap is nothing but a resizeable array. The function create constructs
an empty array with A.make, and the function is_empty tests whether the array
is empty.

let create () = A.make O X.dummy
let is_empty h = A.length h = 0

The function get_min returns the root of the heap, if it exists, and raises an
exception otherwise.

let get_min h =
if A.length h = 0 then invalid_arg "get_min";
A.get h O

The code is given in program 63.

Inserting an Element

Inserting an element x in a heap h consists in adding x into the tree that repre-
sents h while preserving the heap structure. One approach consists in adding x
at the bottom right and then moving it up the tree as long as is necessary. In
our implementation, this boils down to extending the array by one cell, inserting
the value x there, and then moving x up until it reaches the correct position. For
this, we use the following algorithm: if x is smaller than its parent, we exchange
the two values and repeat.
For example, let us consider again the following heap:
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3
/ \
7 12
/ N\
21 9

The insertion of the element 1 in this heap is performed in three steps:

3 3 1
/ N\ / N\ / N\
7 1o =12, 7y _1<3 7 3
/N /N /N
21 9 1 21 9 12 21 9 12

We begin by writing a function move_up that inserts an element x in the heap h,
starting at position i. This function assumes that the tree of root i, obtained
by placing x at i, is a heap. The function move_up first considers the case in
which i is 0, that is, when we have reached the root. It then suffices to insert x
at position 1.

let rec move_up h x i =
if 1 = 0 then
A.set h i x

If, however, we are at an internal node, we calculate the index fi of the parent
of i and the value y stored in this node. If y is greater than x, we need to
move x up while moving y down to position i. We then call move_up recursively
beginning from fi.

else
let fi = (i -1) / 2 in
let y = A.get h fi in
if X.compare y x > O then begin

A.set h i y;
move_up h x fi
end

If, however, y is less than or equal to x, then x is at its final position, and it
suffices to store it there.
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else A.set h i x

The function add proceeds in two steps. It increases the size of the array
by one unit, adding a cell at the end of the array. Then it calls the function
move_up, beginning from this cell.

let add x h =
let n = A.length h in
A.resize h (n + 1);
move_up h x n

The code is given in program 63 (see next page).

Removing the Smallest Element

Removing the smallest element of a heap is more delicate. The reason for this
is that we remove the root of the tree and must, therefore, find an element to
replace it. The idea consists in choosing the element at the bottom right of the
heap, that is, the element occupying the last cell of the array, placing it at the
root, and then moving it down the heap until it reaches its place. This is roughly
what we did when inserting an element, where we moved the new element up.

Let us assume, for example, that we wish to remove the smallest element of
the following heap:

1
/
4
/ \
15

o—=~

1

We replace the root, 1, by the element at the bottom right, 8. Then we make
8 move down until it reaches its place. For this, we compare 8 with the roots
a and b of the two subtrees. If a and b are both greater than 8, the descent is
complete. Otherwise, we exchange 8 with the smaller of the two nodes a and
b, and continue the descent. In the example, 8 is successively exchanged with 4
and 5:
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Program 63 — An imperative heap data structure (1/2).

module type OrderedWithDummy = sig
type t
val compare: t -> t -> int
val dummy: t

end

module Make(X: OrderedWithDummy) (A: ResizeableArray)
ImperativePriorityQueue with type elt = X.t =
struct
type elt = X.t
type t = elt A.t

let create () =
A.make O X.dummy

let is_empty h =
A.length h = 0

let get_min h =
if A.length h
A.get h O

O then invalid_arg "get_min";

let rec move_up h x i =
if 1 = O then A.set h i x else

let fi = (i - 1) / 2 in

let y = A.get h fi in

if X.compare y x > O then begin
A.set h i y;
move_up h x fi

end else
A.set h 1 x

let add x h
let n = A.length h in A.resize h (n + 1); move_up h x n
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We begin by writing a function that compares two nodes, given by their
indices 1 and r, and returns the smaller of the two.

letminhlr-=
if X.compare (A.get h r) (A.get h 1) < O then r else 1

Next, we write a function smallest_node that determines if a value x, situated
at node i, needs to move down the heap or not. The value x is not that of the
node i because we do not know yet if this will be its final position. However,
the function smallest _node acts as if the node i had the value x. The function
smallest_node accordingly takes as parameters the heap h, the value x, and
the index i. We begin by calculating the left child 1 of node i.

let smallest_node h x i =
let 1 =2 % i+ 1 in

If the node i has no children, we return i.

let n = A.length h in
if 1 >= n then
i

If, however, the node 1 is part of the heap, we determine the index j of the
smallest child of i. For this, it is convenient to determine if the right child
r = 1+1 exists. If it does, we compare the nodes 1 and r with the function min.
Otherwise, the index j is equal to 1.

else
letr=1+11in
let j =if r < n thenmin h 1 r else 1 in

Finally, we compare the value of the node j with that of x.

if X.compare (A.get h j) x < O then j else i
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Moving down the heap is implemented by a recursive function move_down
that takes as parameters the heap h, the value x that is moving down, and the
index i of the candidate node. We begin by calling the function smallest_node
to calculate the index j that should receive the value x.

let rec move_down h x i =
let j = smallest_node h x i in

If j = i, the descent is complete and it suffices to store the value x at index i.

if j = i then
A.set hix

Otherwise, we move the value of the node j up to the node i and then continue
moving down from j.

else begin
A.set h i (A.get h j);
move_down h x j

end

The function for removing the smallest element of a heap h is then the following;:

let remove_min h =
let n = A.length h - 1 in
if n < O then invalid_arg "remove_min";
let x = A.get h n in
A.resize h n;
if n > 0 then move_down h x O

We consider three cases: If the heap is empty, we raise an exception. Next, if
it contains only one element, it is not necessary to call the function move_down.
Finally, if the heap contains more than one element, it is worthwhile to resize the
array with A.resize. The complete code is given in programs 63 (see page 279)
and 64.
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Program 64 — An imperative heap data structure (2/2).

let min h 1 r =
if X.compare (A.get h r) (A.get h 1) < O then r else 1

let smallest node h x i =
let 1 =2 % i+ 1 in
let n = A.length h in
if 1 >= n then i else
letr =1+ 1 in
let j if r < n then min h 1 r else 1 in
if X.compare (A.get h j) x < O then j else i

let rec move_down h x i =
let j = smallest_node h x i in
if j =i then A.set h i x
else begin A.set h i (A.get h j); move_down h x j end

let remove_min h =
let n = A.length h - 1 in
if n < 0 then invalid_arg "remove_min";
let x = A.get h n in
A.resize h n;
if n > O then move_down h x O
end
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Complexity

It is clear that the functions create, is_empty, and get_min have constant
cost. In case of the functions add and remove_min, their cost is bounded by the
height of the heap. Indeed, in one case, we move from the leaves towards the
root, and in the other, we move from the root towards the leaves. Since the heap
is a complete binary tree, its height is logarithmic in the number of elements.
For a priority queue containing N elements, the functions add and remove_min
therefore have cost O(log N). A simpler way of looking at it consists in noting
that the function move_up divides its argument i by two at each recursive call.
Therefore, it cannot be called more than O(log N) times. Similarly, the function
move_down multiplies its argument by two at each recursive call and, therefore,
cannot be called more than O(log V) times. Of course, all of this applies only
in an amortized manner by virtue of the calls to resize, which are amortized
O(1), as we showed in chapter 4.

The space complexity depends on the implementation of the resizeable array.
If we use the implementation presented at the start of chapter 4, where the size
of the array was doubled when it had to be increased, the array contains at
most two times more elements than required. A priority queue containing N
elements therefore occupies at most 2/N memory words.

6.4 Persistent Priority Queues

In this section, we present a data structure of persistent priority queues, whose
signature is given in program 65.

As in the previous section, we use a heap data structure, except that here it
is directly represented by a binary tree. Unlike in case of AVL trees, no extra
information is stored in the nodes for the purposes of balancing. We will see
later that these heaps nevertheless have amortized logarithmic complexity. We
say these trees are self-balancing.

The functor of persistent priority queues therefore takes the following form:

module Make(X: Ordered)
PersistentPriorityQueue with type elt = X.t =
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Program 65 — Minimal signature for persistent priority queues.

module type PersistentPriorityQueue = sig
type t
type elt
val empty : t
val is_empty : t -> bool
val add : elt >t -> t
val get_min : t -> elt
val remove _min : t -> t
end

struct
type elt = X.t

The argument X, of type Ordered, defines the type of elements. These must
be equipped with a comparison function corresponding to the priority order
(see program 33 of chapter 5 for the signature Ordered). The type elt of the
elements of the queue is thus a synonym for X.t. The type t is the type of
binary trees.

type t = Empty | Node of t * elt * t
The definitions of the empty heap and the function is_empty are clear.

let empty = Empty
let is_empty h =
h = Empty

The structure of the heap gives immediate access to the smallest element.

let get_min = function
| Empty -> invalid_arg "get_min"
| Node (_, x, ) —> x

All the subtlety of this structure lies in the function merge that merges two
heaps. Assuming we have already written this function, it is easy to write the
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functions add and remove_min. Indeed, the addition of an element x to a heap
h consists in merging the heap containing the single element x with h.

let add x h =
merge (Node (Empty, x, Empty)) h

Similarly, the removal of the smallest element of a heap consists in merging the
two child heaps of the root.

let remove_min = function
| Empty -> invalid_arg "remove_min"
| Node (a, _, b) -> merge a b

All we have to do now is write the function merge that merges two heaps ha
and hb. If one of the two heaps is empty, how to do so is clear.

let rec merge ha hb = match ha, hb with
| Empty, h | h, Empty ->
h

If, however, none of the heaps is empty, we construct the resulting heap as
follows. Its root is the smallest of the two roots of ha and hb. Assume that the
root of ha is smaller.

| Node (la, xa, ra), Node (1b, xb, rb) ->
if X.compare xa xb <= 0 then

We must now determine the two subtrees of Node (_, xa, _). There are sev-
eral possibilities that result from recursively calling merge on two of the three
trees la, ra, and hb, and from choosing the result as the left or right subtree.
Among these possibilities, we choose the one that performs a rotation of the
subtrees from right to left, so as to ensure self-balancing. Thus, ra takes the
position of 1la, and la is merged with hb.

Node (ra, xa, merge la hb)
The other situation, in which the root of hb is smaller, is symmetrical.
else Node (rb, xb, merge 1lb ha)

The complete code of persistent priority queues is given in program 66.
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Program 66 — Persistent priority queues.

module Make(X: Ordered)

PersistentPriorityQueue with type elt = X.t =
struct

type elt = X.t

type t = Empty | Node of t * elt * t

let empty =
Empty

let is_empty h =
h = Empty

let get_min = function
| Empty -> invalid_arg "get_min"
| Node (_, x, ) —> x

let rec merge ha hb = match ha, hb with
| Empty, h | h, Empty ->
h
| Node (la, xa, ra), Node (1b, xb, rb) ->
if X.compare xa xb <= 0 then
Node (ra, xa, merge la hb)
else
Node (rb, xb, merge 1b ha)

let add x h =
merge (Node (Empty, x, Empty)) h

let remove_min = function
| Empty -> invalid_arg "remove_min"
| Node (a, _, b) -> merge a b
end
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Complexity

The functions empty, is_empty, and get_min clearly have constant cost. The
analysis is subtler in case of the function merge, and hence add and remove_min.
In the worst case, merge can have a cost as large as the total number of ele-
ments. However, for a sequence of add and remove_min operations, executed
successively on a heap, this worst case cannot occur each time. We can show
that the amortized cost of each operation is, in fact, O(log N), where N is the
number of elements in the heap. For an analysis of this complexity, we refer the
reader to the article by Sleator and Tarjan introducing self-balancing heaps [22]
or the chapter on heaps by Okasaki in The Fun of Programming [10].

6.5 Exercises

Linked Lists

6.1 Write a function iter : (’a -> unit) -> ’a t -> unit that traverses
the elements of a queue in the order in which they were inserted.

6.2 Write a function transfer : ’a t -> ’a t -> unit that takes two queues
ql and g2 as arguments, moves all the elements of q1 into q2, and empties the
queue q1. Make sure that this operation executes in constant time.

6.3 Modify the queue structure of program 58 to keep track of the total num-
ber of elements throughout. You can make type t into a record with a mutable
field containing the number of elements of the queue.

Pairs of Lists

6.4 Consider the case of a queue q, in which the list representing the front is
empty. If the operation pop is performed multiple times, then the reversal of
the list i, representing the back of the queue, will also be performed multiple
times. To remedy this, we can memoize the reversal of i in the original queue
q by means of a side effect. Accordingly, we adopt an equivalent representation
of the queue q that is still persistent. Modify the type ’a t as follows:
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type ’a t = { mutable o : ’a list; mutable i : ’a list }

Reimplement the operations on these queues. The mutable nature of the fields
of this type does not allow defining a polymorphic value empty. It suffices to
replace it by a function create : unit -> ’a t.

6.5 Note that the representation of queues as pairs of lists is symmetrical. We
can therefore perform insertion and removal operations from the two ends of the
queue with equal facility. We call the resulting structure a double-ended queue
or dequeue. We can name the four operations as follows:

val push_front : ’a -> ’a t -> ’a t

val push_back : ’a -> ’a t -> ’a t

val pop_front : ’a t -> ’a * ’a t

val pop_back : ’a t -> ’a * ’a t
The functions push_back and pop_front correspond to the functions push and
pop already written. Write the functions push_front and pop_back.
6.6 The double-ended queues of the previous exercise may prove inefficient.
Indeed, alternating removals from the two ends of the queue can end up requiring
many list reversals. To remedy this, we can try to balance the lengths of the two
lists, so as to ensure a minimum proportion of elements at each end. For this,
we let ¢ > 2 be a constant and impose the following invariant on the lengths [;
and [, of the two lists:

Li<exl,+1 and [, <ex;+1
Modify the type ’a t as follows, to keep track of the length of each list.
type ’a t = { 1i : int; i : ’a list; lo : int; o : ’a list }

Reimplement the operations for double-ended queues. For more details con-
cerning this structure, and notably for its analysis, you can consult the book by
Okasaki [19, sec. 8.4].

Heap Structures

6.7 You can use the heap structure to easily implement an efficient sorting
algorithm, called heapsort. The idea is as follows: We insert all the elements
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to be sorted in a heap, and then extract them successively with the functions
get_min and remove_min. Add a function sort : X.t array -> unit to the
functor Make to sort an array using this algorithm. If the complexity of the heap
operations is logarithmic (which is the case when you use resizeable arrays of
constant amortized complexity), then the complexity of this sorting algorithm is
O(nlogn), that is, optimal. Heapsort will be described in detail in chapter 12.

6.8 Several different elements of a heap can have the same priority. This is, for
example, the case when the elements are pairs for which the function compare
takes into account only one of the two components. Show that the order of
insertion in a priority queue is preserved, that is, that the elements of equal
priority are extracted from the queue in the same order in which they were
inserted.

6.9 We wish to add an operation remove to remove an element from a priority
queue. Several problems arise. On the one hand, the same element may occur
several times in the queue. On the other, to implement the removal of an element
x efficiently, it is necessary to determine at which index it appears without
traversing the entire array, which is not possible with the current structure.

We propose to resolve these two problems as follows. When an element is
added in the priority queue, we return a “pointer” to the user, that may be used
subsequently to remove this element. The signature is accordingly modified as
follows:

type pointer
val add: elt -> t -> pointer

Internally, the type pointer contains the index where the corresponding element
of the array is stored. This index is updated when the element is moved within
the array. In practice, it is simplest to also include the value of the element
along with the index:

type pointer = { elt: elt; mutable index: int }

The resizeable array then contains values of type pointer rather than elt.
Modify the priority queue structure following this idea and provide a function
remove: pointer -> t -> unit. Hint: To remove the element situated at
index i, replace it with the final element of the resizeable array. It suffices then
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to re-establish the heap property, by using either move_up or move_down. Show
that the complexity of remove is in O(logn).

6.10 In the context of the above exercise, a value of type pointer may refer-
ence an element that is no longer in the queue. A call to remove could therefore
corrupt the structure. Remedy this problem by invalidating all pointers cor-
responding to an element that is no longer in the queue, so that the function
remove is able to fail cleanly.

6.11 It can be interesting to have priority queues that provide an operation
change_priority to modify the priority of an existing element. Reusing the
idea of exercise 6.9, provide the following new operation:

val change_priority : pointer -> elt -> t -> unit

This operation modifies the value of an element already present in the queue.
Show that the complexity of change_priority is in O(logn).

6.12 In certain cases, we may wish to distinguish the priority of an element
from its value. Modify the implementation of priority queues to give them the
following signature:

module Make(P: Ordered) (V: WithDummy)
sig
type t
type priority = P.t
type value = V.t
val create : unit -> t
val is_empty : t -> bool
val add : priority -> value -> t -> unit
val get_min : t -> priority * value
val remove_min : t -> unit
end

The type P.t is that of priorities and V.t, that of values. As the signatures
indicate, the first is equipped with a function compare and the second with a
default value.
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Self-Balancing Heaps

6.13 Redo exercise 6.7 (heapsort) with self-balancing heaps. What is the
complexity of this sorting algorithm?

6.14 Using a reference, wrap the code of program 66 in a module with the
imperative signature of program 57.
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Graphs

Graphs are a fundamental data structure in computer science. A graph consists
of a set of wertices linked by edges. We are accustomed to visualizing graphs as
illustrated in figure 7.1.

Figure 7.1: Example of a graph.

Formally, a graph is a set V of vertices and a set F of edges, which are
unordered pairs of vertices. If {z,y} € E, we say that the vertices z and y are
adjacent. As the adjacency relation is symmetric, we speak of an undirected
graph.

We can also define the notion of directed graph by taking E to be a set of
ordered pairs of vertices rather than unordered pairs. We then speak of arcs
rather than edges. If (z,y) € E, we say that y is a successor of z and write
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x — y. An example of a directed graph is given in figure 7.2.

Figure 7.2: Example of a directed graph.

An arc from a vertex to itself, as in this example, is called a cycle. The
indegree (resp. outdegree) of a vertex is the number of arcs that point towards
it (resp. that point away from it). A path from a vertex u to a vertex v is
a sequence xo,...,x, of vertices such as zg = u, x, = v and z; — x;4; for
0 <¢ < n. Such a path is of length n; it contains n arcs.

Vertices, like arcs, may carry information. We then speak of a labeled graph.
An example of a directed, labeled graph is given in figure 7.3.

Figure 7.3: Example of a directed, labeled graph.

It is important to note that the label of a vertex is not the same as the
vertex itself. In particular, two vertices may bear the same label. Formally, a
labeled graph therefore comprises two additional functions giving, respectively,
the label of a vertex in V' and the label of an arc in F.

In what follows, we will use the term edge for both directed and undirected
graphs.
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Basic Operations on Graphs

Before defining data structures to represent graphs, it is necessary to consider
the operations that these structures should provide. We do this independently
of any particular representation, with a view to constructing generic algorithms.
We may distinguish the following basic operations:

e construction operations, such as the creation of a graph, the addition or
removal of a vertex or an edge;

e access operations, such as testing whether a vertex or an edge belongs to
a graph, accessing the degree of a vertex, its label, the number of vertices
or edges;

e basic traversal operations, such as the traversal of all vertices, of all suc-
cessors of a given vertex, or of all edges.

As we will see shortly, there is no single structure of graphs that provides all
these operations in an optimal manner. At the end of this chapter, we com-
pare different graph data structures according to the complexity of the different
operations above.

7.1 Adjacency Matrix

We consider in this section the case in which vertices are represented by integers
and, more precisely, by consecutive integers 0,..., N — 1. In other words, we
have V ={0,...,N — 1}.

Program 67 (see following page) gives a minimal signature for such graphs.
The type t is that of graphs. It is deliberately made abstract as we are going to
present two different implementations of this signature. The creation function,
create, takes the value N as argument, and the function nb_vertex gives it
back. Crucially, we assume here that the graph contains N vertices from the
outset. Consequently, we do not provide operations to add or remove vertices, or
to test whether they belong to the graph. In case of edges, however, we do have
these operations, namely, add_edge, remove_edge, and mem_edge. Note that
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Program 67 — Minimal signature for graphs with integer vertices.

type vertex = int
type t

val create : int -> t
val nb_vertex : t -> int

val mem_edge : t -> vertex -> vertex -> bool
val add_edge : t -> vertex —-> vertex —-> unit
val remove_edge : t -> vertex -> vertex -> unit

val iter_succ : (vertex -> unit) -> t -> vertex -> unit
val iter_edge : (vertex -> vertex -> unit) -> t -> unit

the functions to add and remove edges correspond to an imperative structure.
The signature provides only the functions to traverse the successors of a vertex
(iter_succ) and all edges (iter_edge). Traversing all vertices can be easily
achieved with a for loop from 0 to N — 1. Finally, note that this signature
works equally well for both directed and undirected graphs.

The signature is deliberately minimal. In particular, graphs are not labeled.
Some of the exercises of this section propose extensions.

A straightforward representation of such a graph is a matrix M of size N x N,
where each element M; ; indicates the presence of an edge between the vertices 4
and j. As the graphs are assumed to be unlabeled, it suffices to use a matrix of
booleans:

type vertex = int
type t = bool array array

The definition of the function that creates a graph without any edges is clear:
We construct a square matrix, initialized with false.

let create n = Array.make_matrix n n false
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Program 68 — Graphs via adjacency matrices.

type vertex = int
type t = bool array array

let create n = Array.make_matrix n n false
let nb_vertex = Array.length

let mem_edge g vl v2 = g.(vl).(v2)
let add_edge g vl v2 = g.(v1).(v2) <- true
let remove_edge g vl v2 = g.(vl).(v2) <- false

let iter_succ f g v =
Array.iteri (fun w b -> if b then f w) g.(v)
let iter_edge f g =
for v. = 0 to nb_vertex g - 1 do iter_succ (f v) g v done

let nb_vertex = Array.length

In what follows, we assume that all graphs are directed. Exercise 7.4 indi-
cates the modifications required for undirected graphs. Adding, removing, or
testing for the presence of an edge can all be done in constant time:

let mem_edge g vl v2 = g.(v1).(v2)
let add_edge g vl v2 = g.(vl).(v2) <- true
let remove_edge g vl v2 = g.(vl).(v2) <- false

To apply a function £: vertex -> unit to all successors of a vertex v of a
graph g, it suffices to traverse the row g. (v) of the matrix, for example, with
Array.iteri. We test whether an edge is present before applying the function
f to the corresponding vertex.

let iter_succ f g v =
Array.iteri (fun w b -> if b then f w) g.(v)
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To apply a function f: vertex -> vertex -> unit to all edges of a graph
g, we begin by traversing the vertices of g with a for loop. Then, for each
vertex v, we traverse its outgoing edges using iter_succ. The function passed
to iter_succ is obtained by partially applying f to v.

let iter_edge f g =
for v. = 0 to nb_vertex g - 1 do iter_succ (f v) g v done

The complete code for graphs via adjacency matrices is given in program 68.
The structure of the adjacency matrix may be adapted to the case of labeled
graphs (see exercise 7.3) and/or undirected graphs (see exercise 7.4).

Complexity

The table in figure 7.4 summarizes the complexity of the main operations on
adjacency matrices. In general, the cost is expressed as a function of the number
N of vertices and the number E of edges. In the particular case of adjacency
matrices, however, the cost depends only on N.

operation ‘ cost ‘
mem_edge O(1)
add_edge 0(1)
iter_succ O(N)
iter_vertex | O(N)
iter_edge O(N?)

Figure 7.4: Cost of operations on adjacency matrices.

Of course, we assume that the functions passed as arguments of iter_succ,
iter_vertex, and iter_edge have constant cost. From this table, we deduce
that adjacency matrices are well adapted to demse graphs, that is, graphs in
which the number of edges E is of the order of N2. Indeed, the outdegree of
each vertex is then of the order of NV, so that iter_succ is optimal. Similarly,
iter_edge must traverse a number of edges of the order of N2 and is therefore
also optimal.
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As for the cost in space, an adjacency matrix clearly occupies quadratic
space, namely (N + 1)2 words in case of a boolean matrix (see section 3.2
Runtime Model). We can reduce this cost by a constant factor by using bit
vectors (see section 4.2 Bit Vectors). Exercise 7.5 proposes such an optimization.
It is important to note that this optimization is only possible if the edges are
not labeled.

7.2 Adjacency Lists

In case of sparse graphs, an alternative to adjacency matrices consists in using an
array containing the list of the successors of each vertex. We speak of adjacency
lists. The type of graphs follows directly from this definition.

type vertex = int
type t = vertex list array

An empty graph is represented by an array containing only empty lists.

let create n = Array.make n []
let nb_vertex = Array.length

To test whether an edge is present between vertices vl and v2 in a graph g, we
traverse the adjacency list g. (v1) in search of v2. We do this here with the
function List.mem.

let mem_edge g vl v2 =
List.mem v2 g.(v1)

We add an edge between v1 and v2 by adding v2 to the list g. (v1). We only
do this if the edge does not already exist, to avoid unnecessary duplicates in the
adjacency list.

let add_edge g vl v2 =
if not (mem_edge g vl v2) then g.(vl) <- v2 :: g.(vl)

We remove the edge vl — v2 by removing the possible instance of v2 in the list
g.(v1). We can do this easily using List.filter.
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let remove_edge g vl v2 =
g.(vl) <- List.filter ((<>) v2) g.(vl)

Note, nevertheless, that this use of List.filter has two defects: On the one
hand, it does not take advantage of the absence of duplicates in the list to
stop early. On the other, it unnecessarily reconstructs the entire list g. (v1)
in the case where v2 does not appear. Exercise 7.8 proposes a remedy for
these issues. Similarly, the fact that the vertices are integers could be used to
optimize the three preceding operations by keeping the adjacency lists sorted
(see exercise 7.9).

The traversal of the successors of a vertex v of a graph g is simpler than in
case of adjacency matrices. It is trivially implemented by applying List.iter
to the adjacency list g. (v).

let iter_succ f g v = List.iter f g.(v)
The code of iter_edge, by contrast, is the same as that for adjacency matrices.

let iter_edge f g =
for v = 0 to nb_vertex g - 1 do iter_succ (f v) g v done

The complete code for graphs via adjacency lists is given in program 69.

Complexity

The table in figure 7.5 summarizes the complexity of the main operations on
adjacency lists. Here, & denotes the outdegree of a vertex.

Note that, unlike in case of adjacency matrices, the operations mem_edge
and add_edge are no longer in O(1) but in O(d). By contrast, iter_succ and
iter_edge now have optimal complexity.

As for the cost in space, adjacency lists have optimal complexity O(N + E).
To be precise, the cost is N 4+ 3E + 1 words (see section 3.2 Runtime Model).

7.3 Adjacency Dictionaries

One clear drawback of the two preceding data structures is the condition that
vertices must be represented by integers and, moreover, by consecutive integers.
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Program 69 — Graphs via adjacency lists.

type vertex = int
type t = vertex list array

let create n = Array.make n []
let nb_vertex = Array.length

let mem_edge g vl v2
List.mem v2 g.(v1)

let add_edge g vl v2
if not (mem_edge g v1 v2) then g.(vl) <- v2 :: g.(vl)

let remove_edge g vl v2 =
g.(v1) <- List.filter ((<>) v2) g.(v1)

let iter_succ f g v =
List.iter f g.(v)

let iter_edge f g =
for v.= 0 to nb_vertex g - 1 do iter_succ (f v) g v done



302 Chapter 7. Graphs

operation \ cost ‘
mem_edge O(9)
add_edge O(9)
iter_succ O(9)
iter_vertex | O(N)
iter_edge O(FE)

Figure 7.5: Cost of operations on adjacency lists.

This representation is adapted for graphs whose sets of vertices do not change.
If, on the other hand, we wish to add or remove vertices dynamically, we have to
modify the preceding structures. We can, for example, use resizeable arrays to
permit the addition of vertices. To remove vertices, we could imagine marking
them so as to exclude them from the graph, but this would have an impact on
the complexity of the functions iter_succ, iter_vertex, and iter_edge.

Ideally, we would like a graph structure whose vertices are not necessarily
integers and can be added or removed dynamically. The structure would also
combine the respective advantages of adjacency matrices and adjacency lists in
time and in space. Such a structure exists: It suffices to combine the structure
of a dictionary with that of a set. A graph is thus nothing but a dictionary in
which each vertex is associated with the set of its successors. In other words, we
retain the idea of adjacency lists, but replace the array with a dictionary, and
lists by sets. We will call this structure an adjacency dictionary. In this way,
vertices are not limited to integers, and may be easily added and removed. As
for efficiency, it suffices to use a hash table for the dictionary to obtain optimal
complexity. We may also use a hash table to represent the set of successors of
a vertex.

We can therefore parametrize our adjacency dictionary structure by a module
H of hash tables (such as the one in section 5.3 Hash Tables or the module
Hashtbl of the OCaml standard library).

module Graph(H: HashTable) = struct

For clarity, we introduce a module V for the dictionary, as a synonym of the
module H. The type of the vertices is then that of the keys of the module V.
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module V = H
type vertex = V.key

Similarly, we introduce a module E for the sets of adjacent vertices, also a
synonym of the module H. The idea here is to represent a set of vertices by a
hash table, by associating each element of the set with the value ().

module E = H
The type of graphs is therefore the following:
type t = (unit E.t) V.t

If the edges were labeled, it would suffice to associate each successor w of v with
the label of the edge v — w rather than with the value () (see exercise 7.10).

Creating a graph becomes merely a matter of constructing an empty dictio-
nary. The number of vertices is obtained simply as the number of keys of the
dictionary.

let create () = V.create ()
let nb_vertex g = V.length g

We check if a vertex v belongs to the graph g with V.mem, that is, by testing if
it is a key in the dictionary. We add v by creating a binding associating v with
a new hash table.

let mem_vertex g v = V.mem g v
let add_vertex g v = V.add g v (E.create ())

We note that the function add_vertex assumes that v is not yet present in
the graph g. Otherwise, we would have to first verify the presence of v using
mem_vertex. The removal of a vertex v is more delicate: Not only must its
binding be removed from the dictionary, it is also necessary to remove every
instance of v from the adjacency sets of other vertices (here written as s).

let remove_vertex g v =
V.remove g v;
V.iter (fun _ s -> E.remove s V) g
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For greater efficiency, we should access only the predecessors of v. Exercise 7.14
proposes such an improvement.

To add, remove, or test for the presence of an edge between two vertices v1
and v2, we begin by retrieving the adjacency set of v1 using V.find g v1. We
then use respectively the functions E.replace, E.remove, and E.mem.

let mem_edge g vl v2 = E.mem (V.find g v1) v2
let add_edge g vl v2 = E.replace (V.find g v1) v2 (O
let remove_edge g vl v2 = E.remove (V.find g v1) v2

These three functions assume that v1 is already present in the graph, that is,
that V.find g v1 does not fail. As for the function add_edge, we use E.replace
rather than E.add, to avoid duplicates in the adjacency set.

To traverse the set of vertices of a graph g, it suffices to traverse the set of
keys of the dictionary using V.iter. Similarly, we traverse the successors of a
vertex v by traversing its adjacency set using E.iter.

let iter_vertex f g
let iter_succ f g v

V.iter (fun v _ > f v) g
E.iter (fun w _ -> f w) (V.find g v)

Here too, we assume that iter_succ is called on an existing vertex v. To
traverse all edges, it suffices to compose iter_vertex and iter_succ as we did
for adjacency matrices and adjacency lists. However, it would be unnecessarily
costly to access the adjacency set of v using V.find g v. Instead, it suffices to
compose directly V.iter and E. iter.

let iter_edge f g = V.iter (fun v s -> E.iter (f v) s) g

The complete code of this graph structure is given in program 70.
For undirected, labeled graphs or graphs with multiple edges between two
vertices, the reader is referred to exercises 7.10-7.12.

Complexity

If we assume that dictionaries and sets are implemented by hash tables, we
obtain the performances given in the table of figure 7.6.
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Program 70 — Graphs via adjacency dictionaries.

module Graph(H: HashTable) = struct
module V = H
type vertex = V.key

module E = H

type t = (unit E.t) V.t

let
let

let
let
let

V.
V.

let
let
let

let

let

let
end

create () = V.create ()
nb_vertex g = V.length g

mem_vertex g v = V.mem g v
add_vertex g v = V.add g v (E.create ())
remove_vertex g v =

remove g V;
iter (fun _ s -> E.remove s v) g

<
N
Il

mem_edge g vl
add_edge g v1 v2

E.mem (V.find g v1) v2
E.replace (V.find g v1) v2 ()
remove_edge g vl v2 = E.remove (V.find g v1) v2

iter_vertex f g = V.iter (funv _ -> f v) g
iter_succ f g v = E.iter (fun w _ -> f w) (V.find g v)
iter_edge f g = V.iter (fun v s -> E.iter (f v) s) g
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operation \ cost H operation \ cost H operation \ cost, ‘
mem_vertex O(1) || mem_edge O(1) || iter_succ 0(9)
add_vertex O(1) || add_edge O(1) || iter_vertex | O(N)
remove_vertex | O(N) || remove_edge | O(1) || iter_edge O(FE)

Figure 7.6: Cost of operations on adjacency dictionaries.

We observe that the complexities are optimal, except in case of remove_vertex
(see exercise 7.14). As for the cost in space, it is necessary to make an assump-
tion regarding the sizes of the hash tables. If we assume that the number of
buckets is at least twice the number of bindings in each hash table then the cost
in space of a hash table containing K inputs is 6 K +4 words. Hence, for a graph
containing N vertices and E edges, the total cost is:

(6N +4)+ ) (65, +4)
v
This is 10N + 6F + 4 words in total.

Persistent Graphs

Graphs implemented using adjacency dictionaries as presented above are im-
perative due to the imperative nature of hash tables. We naturally obtain
persistent graphs by substituting hash tables with a persistent data structure.
For example, we may use any dictionary having the signature Map.S of OCaml
(see exercise 7.15), in particular all those discussed in chapter 5.

7.4 Performance Comparison

We recapitulate here the performance of the different graph structures. The time
complexity of the main operations are summarized in the table of figure 7.7. As
we have already highlighted above, adjacency dictionaries offer the best possible
complexity for each operation.

As for the cost in space, recall the cost in number of words for each graph
structure:
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operation adjacency | adjacency | adjacency
matrices lists dictionaries
mem_vertex — — 0(1)
add_vertex — — o(1)
remove_vertex — — O(N)
mem_edge 0(1) 0(9) 0(1)
add_edge 0(1) 0(9) 0(1)
remove_edge 0(1) 0(9) 0(1)
iter_succ O(N) 0(9) 0(9)
iter_vertex O(N) O(N) O(N)
iter_edge O(N?) O(FE) O(E)

Figure 7.7: Comparison of different graph data structures.

« adjacency matrix: (N + 1)? words;
e adjacency lists: N + 3FE + 1 words;
e adjacency dictionary: 10N + 6F + 4 words.

It is clear that adjacency lists are more economical in terms of memory than ad-
jacency dictionaries. The comparison with adjacency matrices is more difficult.
Indeed, it depends on the density of the graph, that is, the ratio between the
number of vertices IV and the number of edges F. For a very dense graph, in
which F is close to N2, the adjacency matrix is more economical. In the case of
a sparse graph, for example where E ~ N, adjacency lists are more economical.
In general, lists are preferable to matrices when E < N?2/3 and, similarly, dic-
tionaries are preferable to matrices when E < N?2/6. Lists are always preferable
to dictionaries in terms of space.

Of course, in choosing a structure for graphs, the complexity in space of the
different operations must be weighed against their complexity in time.

7.5 Exercises



308 Chapter 7. Graphs

Adjacency Matrices

7.1 The transposition of a directed graph G, denoted by G%, is the graph
having the same vertices as G and which contains an edge « — y if and only if
there exists an edge y — « in G. Write a function reverse: graph -> graph
that calculates the transposition of a given graph.

7.2 Add an operation nb_edge: t -> int that gives the number of edges in
constant time. Hint: Keep track of the number of edges in the structure of the
graph by updating its value in add_edge and remove_edge.

7.3 DModify adjacency matrices for graphs in which edges are labeled by a
given type label.

7.4 The easiest way to represent undirected graphs is by preserving the same
structure as for directed graphs, but by maintaining the invariant that, for each
edge a — b, there is also an edge b — a. Modify the operations add_edge
and remove_edge of adjacency matrices and lists accordingly. Also modify
iter_edge so that it traverses each edge only once.

7.5 Modify the adjacency matrix structure to use bit vectors (see section 4.2
Bit Vectors) rather than boolean arrays. What is the gain in terms of space?

7.6  The transitive closure of a graph G is a graph T having the same vertices
as GG, and an edge between ¢ and j when there is a path between ¢ and j in G.
When the graph is represented by a boolean matrix, the transitive closure may
be calculated in O(N?3) time using the Floyd-Warshall algorithm. The pseudo-
code is as follows:

T+ G

for k from 0 to N — 1

for ¢ from 0 to N — 1
for j from 0 to N — 1
Ti,j — TiJ' or (Tz,k and Tk,j)

The idea consists in determining, for increasing values of k, if there exists a path
between ¢ and j that uses only intermediate vertices smaller than k. The last line
of the pseudo-code considers the two cases of a path between ¢ and j, passing
via k, or not. Write a function transitive_closure: t -> t implementing
this algorithm.
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Adjacency Lists

7.7 Redo exercises 7.2 to 7.4 for adjacency lists.

7.8 Modify the function remove_edge on adjacency lists so that (1) it does
not modify the adjacency list if the edge to be removed does not exist, and (2)
it makes use of the fact that adjacency lists do not contain duplicates to stop
once the edge is found.

7.9 Modify the operations on adjacency lists to maintain the invariant that
adjacency lists are sorted. Make use of this property to optimize some of the
operations.

Adjacency Dictionaries

7.10 Modify the code of program 70 for graphs whose edges are labeled by val-

ues of any type. More precisely, give graphs the polymorphic type type ’a t = (’a E.t) V.t,
where ’a is the type of labels.

7.11 Modify the adjacency dictionary structure for undirected graphs drawing

on exercise 7.4.

7.12 Modify the adjacency dictionary structure for graphs with multiple edges,

that is, where two vertices may be linked by more than one edge. For unlabeled

multi-edges, the dictionary must associate each vertex with the multi-set of its

successors. For labeled multi-edges, we may distinguish two cases, depending

on whether the edges between v; and vy can bear the same label or not.

7.13 Modify the functor of program 70 so that, instead of taking a module H
of hash tables as argument, it takes:

e either a module V introducing a type t equipped with hash and comparison
functions;

e or two modules, M and S, that respectively implement dictionaries and sets
on the same type of vertices.

7.14 Modify the adjacency dictionary structure to keep track of the set of
predecessors of a vertex in an efficient manner. In other words, provide an
operation
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val iter_pred: (vertex -> unit) -> t -> vertex -> unit
whose cost is proportionate to the indegree. Use this function to reimplement
the function remove_vertex.

7.15 Modify the functor of program 70 to obtain persistent graphs by replac-
ing the argument H by a module M of signature Map.S.



Disjoint Sets

This chapter presents an imperative data structure that solves the problem
of partitioning a finite set into disjoint subsets, called “classes.” We wish to
determine whether two elements belong to the same class and merge two classes
into one. It is these two operations that give the structure its name: union-find.

8.1 The Basic ldea

Without loss of generality, we may assume that the set to be partitioned consists
of the n integers {0,1,...,n—1}. Program 71 (see page 313) gives the signature
of such a structure. The operation create mn constructs a new partition of
{0,1,...,n — 1} in which each element forms a class by itself. The operation
find determines the class of an element by returning one of the integers as a
distinguished representative. In particular, we can determine if two elements are
in the same class by comparing the result given by find for each one. Finally,
the operation union merges two classes of the partition, modifying the data
structure in place.

The basic idea is to link the elements of a class between themselves. In each
class, these links form a graph in which all paths lead to the representative,
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Figure 8.1: A partition of {0,1,...,7} into two sets.

which is the only element linked to itself. Figure 8.1 illustrates a situation in
which the set {0,1,...,7} is partitioned into two classes, whose representatives
are respectively 3 and 4.

It is possible to represent such a structure using individually allocated nodes
(see exercise 8.5). Nevertheless it is simpler, and often more efficient, to use
an array that links each integer to another integer of the same class. These
links lead to the class representative, which is associated with itself in the array.
Thus, the partition of figure 8.1 is represented by the following array:

The find operation simply follows the links until the representative is found.
The union operation begins by finding the representatives of both elements and
then links them together. We propose two improvements in the interest of
efficiency. The first involves performing path compression during the search
carried out by find: All the elements found along the path traversed to reach
the representative are linked directly to it. The second consists in keeping track
of the rank of each representative, that is, the maximum length of a path in its
class. This information is stored in a second array and is used by the function
union to choose the representative for the union of the classes.
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Program 71 — Signature of the union-find structure.

module type UnionFind = sig

type t

val create : int -> t

val find : t -> int -> int

val union : t -> int -> int -> unit
end

8.2 Implementation

We now describe the code of the union-find structure. The type t is a record
containing two arrays: rank, containing the rank of each class; and link, con-
taining the links between elements.

type t = {
rank: int array;
link: int array;

}
The information contained in rank is only meaningful for those elements ¢ that
are representatives, that is, for which link. (i) = 4. Initially, each element

forms a class in itself (that is, it is its own representative), and the rank of every
class is 0.

let create n =
{ rank = Array.make n O0;
link = Array.init n (fun i -> i) }

The function find computes the representative of an element i. It is naturally
written as a recursive function. We begin by calculating the element p linked
to i in the array t.link. If it is i itself, i is the class representative, and we
are done.

let rec find t i =
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Program 72 — Union-find structure.

type t = {
rank: int array;
link: int array;

}
let create n =
{ rank = Array.make n O;
link = Array.init n (fun i -> i)

let rec find t i =
let p = t.link.(i) in
if p = i then
i
else begin
let r = find t p in
t.link. (i) <- r;
T
end

let union t i j
let ri = find t i in
let rj find t j in
if ri <> rj then begin
if t.rank.(ri) < t.rank.(rj) then
t.link.(ri) <- rj
else begin
t.link.(rj) <- ri;

if t.rank.(ri) = t.rank.(rj) then
t.rank. (ri) <- t.rank.(ri) + 1

end
end
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let p = t.link.(i) in
if p = i then
i

Otherwise, we recursively compute the representative r of p with find t p.
However, before returning r, we perform path compression, that is, we link i to
r directly.

else begin
let r = find t p in
t.link. (i) <- r;
r

end

This way, the next time we call find on i, we will immediately find r.

The operation union merges the classes of two elements, i and j. We begin
by calculating their representatives, ri and rj, respectively. If they are equal,
there is nothing more to be done.

let union t i j =
let ri = find t i in
let rj = find t j in
if ri <> rj then begin

Otherwise, we compare the ranks of the two classes. If that of ri is strictly less
than that of rj, we make rj the representative of the union.

if t.rank.(ri) < t.rank.(rj) then
t.link.(ri) <- rj

The rank does not have to be updated for this new class. Indeed, only the paths
in the previous class of ri have had their lengths increased by one unit, and this
new length does not exceed the rank of rj. When the rank of rj is smaller, we
proceed symmetrically.

else begin
t.link.(rj) <- ri;
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When the two classes have the same rank, we choose one of the two repre-
sentatives arbitrarily as the representative of the union (here, ri). The rank
information must then be updated, because in this case the length of the longest
path in the class may increase by one unit.

if t.rank.(ri) = t.rank.(rj) then
t.rank.(ri) <- t.rank.(ri) + 1
end
end

Importantly the function union uses the function find, and therefore performs
path compression even in the case when i and j belong to the same class. The
complete code of the union-find structure is given in program 72 (see page 314).

Complexity

We can show that, thanks to path compression and the rank associated with
each class, a sequence of m find and union operations, performed on a structure
containing n elements, is executed in O(m a(n,m)) total time, where « is a
function that grows extremely slowly. In fact, it grows so slowly that we may
consider it to be constant for all practical purposes, given the constraints that
memory and time impose on the values of n and m. We may therefore assume
that each operation takes amortized constant time. This analysis is complex
and lies beyond the scope of this book. A detailed explanation may be found in
Introduction to Algorithms [7, chap. 22].

For Further Information

The data structure presented in this chapter is attributed to Mcllroy and
Morris [3], and its complexity has been analyzed by Tarjan [23].
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8.3 Exercises

8.1 The signature of the union-find structure is constraining because it re-
quires prior knowledge of the number of elements. For greater flexibility, we
may wish to add new elements dynamically, and without any restriction on the
number of elements. The signature of such a structure could be the following:

type t

val create: unit -> t

val add: t -> int

val find: t -> int -> int

val union: t -> int -> int -> unit
The function create creates an empty structure. The function add adds a new
element and returns it. (Elements are always integers). The signatures of find

and union remain unchanged. Implement such a data structure using resizeable
arrays (see section 4.1 Resizeable Arrays).

8.2 Extend the union-find structure with an operation num_classes that re-
turns the total number of classes.

val num_classes: t -> int
Ensure that num_classes executes in constant time by keeping track of this
value as an additional field of the record.
8.3 Extend the wunion-find structure with an operation iter_classes that
permits the traversal of the set of all class representatives.

val iter_classes: (int -> unit) -> t -> unit
Ensure that iter_classes executes in time proportionate to the total number
of classes.

8.4 If the elements are not consecutive integers, we can replace the two arrays
rank and link by a pair of hash tables. Reimplement the operations create,
find, and union using this idea.

8.5 Instead of using arrays, another way of implementing the union-find struc-
ture consists in representing each class directly as an acyclic graph whose nodes
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are records containing the values rank and link. Each node is of the following
type:
type elt = { mutable rank: int; mutable link: elt }

If we wish to keep track of extra information for each element, we may use the
following type instead:

type ’a elt =
{ mutable rank: int; mutable link: ’a elt; data: ’a }

It is no longer necessary to keep track of any global information in the union-
find structure, because each node contains all the necessary information. The
signature of the union-find structure is then modified as follows:

type ’a elt

val create_node: ’a -> ’a elt

val find: ’a elt -> ’a elt

val union: ’a elt -> ’a elt -> unit

The function create_node constructs a class consisting of a single element, that
is, a record whose field 1ink points to itself. Write the operations make, find,
and union. Note: The comparison of values of type ’a elt must be done using
physical equality.

8.6 Replace the arrays rank and link with persistent arrays (see section 4./
Persistent Arrays), and write a persistent union-find structure with the following
signature:

type t

val create: int -> t

val find: t -> int -> int

val union: t -> int -> int -> t

Note: To perform path compression, it is convenient to modify the contents of
the field 1ink using side effects. We accordingly define the following type:

type t = { rank: int A.t; mutable link: int A.t }

Here, the type A.t is the type of persistent arrays, and the mutability of the field
link can be used to record the effect of path compression before returning the
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result of the function find. Although the data structure is modified by a side
effect, the modification cannot be observed: the representative of each element
remains the same.

8.7 The union-find structure can be used to efficiently construct a perfect
maze, that is, one in which there is one and only one path between any two
cells. Here is an example of such a maze:

e
ey

You may proceed as follows: Create a union-find structure whose elements are
the different cells. The idea is that two cells are in the same class if and only
if they are linked by a path. Initially, all the cells of the maze are separated
from each other by walls. Next, consider all pairs of adjacent cells (vertically
and horizontally) in random order. For each pair (c1,c2), compare the classes
of the cells ¢; and cy. If they are identical, there is nothing more to be done.
Otherwise, delete the wall that separates ¢; and ¢y, and merge the two classes
using union. Write code that constructs a maze using this method.

Hint: The easiest way to traverse all pairs of adjacent cells in random order
is by constructing an array containing all pairs, and then mixing them randomly
using the Knuth shuffle (exercise 2.11, page 134).

Justify that at the end of the construction every cell is linked to every other
cell by a single path.

8.8 The aim of this exercise is to color the connected components of a black-
and-white image using different colors. A connected component is formed by
pixels that have the same color as their neighbors. Two pixels are neighbors if
they have a common border.

For example, in the following image of 6 x 6 pixels, there are two white
connected components, and four black ones.
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A black-and-white image is represented by a matrix of booleans. To compute
its connected components, we use a union-find structure to group neighboring
pixels having the same color in a single class. Write a function that takes as
argument a matrix of booleans and returns a union-find structure containing its
equivalence classes.

To assign a different color to each connected component, use a hash table
that associates a different color with each representative. Write a function that
displays the image with its connected components colored. Assume that you are
given a function new_color of type unit -> color and a function draw_pixel
of type int -> int -> color -> unit.



Zippers

In this chapter, we present a general technique to traverse data structures. This
technique does not involve a specific traversal order and allows for the possibility
of local modifications (inserting, removing, etc.). It goes by the name of zipper.
We present it here in the context of lists and trees, but it can be adapted to
many other data structures.

9.1 Zippers on Lists

Suppose we wish to “navigate” within a list of type ’a list, that is, move
from element to element, occasionally performing modifications. The image
that comes to mind here is that of a cursor in a text editor, and the action of
the keys of the keyboard, used to move, insert, delete characters, etc.

Consider a list containing seven elements, with the cursor placed after the
third, as illustrated in figure 9.1.

We represent this situation with two lists, one containing the elements sit-
uated to the left of the cursor, and another containing the elements situated
to the right. It is convenient to represent the first of these lists in reverse or-
der, so that the element situated immediately to the left of the cursor is easily
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NEEEEEE

Figure 9.1: A cursor on a list.

accessible. Figure 9.2 illustrates this representation on the preceding example.

(a}—{ef—lc] | [J—lEl—{F—{d

Figure 9.2: A zipper on a list.
This structure consisting of two lists is called a zipper. We define it using
the following type:
type ’a zipper = { left: ’a list; right: ’a list; }

To construct such a zipper from a list 1, with the cursor placed all the way
to the left, we initialize the left list to [] and the right list to 1.

let of _list 1 =
{ left = []; right =1 }

Let us consider next the navigation and modification operations for the zip-
per.

Navigation Operations

The first navigation operation consists in moving the cursor to the right. This
is only possible if the right list contains at least one element. In this case, we
move the first element of this list to the head of the left list.

let move_right z = match z.right with
| [ -> invalid_arg "move_right"
| x :: r -> { left = x :: z.left; right = r }
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The application of the function move_right to the example of figure 9.2 returns
the zipper illustrated in figure 9.3.

(AJ—{BJ—{c]—{o] | [E}—{F}—le]

Figure 9.3: The zipper after a move to the right.

We similarly write a function move_left to move the cursor to the left (see
program 73, following page).

To convert a zipper z into a list, it suffices to concatenate the two lists
z.left and z.right, reversing the former. This is precisely what the function
List.rev_append does.

let to_list z =
List.rev_append z.left z.right

Equivalently, we could have moved the cursor all the way to the left and then
retrieved the right list.

Modification Operations

To insert an element at the cursor position, it suffices to place that element at
the head of one of the two lists. If we insert it at the head of the left list, the
cursor will be to the right of the new element (as in case of a text editor).

let insert z x =
{ z with left = x :: z.left }

If we wish instead to leave the cursor to the left of the inserted element, it
suffices to replace left by right in the code above.

Another modification operation consists in removing an element. For exam-
ple, we may remove the element to the left of the cursor, if such an element
exists. (This is what the backspace key does in a text editor.) This operation is
equivalent to removing the head of the left list.
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Program 73 — Structure of a zipper on a list.

let of _list 1 =
{ left = []; right = 1 }

let move_right z = match z.right with

| [ -> invalid_arg "move_right"

type ’a zipper = { left: ’a list; right: ’a list; }

| x :: r => { left = x :: z.left; right = r }

let move_left z = match z.left with
| [ -> invalid_arg "move_left"

| x :: 1 ->{ left = 1; right = x ::

let to_list z =
List.rev_append z.left z.right

let insert z x =
{ z with left = x :: z.left }

let delete_left z
| [ -> invalid_arg "delete_left"
| _ :: 1 ->{ z with left =1 }

match z.left with

z.right }

let delete_right z = match z.right with

| [ -> invalid_arg "delete_right"
| _ ::r > { z with right = r }
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let delete_left z = match z.left with
| [1 -> invalid_arg "delete_left"
| _:: 1 > { z with left =1}

We can similarly write an operation delete_right that removes the element
immediately to the right of the cursor.

9.2 Zippers on Trees

The technique of the zipper also applies to other data structures, such as trees.
Consider, for example, the case of polymorphic binary trees defined by the
following type:

type ’a tree = E | N of ’a tree * ’a * ’a tree

What is the analog of the cursor in case of a tree? It is the designation of a
particular node together with the possibility of navigating within the tree, that
is, moving up, or moving down along the left or right subtrees.

Consider the tree in figure 9.4, in which we place the cursor on the node
containing 5. The zipper contains the position of the node in question and the
subtree at that position. The former is represented by the path from the root
to the node, that is, the sequence of moves indicating at each step whether we
descend along the left or the right subtree. For example, the path to reach node
5 is the sequence [left; right].

Figure 9.4: A cursor on a tree.

We introduce the following type to represent such paths. The constructor
Top represents the empty path, that is, the position of the root of the tree. The
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constructors Left and Right indicate, respectively, a move along the left or
right subtrees.

type ’a path =
| Top
| Left of ’a path * ’a * ’a tree
| Right of ’a tree * ’a * ’a path

For each move, we keep track of the subtree along which we did not descend.
This is necessary in order to be able to move back up the tree. The zipper on
binary trees is then defined by the following type:

type ’a zipper = { path : ’a path; tree : ’a tree }

The field tree contains the subtree at the cursor. The field path contains the
path leading to this subtree. Just as in case of the zipper on lists, where we
chose to represent the left list in reverse order, we choose here to store the path
of the node towards the root, rather than from the root. Figure 9.5 gives the
zipper for the preceding example.

8
VN
3
/N {path=Right O €, 1, B), 3, Left (Top, 8, ED);
/NN tree = N (N (E, 4, E), 5, E) }
4
/\

Figure 9.5: A zipper on a tree.

The first constructor of the path is Right because the cursor designates a
right subtree. The next step of the path is Left because node 3 is the root of a
left subtree. Finally, the path reaches the root of the tree, 8.

The zipper with the cursor at the root of a tree is constructed using the
empty path.

let of_tree t = { path = Top; tree = t }
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Let us now write the navigation functions. We begin with a function down_left
to move down the left subtree. For this, we examine the form of the tree at the
cursor. We fail if it is empty.

let down_left z = match z.tree with
| E -> invalid_arg "down_left"

Otherwise, we return the zipper where the subtree at the cursor is the left
subtree, and the path is extended with the constructor Left to signify that we
have moved down the left.

| N (1, x, r) -> { path = Left (z.path, x, r); tree = 1 }

The node x and its right subtree r are kept in the path, as arguments of the
constructor Left. We similarly write a function down_right that moves down
the right subtree.

The function to move up the tree examines the current path. We fail if the
path is empty.

let up z = match z.path with
| Top ->
invalid_arg "up"

Otherwise, we must reconstruct the node of the tree situated above the cursor.
For this, we use the information contained in the path as well as the subtree
contained in the field tree. If we move down the left subtree, the path would be
of the form Left (p, x, r), and the reconstructed node would have z.tree
as its left subtree, x as its root, and r as its right subtree.

| Left (p, x, r) —->
{ path = p; tree = N (z.tree, x, r) }

If we move down the right subtree, we proceed symmetrically.

| Right (1, x, p) ->
{ path = p; tree = N (1, x, z.tree) }

The function that reconstructs the entire tree from a given zipper moves the
cursor up the tree until it reaches the top. We stop when the path is Top and
return the tree contained in the field tree.
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Program 74 — A zipper structure on a binary tree.

E | N of ’a tree * ’a * ’a tree

type ’a tree

type ’a path
| Top
| Left of ’a path * ’a * ’a tree
| Right of ’a tree * ’a * ’a path

type ’a zipper = { path: ’a path; tree: ’a tree }
let of_tree t = { path = Top; tree = t }

let down_left z = match z.tree with
| E -> invalid_arg "down_left"
| N (1, x, r) -> { path = Left (z.path, x, r); tree = 1 }

let down_right z = match z.tree with
| E -> invalid_arg "down_right"
| N (1, x, r) -> { path = Right (1, x, z.path); tree = r }

let up z = match z.path with
| Top ->
invalid_arg "up"
| Left (p, x, r) —->
{ path = p; tree
| Right (1, %, p) —->
{ path = p; tree

N (z.tree, x, r) }

N (1, x, z.tree) }

let rec to_tree z =
if z.path = Top then z.tree else to_tree (up z)
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let rec to_tree z =
if z.path = Top then z.tree else to_tree (up z)

The complete code of the zipper on binary trees is given in program 74.

Note: You may wonder about the commonalities between zippers on lists and
those on trees. Indeed, the zipper on lists seems to be a completely symmetric
structure, its two fields 1eft and right being of the same type. However, you
may also understand it as being asymmetrical, with 1left playing the same role
as path, and right, that of tree. Thus, we could have defined the following
type to represent a position in a list:

type ’a path = Top | Right of ’a * ’a path

Since this type is clearly identical to >a list, we did not consider it worthwhile
to define a new type. Zippers on lists and trees thus embody the very same
idea.

Application: Comparing Two Binary Search Trees

In chapter 5, we presented binary search trees, which can represent sets of
elements equipped with a total order. If we wish to construct a set of sets, it is
therefore necessary to equip binary search trees themselves with a total order.

One solution is to construct the list of elements for the two trees in infix
order and then compare the two lists, for example, lexicographically. This is
nevertheless somewhat naive, since the two trees may contain many elements
but may differ rapidly, in which case we would have constructed the two lists in
vain.

A more efficient solution is preferable, working directly on the trees. How-
ever, this is not straightforward since two binary search trees can contain the
same elements without having the same structure, as illustrated in figure 9.6.
One solution consists in using the zipper structure to execute a simultaneous
infix traversal of the two trees.

We begin by writing a function that descends all the way to the bottom left
of a tree and returns the zipper corresponding to this position. This amounts
to iterating the function down_left as long as possible.
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Figure 9.6: Two binary search trees containing the same elements.

Concretely, we write a function leftmost by passing it a zipper as accumu-
lator. If the tree is empty, we return the zipper passed as argument:

let rec leftmost z = function
| E > z

Otherwise, we move down the left subtree, accumulating the visited node in the
zipper.

| N (1, x, r) -> leftmost (Left (z, x, r)) 1

If we consider the two trees of figure 9.6, t1 and t2, then the zippers obtained
with leftmost Top t1 and leftmost Top t2 have the following form:

leftmost Top t1
leftmost Top t2

Left (Left (..., 3, ...), 1, ...)
Left (Left (..., 4, ...), 1, ...)

Figure 9.7 depicts the two zippers. We can verify that both start off with the
smallest value, namely, 1.

Next, we have to write a function compare to perform the actual comparison.
This function takes as argument two zippers and a function cmp to compare the
elements. If the two zippers are Top, the comparison is over, and we return 0O
to indicate equality.

let rec compare cmp zl z2 = match zl, z2 with
| Top, Top ->
0
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Figure 9.7: The two zippers for the trees of figure 9.6.

If the two zippers are of the form Left, we compare the elements that they
designate using the function cmp. If they differ, the comparison is over, and the
result given by cmp is returned.

| Left (z1, x1, r1l), Left (z2, x2, r2) ->
let ¢ = cmp x1 x2 in
if ¢ <> 0 then c

If they are equal, however, the comparison must continue. We look for the
following elements, by calling leftmost on the two right subtrees, r1 and r2.
We then call compare recursively.

else compare cmp (leftmost zl rl) (leftmost z2 r2)

If one of the two zippers equals Top and the other Left, this means that one of
the two traversals has reached the end, but not the other. We therefore return
-1 or 1, as the case may be.

| Top, Left _ —->
-1

| Left _, Top ->
1

Finally, by construction, the case of a zipper of the form Right cannot occur.
We dispense with it as follows:

| Right _, _ | _, Right _ ->
assert false
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Program 75 — Lexicographic comparison of binary trees.

let rec leftmost z = function
| E -> z
| N (1, x, r) —> leftmost (Left (z, x, r)) 1

let rec compare cmp zl z2 = match zl, z2 with
| Top, Top ->
0
| Left (z1, x1, r1l), Left (z2, x2, r2) ->
let ¢ = cmp x1 x2 in
if ¢ <> 0 then c
else compare cmp (leftmost zl r1l) (leftmost z2 r2)
| Top, Left _ ->
=il
| Left _, Top —>
1
| Right _, _ | _, Right _ ->
assert false

let compare_tree cmp tl t2 =
compare cmp (leftmost Top tl) (leftmost Top t2)

To solve the initial problem of how to compare two trees t1 and t2, it suffices
to construct the two zippers with the function leftmost, and then compare them
using the function compare.

let compare_tree cmp tl t2 =
compare cmp (leftmost Top t1) (leftmost Top t2)

The complete code is given in program 75. Note that the two functions
leftmost and compare are tail recursive.
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Program 76 — Cursor structure.

type ’a enum
val start: ’a t -> ’a enum
val step: ’a enum -> ’a * ’a enum (* raise Ezit when done *)

9.3 Cursors

When discussing the problem of comparing binary trees, we saw the importance
of traversing a data structure step by step. This method of traversal is different
from that of higher-order iterators like iter and fold, with which we would not
have been able to solve that problem.

In general, for an arbitrary data structure of type ’a t, we would like a
cursor interface in order to traverse its elements one by one. Such an interface
is given in program 76.

The interface contains an abstract polymorphic type, ’a enum, for the cur-
sor, where the variable ’a is the type of the elements. The function start
returns a new cursor. The function step returns the current element and the
cursor corresponding to the next element, or raises the exception Exit if the
iteration is complete.

This interface defines persistent cursors, which means that the cursor passed
as input to the function step is not modified. We may thus reuse the cur-
sor, for example, in an algorithm that uses backtracking. Another possibility
is that of imperative cursors, where the function step returns only the current
element and advances the cursor to the following element by a side effect (see
exercise 9.12).

We will now implement persistent cursors on lists and trees.

Cursors on Lists

The zipper on lists is itself a convenient cursor. It is, nevertheless, unnecessarily
complex since we do not need to keep track of the elements situated to the left
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Program 77 — Cursors on lists.
type ’a enum = ’a list
let start 1 =
1

let step = function
| [ -> raise Exit
| x ::r > x, r

of the cursor. In other words, the cursor for lists is nothing but the right list,
that is:

type ’a enum = ’a list

The function start reduces to the identity. The function step raises the
exception Exit if the cursor is empty. Otherwise, it returns the head of the list
and the rest of the list as the new cursor.

let step = function
| [ -> raise Exit
| x ::r >x, r

Note that the persistent nature of lists ensures the persistence of the cursor.
The complete code is given in program 77.

Cursors on Trees

To define a cursor on trees, it is first necessary to choose a traversal order. We
arbitrarily choose infix order here. (See exercises 9.8 et 9.9 for other traversal
orders.)

Unlike zippers on lists, zippers on trees do not immediately provide us with
an operation to produce the next element in the infix traversal. However, we
have seen how the zipper permits this operation when dealing with the problem
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Program 78 — Cursors on trees (infix traversal).

type ’a enum = Top | Left of ’a * ’a tree * ’a enum

let rec leftmost t e = match t with
| E -> e
| N (1, x, r) —> leftmost 1 (Left (x, r, e))

let start t =
leftmost t Top

let step = function
| Top -> raise Exit
| Left (x, r, e) -> x, leftmost r e

of comparing binary trees. Only the two constructors Top and Left of the zipper
are necessary. We therefore define the following type for the cursor:

type ’a enum = Top | Left of ’a * ’a tree * ’a enum

The function start places the cursor on the element situated at the bottom
left of the tree. For this, we use the function leftmost that was written for

program 75.

let start t =
leftmost t Top

The function step raises the exception Exit if the cursor is Top. Otherwise,
it returns the element x contained in the constructor Left and constructs a new
cursor by calling leftmost on the right subtree of x.

let step = function
| Top -> raise Exit
| Left (x, r, e) -> x, leftmost r e

This is exactly what we did in program 75 to move to the next element.
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As in case of lists, the immutable nature of the type enum guarantees the
persistence of the cursor. The complete code is given in program 78 (see previous

page).

For Further Information

Zippers were invented by Gérard Huet and presented in the article The
Zipper [12]. As the author noted, this concept was surely already known to
other programmers.

The OCaml standard library provides a module Seq that implements delayed
lists. This is an alternative to cursors that may be used to traverse data
structures step by step.

0.4 Exercises

Zippers on Lists

9.1 Equip the zipper on lists with functions to_start and to_end, that permit
moving to the beginning and end of a list, respectively.

9.2 Rewrite the function to_1list in the same manner as the function to_tree.

9.3 Consider the following problem: Given a non-empty list of integers, de-
termine if there exists a binary tree whose leaves, considered in infix order, are
located at the depths given by the list. For example, the list [1;3;3;2] cor-
responds to a binary tree, but not the list [1;3;3]. We propose the following
algorithm to solve this problem:

o If the list contains a single element, the algorithm terminates. The result
is positive if and only if the element is 0, which corresponds to the empty
tree.

o Otherwise, we search for the first two consecutive elements of the list that
are equal. If there are none, we fail. Otherwise, calling n the common
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value of the two integers, we replace the two occurrences of n by the
integer n — 1, which corresponds to an internal node.

e Start again with the resulting list.

Write a function is_tree: int list -> bool that implements this algorithm
by using the zipper structure so as to avoid starting at the beginning of the list
each time. The total complexity must be linear in the length of the list.

9.4 It is possible to program an efficient text editor using the zipper structure.
Each line of text is a zipper on a list of characters, as explained earlier. Similarly,
a file is viewed as a zipper on the list of lines. We use the following types to
represent a line and a text, respectively:

type line = { left: char list; right: char list }
type text

{ up: line list; current: line; down: line list }

The field current of the type text represents the current line on which the
cursor is found. The fields up and down are the analogs of left and right for
lines. Write the functions insert_char, return, backspace, etc. for such a
text editor.

Zippers on Trees

9.5 Write a function remove_leaf: ’a zipper -> ’a zipper that verifies
that the zipper passed as argument points to a node that has no children, and
removes it. Such a node is of the form N(E,x,E). Conversely, write a function
insert_leaf: ’a -> ’a zipper -> ’a zipper that verifies that the zipper
passed as argument points to a leaf node (that is, E), and which inserts in its
place a new node containing the value passed as argument.

9.6 Write a function remove_leftmost: ’a zipper -> ’a zipper that ver-
ifies that the zipper passed as argument points to a node of the tree that has no
left child, and removes it. Make sure to retain the right subtree, if it is present.

9.7 Consider n-ary trees labeled by strings, defined by the following type:
type tree = N of string * tree list

Define a zipper structure on such trees.
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Cursors

9.8 Write a cursor on binary trees corresponding to a prefix traversal, that is,
a traversal in which each node is visited before its two subtrees.

9.9 Write a cursor on binary trees corresponding to a postfix traversal, that
is, a traversal in which each node is visited after its two subtrees.

9.10 Rewrite the comparison of binary trees (program 75) using the cursor on
trees (program 78).

9.11 Rather than raising an exception Exit when the cursor has reached the
end of the traversal, the function step can return a value of type option, that
is, step: ’a enum -> (’a * ’a enum) option. Rewrite the cursors on lists
and trees with this new interface.

9.12 If the persistence of the cursor is not used, we may consider an imperative
version in which the function step returns the current element only and advances
to the next element by a side effect, that is, step: ’a enum -> ’a. Rewrite
the cursors on lists and trees with this new interface.

9.13 Implement a cursor on arrays.
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Arithmetic

10.1 Euclid’s Algorithm

The most famous of all algorithms is certainly that of Euclid. It calculates the
greatest common divisor of two integers, x and y, written x A y, and called the
“gcd of x and y”. Given two non-negative integers x and y, Euclid’s algorithm
replaces the pair (z,y) by the pair (y,z mod y), continuing until y reaches zero.
It then returns the value of x, which is the gcd of the initial values of x and y.
We write this algorithm in the form of a recursive function gcd:

let rec gcd x y =
if y = 0 then x else gcd y (x mod y)

The correctness of the algorithm follows from the fact that each iteration pre-
serves the greatest common divisor of x and y. When we reach y = 0, we return
x, that is, x A 0, which is then the gcd of the initial values of x and y. In other
words, we have used the following two properties of the ged:

xAy = yA(rmody),
zAN0 = =

The termination of the algorithm follows from the fact that y decreases
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strictly in each iteration, remaining non-negative throughout. Indeed, we have
the invariant that x,y > 0.

The complexity of Euclid’s algorithm is given by Lamé’s theorem. It states
that, if the algorithm performs s iterations with > y > 0, then = > Fy1
and y > F, where (F),) is the Fibonacci sequence. We deduce from this that
Euclid’s algorithm is logarithmic, that is, s = O(log x). In the general case, the
complexity is O(log(max(z,y))); see exercise 10.1. A detailed analysis may be
found in The Art of Computer Programming [14, sec. 4.5.3].

Exercise 10.2 generalizes the function ged to integers x and y that are not
necessarily non-negative.

The Extended Euclidean Algorithm

We can easily modify Euclid’s algorithm to compute the Bézout coefficients,
that is, two integers u and v satisfying the following equation:

ur +vy =x Ny. (10.1)

This is known as the extended Euclidean algorithm. We implement it in the
form of a function extended_gcd that takes the integers x and y as arguments
and returns the triple (u,v,z Ay). The code is given in program 79.

It is easy to see that the third component of the returned triple is the ged of
x and y. Indeed, if we focus on this component, we find the same computations
as those performed in the function gcd with the variables x and y, since x — L%Jy
is nothing but x mod y. To verify the equation 10.1, it suffices to proceed by
induction on y. The base case y = 0 is clear. For the induction step, the
induction hypothesis tells us that:

uy+v<x—L§Jy>=My

This is equivalent to:

X
vt (u= [Ty = ny,

which corresponds to the code of the function extended_gcd.
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Program 79 — The extended Euclidean algorithm.

let rec extended_gcd x y =
if y = 0 then
(1, 0, x)
else
let q=x/y in
let (u, v, g) = extended_gcd y (x - q * y) in
(v, u-q=x*v, g

The complexity of extended_gcd is the same as that of the function gcd.
The number of operations performed in each iteration is certainly greater, but
remains bounded, and the number of iterations is exactly the same. Therefore,
the complexity is still O(log x).

10.2 Exponentiation by Squaring

For n € N, a naive computation of ™ performs n — 1 multiplications. The algo-
rithm of exponentiation by squaring consists in computing " while performing
only O(logn) multiplications. It makes use of the following identities:

o (z2)/2 if n is even,
T z(x?)(rmD/2 if n is odd.

Its translation in OCaml, for = of type int, is easy. We may write, for example,
the code given in program 80. It uses the fact that n/2 returns [n/2|, irrespective
of whether n is even or odd.

There are multiple variants. We may, for example, treat n = 1 as a special
case, but this is not particularly useful. (See also exercise 10.4.) In any case,
the central idea remains the following: If we divide the exponent by at least two
in each step, the total number of recursive calls is proportionate to log(n), and
so is the number of multiplications.
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Program 80 — Exponentiation by squaring.

let rec exp x n =
if n = 0 then
1
else
let r = exp (x * x) (n / 2) in
if n mod 2 = 0 then r else x * r

More precisely, we can show by induction on k that, if 2871 < n < 2* then
the function exp performs exactly k recursive calls. As each recursive call to
exp performs one or two multiplications, we deduce that the total number of
multiplications is bound by 2logn.

The applications of this algorithm are innumerable, especially since x does
not necessarily have to be of type int. Once we have a unit and an associative
operation, that is, a monoid M, we may apply this algorithm to compute z" for
x € M and n € N. Exercise 10.6 proposes one such generalization.

10.3 Modular Arithmetic

In this section, we assume that we are looking to perform arithmetic modulo
m for a fixed value of m. This is interesting for several reasons. We may, for
instance, wish to compute a very large value but be interested only in its final
k digits in base 10. In this case, we will have m = 10*. We could also use the
Chinese Remainder Theorem to compute a given value modulo several pairwise
relative prime integers and represent in this way integers potentially larger than
those provided by the machine. See exercise 10.8.

In the rest of this section, we assume m is a constant of type int such that
m > 0. We will write a certain number of functions that manipulate integers
modulo m, that is, integers x such that:

0<z<m (10.2)
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Exercise 10.7 proposes to gather together the various functions in a functor
parametrized by m. We begin with a function of _int that takes an arbitrary
integer x and returns its residue modulo m. We cannot simply do x mod m
because if x is negative, then x mod m is also negative. In general, a mod b has
the same sign as a. We therefore write:

let of _int x =
let r = xmod m in if r < O then r + m else r

Addition modulo m is easily written if we assume that the operands are already
integers modulo m. To guarantee the property (10.2), it suffices to subtract m if
the value of x+y is greater than or equal to m.

let add x y =
let r =x+ y in if r > m then r - m else r

The integers x and y being non-negative, the sign is not a problem here. Nev-
ertheless, for the addition to be correct, the operation x+y must not overflow,
that is, we must have x+y < max_int. An easy way of guaranteeing this is to
impose a maximum value on m, namely, m < max_int/2 + 1. We can do this by
placing the following assertion at the beginning of the code:

let () = assert (0 < m && m <= max_int/2 + 1)

Subtraction is written just as easily, if we take care to return a non-negative
value, as we did above for the function of _int.

let sub x y =
let r =x -y in if r < O then r + m else r

Arithmetic overflow is not possible here, thanks to the assumption that we made
earlier for the addition operation. (It is, nevertheless, worth convincing yourself
of this.) The code of these first three operations is given in program 81.

Multiplication

Multiplication is a subtler affair. For operands that are sufficiently small, that
is, less than +/m, it suffices to perform the multiplication and take its residue:
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Program 81 — Arithmetic modulo m (addition and subtraction).

let () = assert (0 < m & m <= max_int/2 + 1)

let of int x = let r = x mod m in if r < O then r + m else r

let add x y = let r = x + y in if r >> m then r - m else r
let sub x y = let r = x -y in if r < O then r + m else r
let mul x y =

(x * y) mod m

However, if we do not wish to restrict the range of the operands, and keep only
the restriction already imposed, namely, m < max_int/2 + 1, we cannot use
ordinary multiplication as it could trigger an overflow. We can, however, work
around this difficulty by performing the multiplication as one would by hand.
Suppose x is written in base 2 as:

(%ka}k,1 .. .xlxo)g

where xj is the most significant digit and g, the least significant digit. We
will then write a loop that calculates (xj...x;)2 X y (mod m), for i varying
from £ + 1 to 0. We write it as a for loop, accumulating the result in a
reference r. Given the assumption on m and the fact that the OCaml type
int is represented with Sys.word_size-1 signed bits (see chapter 3), we can
begin with ¢ = Sys.word_size-4.

let mul x y =
let r = ref 0 in
for i Sys.word_size - 4 downto O do

In each iteration of the loop, we begin by multiplying r by 2, modulo m, which
we do with the function add.

r := add 'r !r;



10.3. Modular Arithmetic 347

Program 82 — Arithmetic modulo m (multiplication and division).
let mul x y =
let r = ref O in
for i = Sys.word_size - 4 downto O do
r := add !'r !r;
if x land (1 1sl i) <> O then r := add !r y
done;
't
let div x y =

let u, _, g = extended_gcd y m in
if g <> 1 then invalid_arg "div";
mul x (of_int u)

We then have !'r = (2 ...7;)2 X 2 X y (mod m). Next, we test the bit z; and,
if it equals 1, we add y to r to re-establish the loop invariant.

if x land (1 1sl i) <> O then r := add !r y
Once out of the loop, we have 'r = xpxp_1... 2120 X y (mod m), that is, 'r =
x X y (mod m), which is the desired result. The code is given in program 82.
Division
The division of x by y modulo m assumes that y and m are relatively prime, and
returns a result q such that g x y = x (mod m). We use the extended Euclidean

algorithm (program 79). Indeed, if y and m are relative prime integers, then the
extended Euclidean algorithm gives us two integers, u and v, such that:

uxXxy4+vxm=1
This follows from equation 10.1. Multiplying this equality by x, we get:

(x xu) xy=x (modm)
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The result of the division is therefore x x u. The code is given in program 82.
It uses of _int u because u may be negative, but could be made more efficient
since Euclid’s algorithm guarantees that |u| < m, so that the use of of _int is
unnecessarily complicated.

10.4 Matrix Calculus

In this section, we implement some basic matrix operations. For the sake of
simplicity, we assume that the matrices have integer coefficients. Exercise 10.9
proposes a generalization to matrices with arbitrary coefficients.

As we explained in section 2.5 Sieve of Eratosthenes, a matrix is simply an
array of arrays, that is:

type matrix = int array array

We recall that we must not write Array.make 3 (Array.make 4 v) to cre-
ate a 3 x 4 matrix, but rather Array.make_matrix 3 4 v, or equivalently,
Array.init 3 (fun _ -> Array.make 4 v).

Other than Array.make_matrix, the OCaml standard library does not pro-
vide operations on matrices. Let us begin therefore by writing a function
init_matrix, analog of Array.init for matrices. The function takes as ar-
guments the dimensions n and m of the matrix, and a function f to initialize
each element.

let init matrix nm f =
Array.init n (fun i -> Array.init m (fun j -> £ i j))

In other words, we return the matrix M of size n X m such that M; ; = £ i j. We
derive from this a function id to construct the identity matrix of size n x n.

let id n =
init_matrix nn (fun i j -> if 1 = j then 1 else 0)

Next, let us write a function size that returns the dimensions of a matrix,
that is, the number of rows and columns, as a pair. Assuming that a matrix
always contains at least one row, we may write:
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Program 83 — Basic matrix operations.

type matrix = int array array

let init matrix nm f =
Array.init n (fun i -> Array.init m (fun j -> £ 1 j))

let id n =
init_matrix n n (fun i j -> if i = j then 1 else 0)

let size a =
(Array.length a, Array.length a.(0))

let add a b =
let (n, m) as s = size a in
if size b <> s then invalid_arg "add";
init_matrix nm (fun i j -> a.(1).(3) + b.(1).(G))

let mul a b =

let n, p = size a in

let q, m = size b in

if q <> p then invalid_arg "mul";

let product i j =
let s = ref 0 in
for k =0top-1dos :=1!s+ a.(i).(k) * b.(k).(j) done;
I's

in

init_matrix n m product
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let size a =
(Array.length a, Array.length a.(0))

Let us now consider the addition of two matrices A and B. We begin by verifying
that they have the same size.

let add a b =
let (n, m) as s = size a in
if size b <> s then invalid_arg "add";

It then suffices to use init_matrix to construct the matrix whose general term
is Ai,j + B'L’,j-

init matrix nm (fun i j -> a.(3).(§) + b. (D). (G

The product of a matrix A of size n X p and a matrix B of size p X m is a matrix
C of size n x m whose general term is given by:

k<p
Cij=> AixBr; for0<i<nand0<j<m. (10.3)
k=0

We begin by determining the dimensions of the two matrices and by verifying
that the number of columns of A is indeed equal to the number of rows of B.

let mul a b =
let n, p = size a in
let q, m = size b in
if q <> p then invalid_arg "mul";

We then write a local function product that computes the coefficient Cj ; fol-
lowing equation (10.3).

let product i j =
let s = ref 0 in
for k =0top-1dos :=!s+ a.(i).(k) * b.(k).(j) done;
I's

It only remains to create a matrix of size n x m with the function init_matrix
by passing it the function product as argument.
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in
init_matrix n m product
The complete code is given aboev in program 83. An array of arrays is not
the only possibility for representing a matrix. There are other representations
that are more economical in terms of memory when a large number of elements
are equal. We then speak of sparse matrices. Exercise 10.13 proposes one such
representation.

10.5 Exercises

Euclid’s Algorithm

10.1 The complexity result given in section 10.1 assumes x > y. Show that
in the general case the complexity is O(log(max(x,y))).

10.2 Euclid’s algorithm as presented above assumes x,y > 0. If x or y is
negative, the algorithm could return a negative result. (The operation mod
returns a value of the same sign as its first argument.) Write a second version
of the function gcd that always returns a non-negative result irrespective of the
sign of its arguments. In which case will the result be zero?

10.3 Let x,y, m be three positive integers such that y Am = 1. The quotient
of by y modulo m is any integer w such that:

0<w<mandz=yw (modm).

Write a function to compute the quotient of x by y modulo m.

Exponentiation by Squaring
10.4 Write a variant of the function exp based on the following identities:

n (z™/2)? if n is even,

v { z(x™1/2)2if n is odd.

Is there a difference in terms of efficiency?
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10.5  Write a tail-recursive version of the function exp. This is not very
interesting if n is a machine integer since log(n) is then very small compared to
the maximum number of nested calls supported by the stack. However, if n is
very large, for example n = 2220, tail recursion is necessary.

10.6 Write the code of program 80 as a functor computing z" for z of an
arbitrary type t, provided that this type t is equipped with a constant one and
an operation mul.

Modular Arithmetic

10.7 Write the code of programs 81 and 82 as a functor parametrized by the
value of m, that is:

module Modulo(M: sig val m: int end): sig ... end = struct ... end

Why is it useful to write such a functor? Is it useful to have this functor export
an abstract type of integers modulo m?

10.8 If my and me are two relatively prime integers, the Chinese Remainder
Theorem allows us to represent every integer x between 0 (inclusive) and mjmsg
(exclusive) by a pair (x1,x2), where x = z1 (mod m1) and x = z2 (mod ms).
This representation is useful when mj and mo are representable in the machine
but mims is not (being too large). Write the addition, subtraction, and multi-
plication operations on this representation of integers. Given the pair (z1, z2),
how can we recover the integer x that it represents?

More generally, we may consider k integers mi, mao,...,m; pairwise rela-
tively prime and represent arbitrary integers by k-tuples. For more details,
consult The Art of Computer Programming (vol. 2, sec. 4.3.2).

Matrix Calculus

10.9 Write the code of figure 83 as a functor parametrized by the type of
matrix elements, constants zero and one of this type, and operations add and
mul on this type.

10.10  Write a function power: t -> int -> t that raises a matrix to power
n using the algorithm of exponentiation by squaring.
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10.11 The numbers of the Fibonacci sequence (F},) satisfy the following iden-

tity:
1 1\" [ Fu F,
1 0 N Fn Fn—l .

In other words, we may compute F;, by raising a 2 x 2 matrix to power n. Derive
a program from the preceding exercise that computes F), in O(logn) elementary
arithmetic operations.

Note, however, that this does not mean that that we are able to compute F;,
for large values of n. In fact, the terms of the Fibonacci sequence grow exponen-
tially. If we make use of arbitrary-precision integers, the cost of the arithmetic
operations themselves must be taken into account, and the complexity will not
be O(logn). Otherwise, the calculation will quickly overflow.

10.12  Combining the preceding exercise and the modular arithmetic of the
preceding section, write a program that computes the final seven digits of Fjgs.
The computation should be instantaneous.

10.13 When a matrix contains many identical elements (for example, many
zero elements), it can be interesting to represent it more compactly than as an
array of arrays. One solution consists in representing each row of the matrix by a
dictionary that associates some of the column indices with their corresponding
elements, the others taking a default value. For example, for matrices with
integer coefficients whose zero elements are not represented, we may define the
following type:

type matrix = { cols: int; rows: M.t array }

where M.t is the type of a dictionary associating integers with integers (for
example, obtained using the module Map), and where the field cols stores the
number of columns. Write the functions id, size, add, and mul for this type.



354 Chapter 10. Arithmetic




11

Dynamic Programming and
Memoization

Dynamic programming and memoization are two closely related techniques
based on the idea that it is better to avoid computing the same thing twice.

11.1 Basic ldea

We illustrate the two techniques in the simple example of the Fibonacci se-
quence. Recall that this sequence of integers (F},) is defined by:

Frb =0
Fr =1
F, = F, o+ F,_1ifn>2.

It is easy enough to write a recursive function that calculates F), based on this
definition:

let rec fib n =
if n <= 1 then n else fib (n - 2) + fib (n - 1)
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But this is also rather simplistic. Indeed, it would take more than a minute to
compute Fyg. It is not the recursion that is problematic here, but rather the
fact that we compute the same values of I}, several times over. For instance, to
compute F5, F3 will be computed twice and Fy three times, as shown in the call
graph in figure 11.1.

F
/ 5\
3 Fy
/ \ VRN

P P ja8 Iy

/N /N /\
Fy, F, Fy F, I\ Fy

/ N\
F B

Figure 11.1: Call graph of Fs.

It is easy to see that, in general, the computation of F,, requires Fj 11 — 1
additions because the recursion equation is exactly the same as that which
defines F,. We can observe this empirically. On a computer circa 2011, it takes
2 seconds to compute Fjys, 3 seconds to compute Fjy3, 5 seconds to compute Fjy4,
etc. We recognize here the terms of the Fibonacci sequence. Extrapolating, we
can say that it would take 89 seconds to compute F5g, and this is correct to
within a half-second! As we know that F), grows exponentially, we cannot hope
to go much further in the computation of the sequence using this method.

11.1.1 Memoization

The fact that we are computing the same thing several times leads us, quite
naturally, to the idea that we could store the intermediate results in a table. Such
a table would associate integers n with the value Fj. Accordingly, we proceed
as follows: To compute £ib n, we begin by checking whether there is an entry
in the table for n, in which case we return the corresponding value. Otherwise,
we calculate fib n as fib (n-2) + fib (n-1), that is, recursively. We return
the result after having added it to the table. This technique, consisting in using
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a table to store intermediate results, is called memoization, a term coined by
the researcher Donald Michie in 1968.

Let us implement this idea in a function fib_memo. We begin by introducing
a hash table to store the intermediate results, choosing an arbitrary initial size
for it:

let memo = Hashtbl.create 17

The function fib_memo begins by checking whether the value of £ib n is already
present in the table memo. If it is, it is returned:

let rec fib_memo n =
try
Hashtbl.find memo n

Otherwise, we compute the result exactly as for the function fib, that is, using
two recursive calls:

with Not_found ->
let fn = if n <= 1 then n
else fib_memo (n-2) + fib_memo (n-1) in

Then, we store it in the table memo before returning it:

Hashtbl.add memo n fn;
fn

This concludes the function fib_memo. Its efficiency is far greater than
that of £ib. The computation of Fjp, for example, becomes instantaneous (in
contrast to the 89 seconds taken by fib). We can show that the complexity of
fib_memo is linear. Intuitively, we understand that computing F;, now involves
computing F; only once for ¢ < n. The complete code of the function fib_memo
is given in program 84 below. Note that the table memo is defined outside the
function fib_memo, since it must be the same for all recursive calls.

11.1.2 Dynamic Programming

Using a hash table to memoize the computation of the Fibonacci sequence may
seem unnecessarily costly. Indeed, in the end we will store only the values of
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Program 84 — Computing F,, via memoization.

let memo = Hashtbl.create 17
let rec fib_memo n =
try
Hashtbl.find memo n
with Not_found ->
let fn =
if n <= 1 then n else fib_memo (n-2) + fib_memo (n-1) in
Hashtbl.add memo n fn;
fn

F; for i < n, for which an array of size n + 1 would suffice. If we wished to
rewrite the function fib_memo using this idea, we could, for example, begin
by assigning the value —1 to each cell of the array, to indicate that the value
has not yet been computed. Another possibility would be to fill the array in
a specific order. In the present case, we see that it suffices to fill the array in
increasing order since the computation of F; requires the values of F;_o and
F;_1. This technique, consisting in using a table and progressively filling it with
the results of intermediate computations, is called dynamic programming, often
abbreviated as DP.

Let us implement this idea in a function £ib_dp. We begin by treating the
special case n = 0. In the general case, when n > 0, we allocate an array f of
size n + 1, which will contain the values of the F;.

let fib_dp n =

if n = 0 then O else
let f = Array.make (n+1) O in

This array may be allocated inside the function £ib_dp since, unlike fib_memo,
it will not be recursive. Next, we fill the cells of the array f in increasing order,
treating £. (1) as a special case.

£f.(1) <= 1;
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Program 85 — Computing F;, via dynamic programming.

let fib_dp n =
if n = 0 then 0 else
let f = Array.make (n+l1) O in
£f.(1) <= 1;
for i = 2 ton do f.(i) <- f.(i-2) + f.(i-1) done;
f.(n)

for i = 2 ton do f.(i) <- f.(i-2) + f.(i-1) done;

Once the array is filled, we have only to return the value contained in its
last cell.

f.(n)

This concludes the function £ib_dp. As for fib_memo, its complexity is linear.
This can be seen easily since the code boils down to a simple for loop. The
complete code of the function £ib_dp is given in program 85.

Remark

We have chosen the Fibonacci sequence as an example for pedagogical reasons.
Of course, it is very simple to compute the terms of this sequence in linear time
without using either memoization or dynamic programming (see exercise 11.1).

11.2 Mechanical Memoization

The use of an array in fib_dp, rather than the hash table in fib_memo, may
leave us thinking that dynamic programming is simpler to implement than mem-
oization. This is indeed the case in that example.

It is nevertheless important to understand that in order to write £ib_dp we
made use of two facts: we had to compute the F; for all i < n; and we could
compute them in increasing order. In general, the inputs of the function that
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we wish to compute may not necessarily be consecutive integers. They may not
be integers at all, or the dependencies between the different values may not be
as simple.

Memoization, by contrast, is simpler to implement. It suffices to add a few
lines of code to consult and fill the hash table, without modifying the structure
of the function. We can do this mechanically.

Better yet, we can implement the memoization procedure once and for all,
as a higher-order function memo_fun that takes as argument a function f to be
memoized. We begin by creating a hash table in which to store the already
computed results.

let memo_fun f =
let h = Hashtbl.create 17 in

We then return a function that performs the memoization, that is, consults the
table and fills it as needed.

fun x —>
try Hashtbl.find h x
with Not_found -> let v = f x in Hashtbl.add h x v; v

The type of the function memo_fun is as follows:

memo_fun : (a -> ’b) -> ’a -> ’b

As we see, memo_fun takes as argument a function of an arbitrary type and
returns a function of the same type. The polymorphic nature of the function
follows from the use of the generic hash tables of OCaml (see exercise 11.2).

In order to memoize the function fib, it suffices to write:

let fib_memo2 = memo_fun fib

If we compute £ib_memo2 50 twice, the second computation is instantaneous
because the result is present in the table. However, the first computation takes
just as long as it does without memoization. Indeed, during the first call, we
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calculate £ib 50 because the value is not present in the table. During this com-
putation, recursive calls are made to the function fib and not to its memoized
version fib_memo2.

We might think that a solution consists in writing the following code:

let rec fib_memo3 =
memo_fun (fun n -> if n <= 1 then n
else fib_memo3 (n-2) + fib_memo3 (n-1))

Unfortunately, this still does not work. Each call to £ib_memo3 involves a
new call to memo_fun, which has the effect of allocating a new hash table. Thus
the previously calculated results are lost and cannot be found.

To solve this problem, that is, to allocate a single hash table and perform
recursive calls to the function being memoized, it is necessary to rewrite the
function memo_fun in a subtler manner. We do this in the form of a function
memo_rec that may be used as follows:

let fib_memo4 =
memo_rec (fun f n -> if n <= 1 then n else f (n-2) + f (n-1))

Here, the single call to memo_rec ensures the creation of a single table. The
function being memoized is passed as an additional argument f.

The function memo_rec is written as follows. We begin, as in case of memo_fun,
by creating a table:

let memo_rec ff =
let h = Hashtbl.create 5003 in

Next, we define the recursive function £ that performs the memoization:

let rec f x =
try Hashtbl.find h x
with Not_found -> let v = ff f x in Hashtbl.add h x v; v
in
f
When the result is not in the table, we compute the result v using ff f x,
that is, by passing the function f and the argument x to the function £f provided
by the user. The complete code of memo_rec is given in program 86.
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Program 86 — Generic memoization operator.

let memo_rec ff =
let h = Hashtbl.create 5003 in
let rec £ x =
try Hashtbl.find h x
with Not_found -> let v = ff f x in Hashtbl.add h x v; v
in
£

As in case of memo_fun, the type of memo_rec is polymorphic, but it is more
complex:

memo_rec: ((’a -> ’b) -> ’a -> ’b) -> ’a -> ’b

The function £ff has type (’a -> ’b) -> ’a -> ’b, which may be read as
(’a => ’b) -> (’a -> ’b). That is, it takes as argument a function of type
’a -> ’b and returns a function of the same type.

11.3 Differences between Memoization and Dynamic Pro-
gramming

In certain situations, dynamic programming may be preferred to memoization.
Take the example of the computation of the binomial coefficients C'(n, k), the
recursive definition of which is as follows:

C(n,0) = 1
C(n,n) = 1
C(n,k) = Cn—1,k—1)+C(n—1,k)if 0 <k <n.

Both memoization and dynamic programming may be applied to this definition.
In the first case, we will have a hash table indexed by the pair (n, k) and, in
the second case, a matrix indexed by n and k. However, if we seek to compute
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C(n,k) for n = 2 x 10° and k = 10°, we are probably going to exceed the
available memory of the machine (assuming an ordinary desktop computer). In
the first case, this would happen when filling the hash table and in the second,
when trying to allocate the matrix. The reason is that the complexity in time
and in space is O(nk). In the previous example, we would have to store at least
15 billion intermediate results.

Yet, if we look closer, the computation of C'(n,k) for a given value of n
only requires the values of C(n — 1,k). Accordingly, we may carry out the
computation for increasing values of n, even if not all the values computed are
going to be useful in the end. We can visualize the situation by drawing Pascal’s
triangle as in figure 11.2. We will compute the values line by line, keeping track
of only a single line at any given moment.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

Figure 11.2: Pascal’s triangle.

Let us implement this idea in a function comb_smart_dp. We begin by
allocating an array row of size n+1 that will contain the line of Pascal’s triangle
being computed:

let comb_smart_dp n k =
let row = Array.make (n+1) O in

In fact, an array of size k+1 would suffice (see exercise 11.3).
Initially, this array is filled with zeroes. We initialize the first cell with 1.

row.(0) <- 1;
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This value will not change in what follows, because the first column of Pas-
cal’s triangle contains only ones. Next, we write a loop to compute the i-th line
of Pascal’s triangle:

for i =1 ton do

This computation will be done in-place within the array row, assuming that
it contains the values of the (i — 1)-th line. To avoid overwriting values that
have yet to be used, we will compute the new values from right to left, since
these values do not depend on those situated further to the right. We continue
with a second loop:

for j = i downto 1 do row.(j) <- row.(j) + row.(j-1) done

Here, we make use of the fact that row. (i) contains 0, which permits us to avoid
introducing a special case. We stop when j = 1 because the value row. (0) does
not need to be recomputed, as explained above. Once we have exited the double
loop, the array row contains the n-th line of Pascal’s triangle, and we only have
to return row. (k):

done;
row. (k)

The time complexity remains O(nk) but the space complexity is only O(n). In
the example given above, with n = 2 x 10° and k = 10°, the result is now
obtained in a few seconds. Note, however, that it causes an arithmetic overflow
(see exercise 11.4).

The conclusion of this little exercise is that dynamic programming, which
allows for a finer control of the use of memory, can sometimes be more ad-
vantageous than memoization. Conversely, in many situations where this extra
measure of control is not necessary, memoization is far simpler to implement.

11.4 Hash-consing

Just as we can avoid computing the same thing twice, as we did above, we may
similarly avoid constructing the same data several times, to save on memory.
We can do this safely as long as we are dealing with values that will not be
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subsequently modified. If, for example, we have already constructed the list
[1; 2; 3], it is pointless to reconstruct anew. We can instead reuse it.

The technique of reusing values that have already been constructed is known
as hash-consing. It is quite simply the application of the technique of memo-
ization to the construction of values. The term hash-consing combines precisely
the idea of hashing used in memoization with that of allocation!. Here, we
will demonstrate how to implement this technique, taking as an example binary

trees containing characters, that is:
type tree = E | N of tree * char * tree

The idea is to provide an alternative to the constructor N, in the form of
a function node that behaves exactly as this constructor, but that returns a
structurally identical value, if one has already been constructed. One possible
solution consists in directly memoizing the function node, that is, by storing the
values of type tree that have already been constructed in a hash table. However,
proceeding in this manner would not be very efficient. Indeed, both computing
the hash keys and comparing values of the type tree require traversals that
may be costly.

A much better solution consists in avoiding these traversals by associating
an integer, to be used in the hash function, with each value of type tree. We
begin, therefore, by modifying the type tree slightly in order to store an integer
as the first argument of the constructor N.

type tree = E | N of int * tree * char * tree

We will see below how this integer is computed. We write a function that
returns this integer when it is given the constructor N, and the integer 0 other-
wise.

let unique = function
| E->0
' N (u, _, _, ) >u

The term cons stands for allocation in the language Lisp, where the technique of hash-
consing was first introduced.
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We will justify the name of this function below, by explaining why this
integer is in fact unique. For the present, this is not important since we wish
only to define a hash function. Here is the definition of the hash function:

let hash = function
| E ->
0
| N (_, 1, ¢, r) —>
(19 * (19 * unique 1 + Char.code c) + unique r) land max_int

This function does not make use of the integer stored in the constructor N.
Indeed, hash will be used precisely to determine if a tree with root ¢ and sub-
trees 1 and r has already been constructed. It must therefore only depend on
the values 1, ¢, and r. To compute the result in constant time, the function
hash uses the integers stored in the subtrees 1 and r, via the function unique.
The operation 1land max_int is used here to guarantee a non-negative result.

The second idea consists in comparing two values of type tree in constant
time by using the fact that their subtrees have already been shared if they are
equal and are therefore physically equal. For this we write a function equal
that uses the physical equality == on the subtrees.

let equal t1 t2 = match t1, t2 with
| E, E -> true
| N (_, 11, c1, r1), N (_, 12, c2, r2) ->
11 == 12 && c1 == c2 && rl == r2
| _ -> false

Equipped with these two functions, we can now construct a hash table to
memoize the construction of trees. We can do this using the functor Hashtbl . Make
of the OCaml standard library. However, such a table would keep the con-
structed values forever. What we want, by contrast, is for the GC to be able to
recover the space allocated for values that are no longer used, as it usually does.

For this, we will use another hash table structure included in the OCaml
standard library, namely, the functor Weak.Make. Its signature is identical to
that of the functor Hashtbl.Make.

module X = struct
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type t = tree
let hash = ...
let equal = ...
end
module W = Weak.Make (X)

The resulting module W provides a set structure of values of type tree, in which
the elements disappear when they are not referenced anywhere except by a
pointer from this structure. Such pointers, which are not taken into account by
the GC, are called weak references. Hence the name of the module: Weak.

We may now construct the table that will contain the constructed values of
type tree. We initialize it with an arbitrary size.

let nodes = W.create 5003

It remains only to write the function node that will perform the actual
memoization. It uses a global counter, initialized with the value 1.

let node =
let cpt = ref 1 in
fun 1 cr —>

We begin by constructing the desired tree, using the current value of the counter.
let n0 = N (lecpt, 1, c, r) in

Next, we consult the hash table to determine if such a value has already been
constructed. The module W conveniently provides a function merge that deter-
mines if an equal value is already present in the set and, if this is not the case,
adds it. In both cases, the returned value is contained in the table.

let n = W.merge nodes n0 in

It only remains to increment the value of the counter if a new node has been
added to the table, which is easily determined by comparing n and n0 using
physical comparison. In all cases, we return the tree n.

if n == n0 then incr cpt;
n
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Program 87 — Hash-consing (code).

type tree = E | N of int * tree * char * tree

let empty
E

let unique = function
| E->0
lN(u’ —5 > _)‘>'ll

module X = struct
type t tree
let hash = function
| E —>
0
| N (_, 1, c, r) —>
(19 * (19 * unique 1 + Char.code c) + unique r)
land max_int
let equal t1 t2 = match tl, t2 with
| E, E -> true
| N (_, 11, c1, r1), N (_, 12, c2, r2) ->
11 == 12 && cl == c2 && rl == r2
| _ -> false

end
module W = Weak.Make (X)
let nodes = W.create 5003

let node =
let cpt = ref 1 in
fun 1 cr >
let n0 = N (!cpt, 1, c, r) in
let n = W.merge nodes n0 in
if n == n0 then incr cpt;
n
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Program 88 — Hash-consing (interface).

type tree = private E | N of int * tree * char * tree
val empty: tree
val node: tree -> char -> tree -> tree

The complete code is given in program 87.

Of course, all of this is correct only if two trees that have the same integer
are indeed equal. To guarantee it, we must encapsulate the type tree behind an
interface that prevents users from arbitrarily setting this integer. One possibility
is to make tree a private type. Such an interface is given in program 88 (see
following page). In this way, we can justify a posteriori that the integer stored
in each tree is unique in the sense that two trees bearing the same integer are
equal. However, two equal values can bear a different integer. Indeed, a value
can be constructed, then reclaimed by the GC, then reconstructed identically
later, with a different integer.

The advantages of hash-consing are numerous. Firstly, it permits us to econ-
omize on memory. Certainly, there is an extra cost linked to memoization, but
this cost is of constant time. Indeed, we have been careful to write an equality
and a hash function that are of constant cost. The second advantage of hash-
consing is that we can now use physical equality == instead of structural equality.
Indeed, two values of type tree are equal if and only if they are physically equal.
This is guaranteed by the encapsulation of the type tree behind a private type.
Thirdly, we have a total order on the type tree, of constant time, by comparing
the values returned by the function unique. In particular, we can now construct
data structures, for example by using the functors Set.Make or Map.Make, that
will be as efficient as in case of integers. Finally, we have an excellent hash
function on the type tree, namely, the function unique. Exercise 11.6 proposes
using it to memoize a recursive function on trees.

It is important to reiterate here that the hash-consing technique is only
applicable to structures that can be shared. The technique is thus applicable to
persistent structures, but not to mutable ones.
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11.5 Exercises

Dynamic Programming and Memoization

11.1 Modify the function fib_dp so that it uses only two integers instead of
an array.

11.2 Reimplement the function memo_rec as a functor parametrized by the
type of the arguments of the memoized function, so as to be able to use hash
tables other than the generic tables of OCaml.

11.3 Modify the function comb_smart_dp so that it does not compute the
values of Pascal’s triangle beyond the k-th column.

11.4 Modify the function comb_smart_dp so that it returns an arbitrary-
precision integer (type Num.num of the OCaml library). Note: The complexity
is no longer O(nk) because additions are no longer atomic operations. Their
cost depends on the size of the operands, and these grow rapidly in Pascal’s
triangle.

11.5 The edit distance between two strings is defined as the smallest number
of insertions, deletions, and substitutions of characters required to pass from
one to the other. For example, the distance between "duck" and "duke" is two
(one deletion, one insertion). Write a recursive function that takes as argu-
ments two strings a and b, and two indices i and j, and returns the distance
between the strings a[0..1i[ and b[0..j[. Explain why we end up making the same
calls several times. Improve efficiency by using either memoization or dynamic
programming.

Hash-consing

11.6 Write a memoized function height that computes the height of a tree
making use of the fact that trees have been hash-consed.

11.7 Write a structure of lists of integers making use of the hash-consing
technique.

11.8 Generalize the above exercise to a functor that takes as argument the
type of the elements, equipped with an equality and a hash function.
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11.9 How can the application of the constructor N in the function node in
program 87 be avoided when the value has already been constructed?
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12

Sorting Algorithms

This chapter presents several sorting algorithms on lists and arrays. We assume
that the elements to be sorted are of type elt, equipped with a total order
given in the form of a function compare of type elt -> elt -> int. Sorting
functions on lists and arrays will respectively have type elt list -> elt list
and elt array -> unit. We assume that we sort lists and arrays in increasing
order. For the sake of convenience, we define two functions 1t and le as follows:

let 1t x y = compare x y < 0
let le x y = compare x y <= 0

Throughout this chapter, N will denote the number of elements to be sorted.
For each sorting algorithm presented, we indicate its complexity not only in
terms of the number of comparisons performed, but also in terms of the number
of basic allocations in the case of lists and the number of assignments in the
case of arrays. For each one, we give the complexity in the best, worst, and
average cases. For the average case, we assume that the elements to be sorted
are distinct and that the N! possible permutations of the input are all equally
likely. Recall that the optimal complexity of a sorting algorithm only performing
comparisons of elements is O(N log N) (see section 12.5).
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12.1 Insertion Sort

Insertion sort consists in successively inserting each element into the set of ele-
ments already sorted. This is what we do, for example, when we sort a pack of
cards.

12.1.1 Lists

Insertion sort on a list consists in traversing it while successively inserting each
element in the part already sorted. We begin therefore by writing a function
insert that inserts an element x in a list that is assumed to be sorted. The
code is as follows:

let rec insert x = function
| v :: 1 when 1t y x => y :: insert x 1
| 1 ->x ::1

The first pattern matching case corresponds to a recursive insertion when the
first element of the list is smaller than x. The second pattern matching case
corresponds to that in which x is smaller than all the elements of 1, whether 1
is empty or not.

Sorting then consists in traversing the list using List.fold_left, with the
portion of the list already sorted as accumulator.

let insertion_sort 1 =
List.fold_left (fun acc x -> imsert x acc) [] 1

This code may prove problematic for long lists: Since the function insert is
not tail recursive, it can overflow the stack. It is, however, easy to modify
the function insert to make it tail recursive. We can do this by adding an
accumulator containing the list, in reverse order, of elements smaller than x
that have already been considered. If we call this accumulator acc, we then
have the following situation when we try to insert x in 1:

— —
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Once the position of x is determined, it suffices to reverse the accumulator
acc and concatenate the result with 1. The function List.rev_append does
exactly this and is tail recursive. The final code of insertion sort is given in

program 89.

Program 89 — Insertion sort on lists.

let rec insert acc x = function
| v :: 1 when 1t y x => insert (y :: acc) x 1
| 1 -> List.rev_append acc (x :: 1)

let insertion_sort 1 =
List.fold_left (fun r x -> dinsert [] xr) [] 1

Complexity

When the function insert inserts an element x at position k£ in 1, it performs
k comparisons and 2k allocations (k to construct the accumulator and & in
List.rev_append). At best, k is always 1 and, at worst, it equals the length of
the list, which in the end gives the table in figure 12.1.

’ \ best case \ average \ worst case ‘

comparisons N N?/4 N?/2
allocations N N?/2 N?

Figure 12.1: Complexity of insertion sort on lists.

12.1.2 Arrays

Insertion sort on an array a is performed in-place. It consists in successively
inserting each element a. (i) in the portion of the array a[0..i-1] that is already
sorted, which corresponds to the following situation:
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0 i-1
. already sorted ... | a. (i) | ... to be sorted ...

We begin with a for loop to traverse the array:

let insertion_sort a =
for i = 1 to Array.length a - 1 do
let v = a.(i) in
To insert the element a. (i) in the right place, we use a while loop that shifts
the elements to the right as long as they are greater than a. (i).
let j = ref i in
while 0 < !'j && 1t v a.(!j - 1) do
a. (1) < a.(13 - 1);
decr j
done;

Once out of the loop, all that remains is to put a. (i) in its place.

a.(1j) <= v
done

The complete code of insertion sort on arrays is given in program 90.

Complexity

Note that the function insertion_sort performs as many comparisons as as-
signments. When the while loop inserts the element a. (i) at position i — k,
it performs k + 1 comparisons. At best, k equals 0 and, at worst, it equals i,
which in the end gives the table in figure 12.2.

12.2 Quicksort

Quicksort relies on the method of divide and conquer: The elements to be sorted
are divided into two subsets, all the elements of the first being smaller than those
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Program 90 — Insertion sort on arrays.

let insertion_sort a =
for i = 1 to Array.length a - 1 do
let v = a.(i) in
let j ref i in
while 0 < !'j && 1t v a.(!j - 1) do
a.(1j) <= a.(1j - 1);

decr j
done;
a.('j) <-v
done
‘ best case ‘ average ‘ worst case ‘
comparisons N N?/4 N?/2
assignments N N?/4 N?/2

Figure 12.2: Complexity of insertion sort on arrays.

of the second. Then, we sort each subset recursively. In practice, the subdivision
is performed with the help of an arbitrary element p of the set, called the pivot.
The two subsets are then respectively the elements less than or equal to p, and
the elements greater than p.

12.2.1 Lists

To implement quicksort on lists, we begin by writing a function partition
that partitions a list at a given pivot p. To ensure tail recursion, we use an
accumulator consisting of a pair of lists. The function partition therefore
takes the following form:

let rec partition ((left, right) as acc) p = function



378 Chapter 12. Sorting Algorithms

The lists 1eft and right represent the elements that are, respectively, less
than or equal to p and greater than p. When we reach the empty list, it suffices
to return the accumulator.

| [0 -> acc

Otherwise, we consider the first element x and compare it with the pivot p.
If x is less than or equal to p, we add it to left and call partition recursively
on the rest of the list, s.

| x :: s when le x p —>
partition (x :: left, right) p s

On the other hand, if x is greater than p, we add it to right and similarly
call partition recursively.

| x :: 8 >
partition (left, x :: right) p s

Quicksort takes the form of a recursive function quicksort. The base case
is that of the empty list.

let rec quicksort = function
| -
]

If the list is not empty, we choose its first element as pivot p and partition
the remaining elements using the function partition.
| p:: s —>
let (left, right) = partition ([], [1) p s in

Finally, we sort left and right recursively and concatenate the results, remem-
bering to insert the pivot p in the middle.

(quicksort left) @ (p :: quicksort right)

The complete code of quicksort on lists is given in program 91.

It is important to note that neither of the two recursive calls of the function
quicksort is tail recursive. A stack overflow is therefore possible. Exercise 12.4
discusses a solution to this problem.
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Program 91 — Quicksort on lists.

let rec partition ((left, right) as acc) p = function

| [1 -> acc
| x :: s when le x p —>

partition (x :: left, right) p s
| x :: 8 =>

partition (left, x :: right) p s

let rec quicksort = function
|0 -
(1
| p:: s —>
let (left, right) = partition ([], [1) p s in
(quicksort left) @ (p :: quicksort right)

Complexity

The function partition makes as many comparisons and allocations as there are
elements in the list passed as argument. Let C'(IN) be the number of comparisons
performed in the function quicksort for a list of length V.

If partition returns a list of length K and a list of length N — 1 — K, we
deduce:

C(N)=N-1+C(K)+C(N—-1-K).

The worst case corresponds to K = 0, which gives C(N) = N—1+C(N —1),
and hence C(N) ~ NTQ The best case corresponds to a list split into two equal
halves, that is, K = N/2. From this we easily deduce C(N) ~ N log N. For the
number of comparisons on average, we consider that the N possible final places
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for the pivot are all equally probable, which gives:

C(N) = N-

- N-—

After a bit of algebra, left to the reader, we obtain:
o)

C(N)

1+% Y CE)+C(N-1-K)

0<K<N-1

1+% > COK).

0<K<N-1

2

2

N+1

N

N+1 N(N+1)

This is a telescoping sum, which leads us to conclude that:

We therefore have C'(N) ~ 2N log N. For the number of allocations A(N
proceed in a similar fashion, with a slightly different equation:

C(N)
N+1

~

2log N

A(N) =N+ K + A(K) + AN — 1 — K).

In the end, we obtain the results given in the table of figure 12.3.

|

‘ best case ‘ average ‘ worst case ‘

comparisons

Nlog N

2N log N

N?/2

allocations

3Nlog N

ANlog N

N2

Figure 12.3: Complexity of quicksort on lists.

12.2.2  Arrays

), we

Quicksort on arrays is performed in-place. The partition and sorting functions
take as arguments the array and two indices that delimit the portion to be
considered. We retain the idea of a function partition that organizes the

elements around a pivot, and a sorting function that proceeds recursively.
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The function partition takes an array a as argument, and two indices 1 and
r, that delimit a portion of the array. This portion corresponds to the elements
between the indices 1 (inclusive) and r (exclusive). We begin by choosing a. (1)
as pivot.

let partition a l r =
let p = a.(1) in

This choice is arbitrary and can influence performance. Exercise 12.8 proposes
a better method of choosing the pivot.

The idea consists in traversing the array from left to right, between indices
1 (inclusive) and r (exclusive), with a for loop. In each iteration of the loop,
the situation is as follows:

1 m i r
lp[ <p | >p [ 7 |

The index i of the loop gives the position of the next element to consider.
The index m partitions the part that has already been traversed. More precisely,
it is the index of the last cell containing a value less than or equal to p. We
represent it with a reference.

let m ref 1 in
for i =1+1tor -1do

Ifa. (1) is strictly greater than p, we leave it in its place. Otherwise, to maintain
the loop invariant, it suffices to increment m and swap a. (i) and a. (!'m).

if le a.(i) p then begin incr m; swap a i !m end
done;

The code of the function swap is given in program 92 below. Once all the
elements have been traversed, we perform one more swap to put the pivot in its
place, that is, at position !'m, and we return this index.

if 1 <> !'m then swap a 1 !m;
'm
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We write the main function of quicksort as a recursive function quick_rec that
takes the same arguments as the function partition. If 1 > r-1, the number
of elements to be sorted is either zero or one, and there is nothing to do.

let rec quick_rec alr =
if 1 < r - 1 then begin

Otherwise, we partition the elements between 1 and r.
let m = partition a 1 r in

After this call, the pivot a.(m) is at its final place. We then perform two
recursive calls to sort, respectively, the elements smaller than and larger than
the pivot.

quick_rec a 1 m;
quick_ rec a (m + 1) r
end

To sort an array, it suffices to call quick_rec on all of its elements.
let quicksort a = quick_rec a 0 (Array.length a)

The complete code is given in program 92.

As with quicksort on lists, a stack overflow could occur. Indeed, the first call
to quick_rec is not tail recursive and, in the worst case, the number of these
calls may be equal to the length of the array. FExercise 12.6 discusses a solution
to this problem.

Complexity

The function partition always performs exactly (r — 1) — 1 comparisons. The
complexity in number of comparisons is therefore the same as in case of quicksort
on lists. As far as the number of assignments is concerned, we note that the
function partition performs as many calls to swap as increments of m. The best
case occurs when, at each partition stage, the pivot remains in the first position.
Then no assignment is performed. It is important to note that this case does not
correspond to the best complexity in terms of comparisons, which is quadratic
in this case. Thus, on average, and assuming that all final positions for the
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Program 92 — Quicksort on arrays.

let swap a i j =
let t = a.(i) in
a.(1) <- a.(G);
a.(j) <=t

let partition a 1l r =
let p = a.(1) in
let m = ref 1 in
for i l1+1tor -1do
if le a.(i) p then begin incr m; swap a i 'm end
done;
if 1 <> !'m then swap a 1 !m;

'm

let rec quick_rec al r =
if 1 < r - 1 then begin
let m = partition a 1 r in
quick_rec a 1 m;
quick_rec a (m + 1) r
end

let quicksort a = quick_rec a 0 (Array.length a)
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pivot are equally likely, we have fewer than (r — 1) + 1 assignments, each call to
swap performing two assignments. This leads to a calculation analogous to that
of the average number of comparisons. We have already done this computation
for lists and obtained 2N log N. In the worst case, the pivot is always found
at position r-1. The function partition then performs 2(r — 1) assignments.
There is, thus, a total of N2 assignments. In the end, we obtain the results
given in the table of figure 12.4.

| best case average ‘ worst case ‘
comparisons | Nlog N | - | 2N log N N?/2
assignments - 0| 2NlogN N?

Figure 12.4: Complexity of quicksort on arrays.

To avoid the worst case, to the extent possible, the two optimizations pro-
posed in exercises 12.8 and 12.9 must be implemented.

12.3 Merge Sort

As with quicksort, merge sort also applies the principle of divide and conquer.
It partitions the elements to be sorted into two parts of the same size, without
trying to compare their elements. It then sorts the two parts recursively and
merges them; hence the name merge sort. Thus, the worst case of quicksort, in
which the two parts have disproportionate sizes, is avoided.

12.3.1 Lists

We begin by writing a function split that partitions a list into two lists of
length differing by at most one. To ensure tail recursion, we pass two lists 11
and 12 as accumulators. When we reach the end of the list, we return the pair
(11, 12).

let rec split 11 12 = function
| 0 -> (11, 12)
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Otherwise, we consider the first element x and place it alternatively in 11 or 12.
The simplest way to achieve this is to exchange 11 and 12 at each call.

| x :: 1 -> split (x :: 12) 11 1

The second step consists in writing a function merge that merges two sorted
lists. For this, we traverse the two lists simultaneously.

let rec merge 11 12 = match 11, 12 with

If one of the two is empty, we return the other.

Fa, 111, 0>
1

Otherwise, we compare the first elements x1 and x2 of each list. If x1 is smaller,
it is placed at the head of the result, and we recursively merge the remainder
s1 of 11 with 12. We proceed symmetrically if x2 is smaller.

| x1 :: s1, x2 :: 82 —>
if le x1 x2 then x1 :: merge sl 12 else x2 :: merge 11 s2

Note: We observe that merge is not tail recursive. We can fix this easily by
adding an additional argument in which we accumulate the smaller elements.

Finally, we write a function mergesort that implements merge sort on a list
1. If the list contains at most one element, we return it directly.

let rec mergesort 1 = match 1 with

(0 I B Y B
1

Otherwise, we partition the list 1 into two lists using the function split:

| ->

let 11, 12 = split [ [1 1 in

We then sort the two lists 11 and 12 recursively, and merge the results using
merge.

merge (mergesort 11) (mergesort 12)
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Program 93 — Merge sort on lists.

let rec split 11 12 = function
I 0 -> (1, 12)
| x :: 1 => split (x :: 12) 11 1

let rec merge acc 11 12 = match 11, 12 with
[, 111, 0>

List.rev_append acc 1

| x1 :: s1, x2 :: 82 —>
if le x1 x2 then merge (x1 :: acc) sl 12
else merge (x2 :: acc) 11 s2

let rec mergesort 1 = match 1 with
(0 I B N
1
| _ —>

let 11, 12 = split [] [ 1 in
merge [] (mergesort 11) (mergesort 12)

Unlike the function merge, the function mergesort does not risk triggering a
stack overflow: Since the list 1 is partitioned into two equal halves, the size of
the stack is logarithmic. Program 93 below contains the complete code, with
the function merge in its tail-recursive version.

We can avoid allocating the lists 11 and 12 by cleverly reusing the list 1
itself. Exercise 12.10 proposes such an optimization. This idea is notably used
in the function List.sort of the OCaml standard library.

Complexity

The function split makes N allocations and no comparisons. The function
merge makes twice as many allocations as comparisons: In the second branch
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of the pattern matching, there are as many comparisons as allocations, and in
the first branch, the number of allocations performed by List.rev_append is
equal to the length of acc, itself equal to the number of allocations/comparisons
performed in the recursive part. Let C'(N) (resp. f(N)) be the total number
of comparisons performed by mergesort (resp. merge). We then have the
following equation:

C(N) =2C(N/2) + f(N)

Indeed, the two recursive calls are made on lists of the same length N/2. In
the best case, the function merge examines only the elements of one of the
two lists, since they are all smaller than those of the other list. In this case,
f(N) = N/2 and hence C(N) ~ 1N log N. In the worst case, merge examines
every element, so that f(N) = N — 1; hence C(N) ~ N log N. The analysis on
the average case is subtler (see [15, ex 2 p. 646]) and gives f(N) = N + O(1);
hence C(N) ~ Nlog N as well. The number of assignments is easily deduced
from the number of comparisons. In the end, we obtain the results given in the
table of figure 12.5.

’ \ best case | average | worst case

comparisons %N logN | NlogN Nlog N
allocations | 2N log N | 3Nlog N | 3N log N

Figure 12.5: Complexity of merge sort on lists.

12.3.2 Arrays

The idea of merge sort on arrays is the same as for lists: We partition the
elements to be sorted into two equal halves. We sort the two halves, and then
merge them. We delimit the portion to be sorted by two indices 1 (inclusive)
and r (exclusive). For the partition, it suffices to compute the middle index
m= HTI We then recursively sort the two parts delimited by 1 and m on the
one hand, and m and r on the other. We have only to merge them. This proves
extremely difficult to do in-place. It is simpler to use a second array, allocated
once and for all at the start of the sort.
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We begin by writing the function merge that implements the merging. It
takes as arguments two arrays, al and a2, and the three indices 1, m, and r.
The portions al[l..m[ and al[m..r[ are sorted. The objective is to merge them in
a2[l..r[. For this, we traverse the two portions of a1l (with two references i and
j) and the portion of a2 that is to be filled (with a for loop).

let merge al a2 1 mr =

let i = ref 1 in
let j = ref m in
for k =1 tor -1 do

In each iteration of the loop, the situation is therefore as follows:

1 m r
al ] | sorted | sorted | ‘

s T

a2 ’ | sorted \ | ‘
T

We must determine the next value to put in a2. (k). It is the smallest of the
two values al.(!i) and al.(!j). It is important, however, to also treat the
case in which there are no more elements in one of the two halves. We determine
whether the element is to be taken from the left half with the following test:

if 'i <m & (!1j =1 || le al.(!'i) al.(!j)) then begin

This test checks whether the left half is non-empty and its first element is smaller
than the first element of the right half, if such an element exists. In both cases,
we copy the element into a2. (k) and increment the corresponding index.

a2.(k) <- al.('i); incr i
end else begin
a2.(k) <- al.(!j); incr j
end
done

Next, we implement merge sort as a function mergesort. We begin by allocating
a temporary array tmp obtained by copying the array to be sorted.
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let mergesort a =
let tmp = Array.copy a in

The recursive part of merge sort is materialized via a recursive function mergesort_rec
that takes as arguments the indices 1 and r, that delimit the portion to be sorted.

let rec mergesort_rec 1 r =

If the segment contains at most one element, that is, if 1 > r-1, there is
nothing more to be done.

if 1 < r - 1 then begin

Otherwise, we divide the interval into two equal halves by computing the
middle position m, and then recursively sort a[l..m[ and a[m..r][.

letm= (1 +1r) / 2in
mergesort_rec 1 m;
mergesort_rec m r;

Note that the computation of (1+r)/2 cannot trigger an integer overflow, since
the maximum size of an OCaml array is much smaller than the largest repre-
sentable integer (see section 3.2 Runtime Model for further details).

It remains to perform the merge. For this, we copy the entire portion a[l..r|
into the array tmp and then call the function merge.

Array.blit a 1 tmp 1 (r - 1);
merge tmp a 1 m r
end

Finally, we sort the full array a by calling mergesort on all its elements.

in

mergesort_rec O (Array.length a)
Program 94 contains the complete code. Its efficiency can be further improved:
As with quicksort, we can switch to insertion sort when the portion to be sorted

becomes sufficiently small (see exercise 12.7). Another idea consists in avoiding
the copy of a to tmp, which uses Array.blit (see exercise 12.12).
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Program 94 — Merge sort on arrays.

let merge al a2 1 mr =
let i = ref 1 in
let j = ref m in
for k =1 tor -1 do
if 'i <m && (!'j =r || le al1.(!'i) al.(!j)) then begin
a2.(k) <- al.('i); dincr i
end else begin
a2.(k) <- al.(!j); incr j
end

done

let mergesort a =
let tmp = Array.copy a in
let rec mergesort_rec 1 r =
if 1 < r - 1 then begin
letm=(1+r)/ 2in
mergesort_rec 1 m;
mergesort_rec m r;
Array.blit a 1 tmp 1 (r - 1);
merge tmp a 1 m r
end
in
mergesort_rec O (Array.length a)
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Complexity

The number of comparisons is exactly the same as in case of lists. The number of

assignments is also the same: N assignments in the function merge (each element

being copied from al to a2) and N assignments performed by Array.blit.
Let A(N) be the total number of assignments in mergesort. We then have:

A(N) = 2A(N/2) + 2N,

that is, 2N log N assignments in total. In the end, we obtain the results of
figure 12.6.

‘ best case | average | worst case

comparisons %N log N | NlogN Nlog N
assignments | 2N log N | 2Nlog N | 2N log N

Figure 12.6: Complexity of merge sort on arrays.

12.4 Heapsort

Heapsort is based on the use of a priority queue. Such a structure permits
the addition of elements and the extraction of its smallest element. The idea
behind heapsort is the following: We construct a priority queue containing all
the elements to be sorted and then extract the elements one by one. Since the
extraction operation returns the smallest element each time, the elements come
out in increasing order.

In principle, any priority queue structure could be used. However, a structure
in which the addition and extraction operations have cost O(log N) gives an
optimal sorting algorithm in O(N log N). Both of the heap structures presented
in chapter 6 have such complexity.

12.4.1 Lists

We assume we are given a functor PriorityQueue that implements a priority
queue structure. In principle, we can choose between imperative and persistent
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structures. However, there is no advantage to choosing a persistent structure
here. We therefore use the imperative heap structure described in section 6.3
Imperative Priority Queues. Its interface is given again in program 95.

Program 95 — Minimal signature for imperative priority queues.

type t

type elt

val create : unit -> t

val is_empty : t -> bool
val add : elt -> t -> unit
val get_min : t -> elt

val remove_min : t -> unit

We apply the functor PriorityQueue by passing as argument a module that
compares elements with compare. To avoid having to reverse the list at the end,
we order elements in decreasing order, that is, the element of highest priority
for the priority queue will be the largest element for the order relation 1t. We
therefore write:

module Heap = PriorityQueue(struct
type t = elt
let compare x y = compare y X
end)

The function heapsort takes a list 1 of elements to be sorted and begins by
creating an empty heap h.

let heapsort 1 =
let h = Heap.create () in

The function then adds all the elements of the list 1 to the heap.
List.iter (fun x -> Heap.add x h) 1;

Next, we create a reference res that will receive the sorted result. We extract
the elements from the heap with the help of a while loop.
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Program 96 — Heapsort on lists.

let heapsort 1 =

let h = Heap.create () in

List.iter (fun x -> Heap.add x h) 1;

let res = ref [] in

while not (Heap.is_empty h) do
let x = Heap.get_min h in
Heap.remove_min h;
res := x :: !res

done;

Ires

let res = ref [] in
while not (Heap.is_empty h) do

If the heap is not empty, we extract its smallest element x using Heap.get_min
and then remove it from the heap using Heap.remove_min.

let x = Heap.get_min h in
Heap.remove_min h;

We add x at the head of the list contained in res and then repeat.

res := xX :: !res
done;

Once the heap becomes empty, it suffices to return the contents of res.
Ires

Note that the fact of having reversed the order relation in the heap structure
means that we do not have to reverse the list !'res at the end of heapsort.
Program 96 contains the complete code.
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Complexity

The complexity of heapsort depends on the complexity of the heap structure
used. As we mentioned in the introduction to this section, if the operations add
and remove_min of the heap structure have at most logarithmic cost, then the
sort itself has cost O(Nlog N) in the worst case, which is optimal. If we now
assume that the heap structure used is that of section 6.3 Imperative Priority
Queues, we can give a more precise result. Indeed, we then know that add and
remove_min each make a maximum of 2logk comparisons to add or remove
an element from a heap containing k£ elements, so that the total number of
comparisons in the worst case is at most:

4(logl +1log2+---+logN) ~ 4N log N

In fact, we will see in the next section that the construction of the heap has
only linear cost, so that the total is equivalent to 2N log N.

12.4.2 Arrays

To implement heapsort on an array a, we will construct the heap structure
directly inside this array. The organization of the heap in the array is exactly the
same as in section 6.3 Imperative Priority Queues: The left and right children
of a node stored at index ¢ are respectively stored at indices 2¢ + 1 and 2i + 2.
As in the previous section, we construct a heap for the reverse order relation,
that is, a heap in which the largest element is to be found at the root.

To construct the heap, we consider the elements of the array from right to
left. In each iteration, we have the following situation:

0 k k+1 n
’ ? | heap being built ‘

The portion alk+1..n[ contains the bottom of the heap being constructed,
that is, it is a forest of heaps whose roots are situated at indices ¢ such that
k <1t < 2k + 3. We then make the value a. (k) descend to its place in the heap
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rooted at k. Once all the elements have been traversed, we have a single heap
rooted at 0.

The second step consists in deconstructing the heap. For this, we exchange
its root 7 in a. (0) with the element v in a.(n-1). The value r is then in its
final place. We then reestablish the heap structure on af0..n-1] by making v
descend to its place in the heap of size n-1 rooted at 0. We repeat the operation
for positions n-1, n-2, etc. In each iteration k, we have the following situation:

0 k n
] heap f sorted ‘

There is a heap in the portion a[0..k[, all of whose elements are smaller than
those of the portion alk..n[ that is already sorted.

The two steps of the above algorithm use the same operation consisting in
making a value descend until it reaches its position in a heap. This is imple-
mented using a recursive function move_down that takes as arguments an array
a, an index k, a value v, and an upper bound on the indices, n.

let rec move_down a k v n =

We assume that we already have a heap hj, rooted at 2k+1, so that 2k+1 < n,
and similarly a heap hg, rooted at 2k+2, so that 2k+2 < n. The objective is to
construct a heap rooted at k, containing v and all the elements of h; and he.
We begin by determining whether the heap rooted at k will be reduced to a leaf,
that is, whether the heap hy is empty. If this is so, we assign the value v to
a. (k), and we are done.

let r =2 * k + 1 in
if r >= n then
a.(k) <- v

Otherwise, we determine the index rmax of the largest of the two roots of hy
and heo, by carefully handling the case in which ho is empty.

else
let rmax =
if r+1 < n then if 1t a.(r) a.(r+1) then r+1 else r
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else r in

If the value v is greater than or equal to a. (rmax), the descent is complete, and
it suffices to assign v to a. (k).

if le a.(rmax) v then a.(k) <- v

Otherwise, we move a. (rmax) up and continue the descent of v recursively at
the position rmax.

else begin a.(k) <- a.(rmax); move_down a rmax v n end
The sorting function takes an array a as argument:

let heapsort a =
let n = Array.length a in

We begin by constructing the heap bottom-up by calling move_down. We avoid
unnecessary calls for heaps reduced to single leaves by beginning the loop at
| 5] — 1. (Indeed, for every strictly greater index k, we have 2k+1 > n.)

for k = n/2 - 1 downto O do move_down a k a.(k) n done;

Once the heap is fully constructed, we extract its elements one by one, in de-
creasing order. As explained above, for each index k, we swap a. (0) with the
value v in a. (k) and then move v down to its place in the heap.

for k¥ = n-1 downto 1 do
let v = a.(k) in a.(k) <- a.(0); move_down a O v k
done

Note that the specification of move_down allows us to avoid assigning v to a. (0)
before beginning the descent. Program 97 below contains the complete code.

Complexity

Let us first consider the cost of a call to move _down a k v n. The number of
recursive calls is bounded by logn since the value of k is doubled at each call.
Furthermore, move_down performs at most two comparisons and an assignment
in each call. Thus, in the worst case, we have a total of 2logn comparisons and
log n assignments.
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Program 97 — Heapsort on arrays.

let rec move down a k v n =
let r =2 x k +1 in
if r >= n then
a.(k) <- v
else
let rmax
if r+1 < n then if 1t a.(r) a.(r+1) then r+l1 else r
else r in
if le a.(rmax) v then a.(k) <- v
else begin a.(k) <- a.(rmax); move_down a rmax v n end

let heapsort a =

let n = Array.length a in
for k = n/2 - 1 downto O do move _down a k a.(k) n done;
for k¥ = n-1 downto 1 do

let v = a.(k) in a.(k) <- a.(0); move_down a 0 v k
done
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For the sorting itself, we can roughly bound the number C'(N) of compar-
isons in each call to move_down by 2log IV, that is, at worst a total of 3N log NV
comparisons (N log N comparisons for the first step and 2N log N for the sec-
ond). Similarly, the total number of assignments is, at worst, %N log N.

In fact, we can be more precise and show that the first step of the algo-
rithm, namely, the construction of the heap, has linear cost. (See for example |7,
Sec. 7.3].) It follows that only the second part of the algorithm contributes to the
asymptotic complexity so that C(N) ~ 2N log N. For an analysis on average of
heapsort, the reader is referred to The Art of Computer Programming [15, vol. 3, p. 152].

Note that heapsort executes in constant memory. Indeed, the function
move_down performs only tail-recursive calls and, moreover, all computations
are performed in-place inside the array a.

12.5 Optimal Complexity

We present here a quick proof of the fact that the optimal complexity of a sorting
algorithm that performs only element comparisons is in O(N log N).

We can visualize such an algorithm as a binary tree. Each internal node
symbolizes a comparison that has been performed, the left (resp. right) subtree
representing the rest of the algorithm when the test is positive (resp. negative).
Each leaf constitutes a possible result, that is, a permutation performed on the
initial sequence. If we assume N distinct elements, there are N! possible per-
mutations and, hence, at least N! leaves in this tree. Its height is consequently
at least log N!. Now the longest path from the root to a leaf corresponds to the
largest number of comparisons performed by the algorithm on an input. There
is, therefore, an input for which the number of comparisons is at least log N!. By
Stirling’s formula, we know that log N! ~ Nlog N. For a more detailed proof,
the reader is referred to The Art of Computer Programming [15, Sec. 5.3].

12.6 Experimental Evaluation

In this section, we compare the different sorting algorithms presented in this
chapter empirically.
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Evaluation Protocol

For a given list or array, we evaluate the performance of several algorithms
on the same input as follows. We execute each sorting algorithm five times,
measuring the computation time in each case. We exclude the smallest and the
largest values, and take the average of the three remaining values.

For lists, we consider randomly constructed as well as already sorted lists,
with lengths 2¢ x 1000 for i ranging from 0 to 10. For arrays, we consider
randomly filled as already sorted arrays, with lengths 2¢ x 1000 for i ranging
from 0 to 12. It is important to consider the case of data that is already sorted
because that represents a realistic situation for which we wish to verify that our
sorting algorithms are efficient.

Evaluation on Lists

We compare the algorithms listed in figure 12.7. Figures 12.8 and 12.9 present
the results.

For random lists (figure 12.8), we observe the following: Insertion sort
(insertion) can only be used in case of small lists, given its quadratic complex-
ity. (We do not give the computation time for lists longer than 16,000.) Two of
the three quicksort algorithms, (quicksort and quicksort (rand)) triggered
a stack overflow on lists of length 2!°. The algorithm heapsort (trees), which
uses binary trees, is penalized due to the construction of the trees, even if its
complexity is optimal. The other sorting algorithms have comparable efficiency,
the fastest being that of the OCaml standard library.
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insertion insertion sort of program 89

quicksort quicksort of program 91

quicksort (log stack) quicksort with the first call made to the smaller of
the two lists after partitioning (see exercise 12.4)

quicksort (rand) quicksort with a randomly chosen pivot (see exer-
cise 12.5)

mergesort merge sort of program 93

mergesort (reuse) merge sort with optimization consisting in not con-

structing intermediate lists when partitioning (see
exercise 12.10)

List.sort the function List.sort of the OCaml standard li-
brary (version 3.11.2)
heapsort (arrays) heapsort of program 96, using the structure based

on arrays presented in section 6.3

heapsort (trees) heapsort of program 96, using the structure based
on binary trees presented in section 6.4

Figure 12.7: Sorting algorithms on lists.

In case of already sorted lists (figure 12.9), we observe the following: In-
sertion sort (insertion) has quadratic complexity. (The favorable case would
have been that of a list sorted in decreasing order.) The first two quicksort
algorithms, quicksort and quicksort (log stack), have quadratic complex-
ity, which is explained by the arbitrary choice of the first element of the list as
pivot. (We do not give the computation time for lists of length greater than
16,000.) The third quicksort algorithm, quicksort (rand), behaves well but
triggers a stack overflow on lists of size 2'0 x 1000. The algorithm heapsort
(trees) remains penalized due to the construction of the trees, as in case of
random lists.

We may draw the following conclusions: Merge sort is the one that best
combines simplicity and efficiency. Even its simplest version has an efficiency
comparable to the optimized version of the OCaml standard library. Heapsort
always performs well, but its implementation is considerably more complex than
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that of merge sort. Finally, we observe that using quicksort on lists is not
straightforward because we must, at a minimum, combine the optimizations of
exercises 12.4 and 12.5, to avoid both stack overflows and the unfavorable case
of quadratic complexity.

Evaluation on Arrays

We now compare the different techniques for sorting arrays of integers based on
algorithms listed in figure 12.10. Figures 12.11 and 12.12 present the results.

For random arrays (figure 12.11), we observe the following: As in case of
lists, insertion sort can only be used for small arrays. The two heapsort algo-
rithms, heapsort and Array.sort, are slightly less efficient than merge sort
and quicksort. The two most efficient algorithms are both merge sorts.

For already sorted arrays (figure 12.12), we observe the following: Here,
the first three quicksort algorithms, quicksort, quicksort (insertion), and
quicksort (log stack), are in their most unfavorable case, which may be
explained by the arbitrary choice of the left-most element as pivot. (We do
not give the computation time for arrays of length greater than 16,000.) The
version of quicksort with a randomly chosen pivot achieves a good efficiency,
comparable to that of mergesort.

Of all the sorting algorithms in O(NN log N), heapsort is among the least
efficient while merge sort is among the most efficient. Here, insertion sort
(insertion) is the most efficient, since we are in the favorable case of linear
complexity. (The unfavorable case would have been that of an array sorted in
decreasing order.)

We may draw the following conclusions: If we are allowed to allocate an
intermediate array, in other words, to temporarily double memory use, then
merge sort is the best choice. As in case of lists, it combines simplicity and
efficiency. If, however, we wish to sort an array in-place, we must either use
heapsort or quicksort, taking care to combine it with the optimizations of ex-
ercises 12.6 and 12.8, to avoid both stack overflows and quadratic behavior due
to a bad choice of pivot.
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12.7 Exercises

12.1 Write a function two_way_sort: bool array -> unit that sorts a boolean
array in-place, performing only swaps of elements, with the convention that
false < true. The complexity should be proportionate to the number of ele-
ments.

12.2 (Dijkstra’s Dutch national flag problem) Write a function that sorts an
array in-place. The array contains values representing the three colors of the
Dutch flag, namely:

type color = Blue | White | Red

Only swaps of elements in the array may be performed. The complexity should
be proportionate to the number of elements.

12.3 More generally, we consider the case of an array containing k distinct
values. To simplify matters, we assume that we are dealing with integers
0,...,k —1. Write a function that sorts such an array in O(max(k, N)) time,
where N is the size of the array.

Quicksort

12.4 One way to avoid a potential stack overflow in the function quicksort
on lists is by first implementing a non-tail-recursive call to sort the smaller of
the two lists, followed by a tail-recursive call to sort the larger one. Hint: For
the tail-recursive call, generalize the function quicksort so that it takes as addi-
tional arguments the two lists left and right, so that quicksort left 1 right
returns the concatenation, in this order, of left, the sorted list 1, and right.
Show that the size of the stack remains logarithmic even in the worst case.

12.5 Modify the function partition on lists to use a randomly chosen element
of the list as pivot. The aim is to avoid the unfavorable case of a sorted list,
where quicksort would then have quadratic complexity.

12.6 One way of avoiding a potential stack overflow in the function quick_rec
on arrays is to begin by performing the recursive call on the smaller of the two



12.7. Exercises 403

portions. Show that the size of the stack remains logarithmic even in the worst
case.

12.7 A classic idea to speed up sorting algorithms consists in switching to
insertion sort when the number of elements to be sorted is small, that is, less
than a constant fixed in advance (for example, 5). Modify the quicksort im-
plementation on arrays taking this idea into consideration. Use the function
insertion_sort on arrays (program 90) and generalize it by passing two in-
dices, 1 and r, to delimit the portion of the array to be sorted.

12.8 Modify the quicksort implementation on arrays to use a pivot chosen
randomly in the segment a[l..r[. As with lists, the idea is to avoid the unfavor-
able case of an already sorted array, where quicksort would then have quadratic
complexity. One simple solution is to shuffle the array before sorting it, for
example using exercise 2.11.

12.9 When numerous elements of the array are equal, the preceding exercise
does not always suffice to guarantee a good choice of pivot. Modify the function
partition so that it separates the elements that are strictly smaller than the
pivot (to the left), those equal to the pivot (in the center), and those strictly
greater than the pivot (to the right). Instead of two indices m and i dividing
the segment of the array into three parts, as illustrated in figure 12.2.2, we
will use three indices to divide the segment of the array into four parts. The
new function partition must now return two indices. Modify the function
quick_rec accordingly. Partitioning into three parts in this way is the subject
of exercise 12.2.

Merge Sort

12.10 One source of inefficiency of merge sort on lists is the function split.
Given a list 1 containing n elements, split 1 constructs two completely new
lists, 11 and 12, containing all the elements of 1. We can avoid this construction
by using only the list 1, without allocating any new lists. Rather than taking
every other element of 1 to construct 11 and 12, we choose for 11 the [n/2]
first elements of 1 and for 12 the [n/2] last elements. To construct 12, write
a function chop: int -> ’a list -> ’a list such that chop nl 1 returns
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the suffix of 1 obtained by removing its n1 first elements. As for 11, it suffices
to represent it as a prefix of 1, that is, to add an argument n1 to the function
mergesort, indicating that the first n1 elements of 1 must be sorted. Rewrite
the function mergesort using this idea. Reuse the function merge of program 93.
Calculate the complexity in number of allocations of the function mergesort.

12.11 One way of optimizing the function mergesort on almost sorted arrays
is by avoiding the merging when, after both recursive calls, the elements of the
left half are all smaller than the elements of the right half. We can easily test this
by comparing the right-most element of the left half with the left-most element
of the right half. Modify the function mergesort using this idea.

12.12 To avoid copying a into tmp with Array.blit in the function mergesort
on arrays, one possibility is to sort the two halves of the array a while simultane-
ously shifting them to the array tmp, then merging tmp back into a as is already
done. However, sorting the elements of a into tmp requires, conversely, that the
two halves be sorted in-place, then merged into tmp. We therefore need two
mutually recursive sorting functions. We can make do with only one by passing
an additional parameter indicating whether the sorting must be done in-place
or in tmp. Modify the functions mergesort and mergesort_rec following this
idea.

12.13 In merge sort, as in quicksort, we can switch to insertion sort when the
number of elements to be sorted is small (see exercise 12.7).
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insertion

insertion sort of program 90

quicksort

quicksort of program 92

quicksort (insertion)

quicksort using an insertion sort on small seg-
ments (see exercise 12.7)

quicksort (log stack)

quicksort with the first call on the smallest of
the two segments (see exercise 12.6)

quicksort (rand)

quicksort with a pivot chosen randomly (see ex-
ercise 12.8)

mergesort

merge sort of program 94

merge sort (swap)

merge sort with the optimization consisting
in avoiding the use of Array.blit (see exer-
cise 12.12)

Array.stable_sort

the function Array.stable_sort of the OCaml
standard library (version 3.11.2)

heapsort

heapsort of program 97

Array.sort

heapsort of the OCaml standard library

Figure 12.10: Sorting algorithms on arrays of integers.
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Figure 12.11: Comparison of sorting on random arrays.
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13

Graph Algorithms

In this chapter, we present graph algorithms. These algorithms are independent
of the underlying graph data structure. They can be used, in particular, with all
the graph structures of chapter 7. Below, we will take as given a module G whose
signature includes at least the types, functions, and modules of program 98.
Graphs are of type graph, and their vertices are of type vertex. The function
iter_vertex iterates over the vertices of a given graph, applying a function
passed as argument to each of them. The function iter_succ iterates over the
successors of a given vertex. The module H provides a hash table structure with
vertices as keys.

13.1 Breadth-First Search

The first traversal that we present is called breadth-first search (BFS). It con-
sists in exploring the graph by moving outwards “in concentric circles,” from
a particular vertex s, called the root. We first traverse the vertices that are
exactly one arc away from the root s, then those situated two arcs away, and
so forth. Consider, for example, the graph on the left in figure 13.1. Beginning
from vertex 5, we first visit vertices 4 and 1, which are directly linked to vertex 5.
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Program 98 — Minimal signature of a graph structure.

type graph

type vertex

val iter_vertex: (vertex -> unit) -> graph -> unit

val iter_succ: (vertex -> unit) -> graph -> vertex -> unit
module H: HashTable with type key = vertex

We then visit vertices 0, 6 and 2, followed by vertex 7, and finally vertex 3. The
graph, with distances to the root indicated as exponents, is shown on the right.

IGNO IR ¢ G-
(D&~ (@~~~
Figure 13.1: Breadth-first search of a graph.

We write breadth-first search as a function iter_bfs that takes as arguments
a graph g, a root s, and a function £ that will be applied to the elements of g
as these are discovered. We begin by creating a hash table that will contain the
vertices already discovered by the traversal.

let iter_bfs f g s =
let visited = H.create () in

The search itself is based on the use of a queue into which vertices are inserted
as they are discovered. The idea is that, at any point in time, the queue will
contain the vertices situated at distance d from the root, followed by the vertices
situated at distance d + 1:

— ’ vertices at distance d \ vertices at distance d + 1 ‘ —
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This is the concretization of our notion of “concentric circles,” more precisely
of the two consecutive concentric circles that are being considered. This property
is crucial for the correctness of breadth-first search!. Here, we use the module
Queue to implement the queue. Initially, it contains only the root. It is useful
to write a function add that adds a vertex simultaneously in the hash table and
the queue. We begin by using it on the root s.

Queue.create () in
H.add visited w (); Queue.add w queue in

let queue
let add w
add s;

Another important property is that each vertex contained in the queue is also
contained in the table visited, which the function add guarantees in an obvious
manner. We use a loop to examine vertices in the order in which they are
discovered, until all vertices reachable from the root have been examined. As
long as the queue is not empty, we extract the first element v of the queue and
apply the visitor function f to it.

while not (Queue.is_empty queue) do
let v = Queue.pop queue in
f v;

For each successor w of v not yet found, that is, not contained in the table
visited, we use add to add it to both the queue and the table.

iter_succ (fun w -> if not (H.mem visited w) then add w) g v
done

This completes the while loop and the function iter_bfs. The complete code
is given in program 99 below.

This code applies equally well to undirected and directed graphs. Note that
some vertices may not be discovered by this algorithm. These are the vertices v
for which there is no path between the root and v. In other words, breadth-first
search determines the set of vertices that can be reached from the root and
even determines their minimal distance from the root in number of arcs (see
exercise 13.1).

'For a detailed proof of the correctness of breadth-first search, consult [7, chap. 23].
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Program 99 — Breadth-first search.

let iter_bfs f g s =
let visited = H.create () in
let queue = Queue.create () in
let add w = H.add visited w (); Queue.add w queue in
add s;
while not (Queue.is_empty queue) do
let v = Queue.pop queue in
f v;
iter_succ (fun w -> if not (H.mem visited w) then add w) g v
done

The complexity of breadth-first search is easy to determine. Each vertex
is placed in the queue at most once and is therefore examined at most once.
Each arc is considered at most once, when its starting vertex is examined. For a
graph with N vertices and E arcs, the complexity is therefore O(N + E), which
is optimal. The complexity in space is O(N), since the queue, like the hash
table, may contain (almost) all vertices in the worst case.

There is another way to implement breadth-first search, without using a
queue. As noted above, the queue has a very particular structure, with vertices
at distance d followed by vertices at distance d + 1. We see, therefore, that
the queue structure is not really necessary. All we need are two “buckets,” one
containing the vertices at distance d, and the other, those at distance d+ 1. We
may concretize these, for instance, using lists. When we are done with bucket
d, we swap the two buckets. This does not affect the complexity.

13.2 Depth-First Search

The second graph traversal that we present is depth-first search (DFS). It uses a
backtracking algorithm: As long as we can follow an arc, we do so, and when it is
no longer possible, we backtrack. As with breadth-first search, we mark vertices
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as they are discovered, to avoid getting stuck in a cycle. Consider the example of
the graph on the left in figure 13.2. We begin a depth-first search from vertex 2.
Two arcs come out of this vertex, 2 — 4 and 2 — 5. We arbitrarily choose
to consider the arc 2 — 5 first and, accordingly, proceed to vertex 5. No arc
comes out of 5, so we cannot continue. We therefore backtrack to vertex 2, and
consider the second outgoing arc, 2 — 4. From 4, we can only follow the arc
4 — 3. Similarly, from 3, we can only follow the arc 3 — 1. Two arcs emerge
from vertex 1: 1 — 0 and 1 — 4. We choose to follow the arc 1 — 4 first. It leads
to a vertex that has already been visited. We therefore backtrack. Returning
to 1, we consider the other arc, 1 — 0, which leads to 0. From there, the only
outgoing arc leads to 3, which has also already been visited. We therefore return
to 0, then to 1, then to 3, then to 4, and finally to 2. The traversal is complete.
If we redraw the graph with the order in which the vertices were discovered as
exponents, we get the graph on the right in figure 13.2.

ooe®'®@

Figure 13.2: Example of depth-first search.

As with breadth-first search, we will make use of a hash table containing the
vertices already discovered.

let iter_dfs f g s =
let visited = H.create () in

Depth-first search is written as a recursive local function visit taking a vertex v
as argument. Its code is a few lines long:

let rec visit v =
if not (H.mem visited v) then begin
H.add visited v ();
f v;
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Program 100 — Depth-first search.

let iter_dfs f g s =
let visited = H.create () in
let rec visit v =
if not (H.mem visited v) then begin
H.add visited v ();
f v;
iter_succ visit g v
end
in
visit s

iter_succ visit g v
end

If vertex v has already been discovered, there is nothing more to be done. Oth-
erwise, we mark it and visit it with the function f. Then, we consider each
successor w, recursively triggering a depth-first search on each one. One detail
is crucial: We added v to the table visited before considering its successors.
This is what keeps us from getting stuck in a cycle. To conclude the function
iter_dfs, we have only to call visit on the root s:

in

visit s
The complete code is given in program 100.

The complexity is O(NN + E), by the same logic as in case of breadth-first
search. Space complexity is subtler since it is the stack of recursive calls that con-
tains the vertices being visited, and that plays the role of the queue in breadth-
first search. Since in the worst case all the vertices can be present in the stack
or hash table, it follows that the space complexity is O(N).

Like breadth-first search, depth-first search allows us to determine the set
of vertices that can be reached from the root s. Figure 13.3 illustrates another
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example, where depth-first search is triggered from vertex 1. Vertices 2 and 5
are not discovered. In particular, depth-first search, like breadth-first search, is
a way to determine the existence of a path between a particular vertex, namely,
the root, and other vertices of the graph. If that is the only objective (if,
for example, the minimal distance does not interest us), depth-first search is
generally more efficient. Indeed, its memory use (that is, the call stack) is often
inferior to that of breadth-first search. The typical example is that of a tree, in
which memory use is limited to the height of the tree for depth-first search, but
could be as large as the entire tree in case of breadth-first search. Depth-first
search has many other applications that lie beyond the scope of this book. See,
for example, Introduction to Algorithms [7].

Figure 13.3: Another depth-first search.

13.3 Shortest Path

We consider here graphs whose arcs are labeled with weights (representing dis-
tances, for example). We seek the shortest path between two vertices, where the
length is no longer the number of arcs but rather the sum of weights along the
path. Thus, if we consider the weighted graph of figure 13.4, the shortest path
from vertex 2 to vertex 0 is of length 5. This is the path 2 -4 -3 — 1 — 0,
which is shorter than the path 2 — 1 — 0, of length 6, even if the latter contains
fewer arcs. Similarly, the shortest path from vertex 2 to vertex 5, via vertex 4,
is of length 2.

As with breadth- and depth-first search, we take as given a vertex s, from
which we seek to determine the shortest paths to the other vertices. We also
require the weight of each arc. One possibility is to modify the graph structure
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2 4
O D—H2)
1

Figure 13.4: Example of a weighted graph.

to include this. Here, however, we take as given a weight function weight of the
following type, where weights are of type float:

val weight: graph -> vertex -> vertex -> float

This function will only be called with arguments g, x, and y if there is an arc
between x and y in the graph g.

We present two algorithms to solve the problem. The first, Dijkstra’s al-
gorithm, assumes that the weights are always non-negative. The second, the
Bellman-Ford algorithm, involves no such hypothesis regarding the weights.

Dijkstra’s Algorithm

Dijkstra’s algorithm is a generalization of breadth-first search. Here, too, we
proceed in “concentric circles.” The difference is that the radii of these circles
represent distance in terms of total weight rather than number of arcs. Thus,
in the example above, starting from the root 2, we first reach the vertices at
distance 1 (namely, 4), then those at distance 2 (namely, 3 and 5), then those at
distance 3 (namely, 1), and finally those at distance 5 (namely, 0). A possible
complication is that we may reach a vertex at a certain distance (for example,
vertex 5 with the arc 2 — 5), and then later find a shorter path by taking
different arcs (for example, 2 — 4 — 5). A queue no longer suffices as it did in
breadth-first search. Instead, we will use a priority queue (see chapter 6). The
priority queue will contain the vertices already found, ordered by distance from
the root. When a better path to a vertex is found, the vertex is reinserted in
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the queue with a higher priority, that is, a shorter distance?.

We now describe the code of Dijkstra’s algorithm. To implement the priority
queue, we assume a functor PriorityQueue, parametrized by a type t equipped
with a total order. (Such functors were presented in chapter 6.) Here, the type t
will be that of pairs (v,d), where v is a vertex and d is its distance from the
root. The order on these pairs is that obtained by comparing the distances. We
introduce the following module:

module VertexDistance = struct

type t = vertex * float

let compare (_, d1) (_, d2) = Stdlib.compare dl d2
end

It only remains to apply the functor PriorityQueue to the module VertexDistance,
that is:

module P = PriorityQueue(VertexDistance)

We assume here that the module P provides a function create to construct a new
priority queue, a function add to add an element, and a function extract_min
that removes and returns the smallest element for the order defined by the
function compare.

We now arrive at the code of the algorithm itself. We write it as a function
dijkstra that takes as arguments a graph g, a root s, and a function £. The
function £ will be applied to elements of g as their shortest distance to s is
determined, the vertex being passed to f as first argument, and its distance
as second argument. We begin by creating a hash table that will contain the
vertices already reached by the traversal.

let rec dijkstra f g s =
let visited = H.create () in

We also create a hash table, distance, and the priority queue, queue. The hash
table will contain the distance currently known for each vertex.

2 Another solution would be to use a priority queue structure where it is possible to modify
the priority of an element already in the queue. Such structures exist but are complex to
implement and, although asymptotically better, do not necessarily bring any practical gains.
The solution presented here is a good compromise.
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let distance = H.create () in
let queue = P.create () in

It is convenient to introduce a function add that will add a vertex to both these
data structures at the same time. We begin by applying it to the root s.

let add v d = H.replace distance v d; P.add queue (v, d) in
add s O.;

We will see below why H.replace is preferred over H.add. We then continue
with a loop as long as the queue is not empty.

while not (P.is_empty queue) do

We extract the first element of the queue, u, together with the distance to the
root, du. If the vertex u is already in visited, then we have already determined
the distance of s to u, and there is nothing more to be done.

let (u, du) = P.extract_min queue in
if not (H.mem visited u) then begin

This situation can indeed occur when a first path is found and another, shorter,
path is found subsequently. The latter then passes before the former in the
priority queue. When the longer path finally comes out of the queue, it should
be ignored. If the vertex is not in visited, however, that means that we have
just found a shortest path from s to u, which we indicate by adding u to the
table visited and by applying the visitor function £ to u and du.

H.add visited u ();
f u du;

Next, we will examine all arcs emerging from u. For each arc u — v, the distance
to v obtained by following the corresponding arc is the sum of the distance du
and the arc weight, that is, weight u v. Several scenarios are possible for
the vertex v. Either it is the first time that it is reached, or it was already
in distance. In the latter case, we may have decreased the distance to v by
passing through u. If so, it suffices to use the function add to update the tables.
We handle each successor v in the function visit below:
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let visit v =
let d = du +. weight g u v in
if not (H.mem distance v) || d < H.find distance v then
add v d

It only remains to apply this function to all arcs emerging from u, which
concludes the body of the while loop.
in
iter_succ visit g u
end
done

Once we exit the while loop, all vertices that may be reached from s have been
visited. The complete code is given in program 101 above.

Figure 13.5 shows the result of Dijkstra’s algorithm on the graph given in the
previous example, with 2 as root. The graph is drawn with the final distances
obtained for each vertex as exponents. In this example, all vertices have been
reached by the traversal. As for the breadth- and depth-first searches, this is
not always the case: only vertices for which there is a path from the root will
be reached.

Complexity

Let us evaluate the cost of Dijkstra’s algorithm in the worst case. The priority
queue can contain up to E elements, because the algorithm visits each arc at
most once, and each arc can lead to the insertion of an element in the queue.
Assuming that the priority queue operations add and extract_min have loga-
rithmic cost (as is the case for the priority queues described in chapter 6), each
operation on the queue will have cost O(log E), that is, O(log N), since E < N2.
The total cost is therefore O(Elog N).

Bellman-Ford Algorithm

We present here a second solution to the shortest path problem, this time with-
out assuming that the weights are non-negative. Omitting this assumption
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Program 101 — Shortest path (Dijkstra’s algorithm).

module VertexDistance = struct

type t = vertex * float

let compare (_, d1) (_, d2) = Stdlib.compare di d2
end
module P = PriorityQueue(VertexDistance)

let rec dijkstra f g s =
let visited = H.create () in
let distance = H.create () in
let queue = P.create () in
let add v d = H.replace distance v d; P.add queue (v, d) in
add s O.;
while not (P.is_empty queue) do
let (u, du) = P.extract_min queue in
if not (H.mem visited u) then begin
H.add visited u Q;
f u du;
let visit v =
let d = du +. weight g u v in
if not (H.mem distance v) || d < H.find distance v then
add v d
in
iter_succ visit g u
end
done
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i

Figure 13.5: Result of Dijkstra’s algorithm.

introduces a subtlety. If the graph contains a cycle with strictly negative total
weight, and if this cycle can be reached from the root, then none of the vertices
that can be reached from the cycle will have a shortest path because we can
take this cycle as many times as we wish, reducing the total weight of the path
each time. The Bellman-Ford algorithm computes the shortest paths from the
root and detects any negative cycle that may be reached from the root.

This algorithm consists in repeating the following operation N times: Con-
sider each arc u — v of the graph and determine if taking it will reduce the
distance currently known between the source and v. The idea is that a shortest
path between s and v cannot contain more than N — 1 arcs, without which this
path would contain a cycle, which we could remove from the path if it is of
non-negative weight. This is why N iterations suffice.

Let us now write the code of the Bellman-Ford algorithm. We begin by
defining a function iter_edge that traverses all the arcs of a graph g.

let iter_edge f g =
iter_vertex (fun u ->
iter_succ (fun v -> f u v (weight gu v)) gu g

For each arc u — v, the function iter_edge applies the function £ to the vertices
u and v, and the distance of the arc u — v given by the function weight.

The function bellman_ford takes a graph g and a root vertex s as argu-
ments. It begins by creating a hash table h containing the known distances for
each vertex.

let bellman_ford g s =
let h = H.create () in
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We begin by initializing this table, giving s distance 0 and every other vertex
an infinite distance.

iter_vertex (fun v -> H.add h v max_float) g;
H.add h s O.;

We use here the constant max_float to represent an infinite distance. Then
we repeat the following operation N — 1 times: We examine each arc, using a
for loop and the function iter_edge.

for i = 1 to nb_vertex g - 1 do
iter_edge (fun u v w —->

For each arc u — v, we compute the distance d from the root to v that is
obtained by taking this arc. If it is smaller than the best distance currently
known, we record it.

let d = H.find h u +. w in
if d < H.find h v then H.replace h v d

Once this for loop is complete, we redo the operation an N-th and final time.
This time, the shortest paths can only be improved by the presence of a negative
cycle. We will signal this case by raising an exception.

done;
iter_edge (fun u v w ->
if H.find h u +. w < H.find h v then
raise NegativeCycle

This completes the Bellman-Ford algorithm. We can return the table h that
gives the distance of each vertex to the source. This is what is done in pro-
gram 102.

We illustrate the Bellman-Ford algorithm with an example. Consider the
graph of figure 13.6, for which we seek to determine the distances from vertex 5.
The table to the right of the graph gives the distance found for each vertex
after each step. Initially, all the vertices are at an infinite distance, except the
root 5. At each step, we assume the vertices are traversed in the order of their
numbering. We observe, for example, that the distance to vertex 2 initially
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Program 102 — The Bellman-Ford algorithm.

let iter_edge f g =
iter_vertex (fun u ->
iter_succ (fun v -> f u v (weight gu v)) g uw g

exception NegativeCycle

let bellman_ford g s =
let h = H.create () in
iter_vertex (fun v -> H.add h v max_float) g;
H.add h s O.;
for i = 1 to nb_vertex g - 1 do
iter_edge (fun u v w —>
let d = H.find h u +. w in
if d < H.find h v then H.replace h v d
) &
done;
iter_edge (fun u v w ->
if H.find h u +. w < H.find h v then
raise NegativeCycle

) 8;
h
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’ vertex H distance after ¢ steps
0 ©|oo| 2(-3]-3]|-3
1 oo | 1]|-3]-3|-3|-3
2 | 3| 2(-2]-2]-2
3 0|0 | -2]-2]-2|-2
4 | -4|-4]-4]-4|-4
5 0L 0] 0L 0] 0] O

Figure 13.6: Illustration of the Bellman-Ford algorithm.

takes the value 3 (the arc 5 — 2), then the value 2 (passing through vertex 1),
and finally the value -2 (passing through the vertices 4 and 1). After that, it
no longer varies. More generally, we observe here that none of the distances is
improved during the last two steps of the algorithm. In particular, there is no
negative cycle.

Complexity

The cost of the Bellman-Ford algorithm in the worst case is easy to evaluate. We
perform exactly N passes, and each pass examines each of the F arcs once and
only once. The complexity is therefore O(EN), that is, O(N?) in the worst case.
In practice, however, we can significantly improve performance by observing that
many arcs are examined unnecessarily when the distance from the root to the
starting vertex has not been modified. Another simple optimization consists in
stopping once a pass has not improved any of the distances. The complexity in
the worst case remains, nevertheless, the same.

13.4 Minimum spanning tree

We consider here an undirected graph whose arcs are labeled with weights. We
also assume that the graph is connected, that is, that each pair of vertices is
linked by a path. A spanning tree is a subset of the arcs, that does not contain
a cycle, and that links all vertices together. It is easy to convince ourselves that
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such a tree exists. For example, a depth-first search beginning at an arbitrary
vertex will determine such a tree: it is formed by all the arcs that led to the
discovery of a new vertex.

We seek then to solve the problem of finding a spanning tree whose total
weight is minimal. We present here a solution known as Kruskal’s algorithm.
This algorithm consists in traversing the arcs in increasing order of weight. For
each arc u — v, we determine if a cycle is created by adding the arc to the set
of arcs already selected to form the spanning tree. If this is so, we ignore the
arc. Otherwise, we select it. Once all the arcs have been examined, the set of
selected arcs form a minimum spanning tree (see exercises 13.24 and 13.25).

To implement this algorithm, we need to find an efficient means to determine
if selecting a new arc introduces a cycle among the already selected arcs. Luckily,
there is a simple solution to this problem, in the form of the structure of disjoint
sets studied in chapter 8. Indeed, it suffices to construct an initial structure in
which each vertex constitutes a class by itself. For any selected arc u — v, we
merge the classes of v and v. This materializes the fact that there now exists a
path between every pair of vertices in the new class. To test if an arc introduces
a cycle, it suffices therefore to test whether its extremities belong to the same
class.

Let us now write the code for Kruskal’s algorithm, as a function spanning_tree
that takes a graph as argument and returns a minimum spanning tree in the
form of a list of arcs. We take as given a module UF for the structure of disjoint
sets (see chapter 8), with the following signature:

module UF: sig

val create : vertex list -> t

val find : t -> vertex -> vertex

val union : t -> vertex -> vertex -> unit
end

We assume there is a function vertices that returns the list of vertices of a
graph. Such a function is easy to obtain from iter_vertex. Similarly, we
assume there is a function edges that returns the list of all arcs of a graph, each
arc being a triple (z,y,w), where w is the weight of the arc x — y. Here, too,
this function is easy to obtain from iter_edge and weight.
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The code of Kruskal’s algorithm begins by creating a union-find structure
based on the list of vertices of the graph:

let spanning_tree g =
let uf = UF.create (vertices g) in

Next, we sort the list of arcs of the graph in increasing order of weight, using
the library function List.sort. The comparison used here is that of weights,
with the usual order on floating-point numbers, that is, Stdlib.compare.

let compare (_,_,wl) (_,_,w2) = Stdlib.compare wl w2 in
let edges = List.sort compare (edges g) in

The list of arcs selected to form the spanning tree is stored in a local reference st.
let st = ref [] in

We then write a function cover that examines an arc (u,v,w) and determines
if it should be selected. For this, we compare the classes of vertices u and v
using the function UF.find. If they are different, we add the arc to the list st
and merge the two classes, using the function UF.union.

let cover ((u, v, w) as e) =
if UF.find uf u <> UF.find uf v then begin
UF.union uf u v;
st := e :: Ist
end

Finally, it only remains to examine each arc of the list edges using this function,
and then return the resulting list.

in

List.iter cover edges;

Ist

The code of Kruskal’s algorithm is given in program 103.

We illustrate Kruskal’s algorithm with an example. Consider the graph on
the top left of figure 13.7. Arcs are considered in increasing order of weight,
as presented in the table on the right in the figure. For each arc, we indicate
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Program 103 — Kruskal’s algorithm.

let spanning_tree g =
let uf = UF.create (vertices g) in
let compare (_,_,wl) (_,_,w2) = Stdlib.compare wl w2 in
let edges = List.sort compare (edges g) in
let st = ref [] in
let cover ((u, v, w) as e) =
if UF.find uf u <> UF.find uf v then begin
UF.union uf u v;

st (= e :: Ist
end
in
List.iter cover edges;
Ist

if it is selected (column “added”) and the resulting partition in the union-find
structure. The spanning tree obtained in the end is illustrated at the bottom
left of the figure. Its total weight is -2. It is important to note that arcs of the
same weight may be considered in any order. Thus, we have examined here the
arc 0 — 1 before the arc 1 — 4, but we could equally have done it the other way
around. The spanning tree would have been different, but its total weight would
have been the same.

A number of variations and optimizations are possible. Exercise 13.26 thus
proposes interrupting the arc traversal once we have selected N — 1 arcs. Simi-
larly, exercise 13.27 proposes using a priority queue rather than a sorting algo-
rithm. Be that as it may, the key idea remains the use of the disjoint-set data
structure.

Complexity

The cost of Kruskal’s algorithm is split between that of sorting the set E of arcs
and that of examining each arc. The first cost is O(E'log E) in the worst case, if
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’ weight \ arc \ added \ vertex partition ‘

{0}, {1}, {2}, {3}, {4}, {5}
4-5 yes {0},{1},{2},{3},{4,5}
0-—3 yes {0,3},{1},{2},{4,5}

0 0—4 yes {0,3,4,5}, {1}, {2}
0-—-1
1—-4

1 ves | {0,1,3,4,5}, {2}
1 no {0,1,3,4,5}, {2}
2 | 1-2| yes |{0,1,2,3,4,5)
3 [1-5| mno |{0,1,2,3,4,5)
4 3—4 no {0,1,2,3,4,5}
5 |2-5| no |{0,1,2,3,4,5}

Figure 13.7: Hlustration of Kruskal’s algorithm.

we use a sorting algorithm of optimal complexity (see chapter 12). The second
cost is O(E) if we consider that the operations on the wunion-find structure
are constant time (see chapter 8). The complexity of Kruskal’s algorithm is
therefore O(E'log E).

13.5 Exercises

Breadth-first Search

13.1 Modify the function iter_bfs to compute the distance, in number of
arcs, between the root and each vertex discovered by the traversal. A sim-
ple approach consists in associating this distance with each vertex in the table
visited. Return this table as the result of the function iter_bfs.

13.2 Modify the function iter_bfs so as to return a shortest path between
the root and the vertex, for each vertex discovered by the traversal. For each
vertex discovered, store the vertex that led to it, for instance, in a hash table.
We can then recover the path from the vertex discovered to the root “by going
backwards.”

13.3 Write a function that performs a breadth-first traversal of the nodes of
a tree by imitating the breadth-first search of a graph.
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13.4 Implement a cursor for binary trees (see section 9.3 Cursors) correspond-
ing to breadth-first search.

13.5 Use the previous exercise to write a program that colors a graph with k
colors without using the same color for two vertices linked by an arc. Proceed
by backtracking, using the persistent nature of the cursor to backtrack. If no
color assignment is possible, raise the exception Not_found.

Depth-first Search

13.6 Redo exercise 13.2 for depth-first search.

13.7 In many applications of depth-first search, we wish to traverse all the
vertices of the graph and not merely those that can be reached from a vertex s.
Using the function iter_vertex that traverses all vertices of the graph, modify
the function iter_dfs so that every vertex of the graph is visited exactly once.

13.8 For an undirected graph, a connected component is a maximal set of
vertices pairwise linked by a path. Explain how the variant of depth-first search
proposed in the previous exercise determines the connected components of an
undirected graph. Write the corresponding code.

13.9 Rewrite the function iter_dfs using a while loop rather than a recursive
function. Hint: Use a stack containing the vertices from which the depth-first
search is to be performed. The code should resemble that of a breadth-first
search, with the stack replacing the queue. There is, however, a difference in
the treatment of the vertices already visited. Show that the vertices are not
necessarily visited in the same order as in the recursive version.

13.10 Depth-first search can be modified to detect the presence of a cycle in
the graph. When the function iter_dfs comes across an already visited vertex,
we do not know a priori if we have found a cycle. It could be that the vertex
has already been reached by a parallel path. Instead of two states (reached/not
reached), the marking of the vertices should therefore be modified to use three:
reached /being visited /visited. Write a function has_cycle that determines the
presence of a cycle in a graph. Modify the function so that it returns the list of
vertices of the cycle found, if any.
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13.11 Let G be a directed graph that does not contain a cycle. We call such
graphs directed acyclic graphs (DAG). A topological sort of G is a traversal of
its vertices compatible with the arcs, that is, where a vertex x is visited before
a vertex y if there is an arc x — y. Modify program 100 so that it performs a
topological sort, in the form of a function with the following type:

topological_sort: (vertex -> unit) -> graph -> unit

Use a stack to which a vertex v is added once the call to visit v terminates.
Once the depth-first search is completed, apply the function passed as argument
to all the elements of the stack.

13.12 For a directed graph, a strongly connected component is any maximal
set of vertices pairwise linked by a path. Kosaraju-Sharir’s algorithm computes
the set of strongly connected components of a graph G, in time O(N + E), using
two depth-first searches. It proceeds as follows:

« We begin by constructing the transposition G¥ of the graph G, that is,
the graph having the same vertices as G but with the arcs reversed (see
exercise 7.1).

« Next, we traverse the vertices of G® according to a topological sort (see
previous exercise). For each vertex v, we perform a depth-first search in G,
starting from v, if v is not already part of a strongly connected component.
All the vertices that are reached by this search are then placed in a new
component.

Write a function scc: graph -> vertex list list that uses this algorithm
to compute the strongly connected components of a graph.

13.13 We can use depth-first search to construct a perfect maze in an n x m
grid. A perfect maze is one in which there is one and only one path between
any two cells. We begin by considering the graph in which all cells of the grid
are linked to their neighbors:
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We then perform a depth-first search beginning from an arbitrary vertex (for
example, the top left one). When we traverse the successors of a vertex, we do
so in random order. Once the traversal is completed, the maze is obtained by
declaring that we can pass from one vertex to another if the corresponding arc
was taken during the depth-first search. Exercise 8.7 proposes another way of
constructing a perfect maze.

13.14 We consider here the problem of playing peg solitaire. This is a game
of patience consisting of 32 pegs on a board with 33 holes. Initially, the pegs
occupy all the holes, except the one at the center of the board.

A peg can be removed from the board by having one of the four adjacent pegs
jump over it, provided that the hole where the peg is to land is empty. Here are
two possible moves starting from the initial position.

The aim of the game is to arrive at a situation in which there is only one peg
remaining, which occupies the central position.
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We can easily solve this problem using depth-first search on a graph in which
each vertex represents a board configuration.

o A board configuration can be represented by an integer whose (i + 7j)-
th bit indicates the presence of a peg at position (i,7) for 0 <i,j < 7.
Assuming a 64-bit machine, we let type state = int. Define two con-
stants, initial and final, representing respectively the initial and final
configurations of the game.

e A move can be represented by two configurations, the first one indicating
the two pegs involved (the one that is moved and the one jumped over),
and the second indicating the final position of the peg that was moved.
For example, the first move above is represented as follows:

Let type move = state * state. Construct a list containing the 88 pos-
sible moves (independent of what the configuration may be).

e Write a function possible_move to test if a move is possible in a given
configuration and a function move that performs the move, if one is possi-
ble. Derive from it a function iter_succ that traverses all possible moves
in a given configuration.

e Modify the function iter_dfs of program 100 to interrupt the traversal
once the configuration final is reached and return the path found, as in
exercise 13.6 above.

o Finally, write a function print that displays a configuration on the screen,
and use it to display the solution found, in the form of 32 successive
configurations.
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Note: The problem of peg solitaire is one of the problems discussed in the book
by Cousineau and Mauny The Functional Approach to Programming [9, page
216].

13.15 In the preceding exercise, depth-first search was a good solution because
all the paths were of the same length. When this is not the case, and if we seek
a path of minimal length, it is necessary to turn to breadth-first search instead.
However, this may require a lot of memory. In this case, Iterative deepening
search (IDS) offers a solution that has low memory requirements, but which is
still able to find a path of minimal length. The idea is to execute successive
depth-first searches, limited to maximal depths that are larger and larger.

o Explain why we can no longer memoize the vertices already visited during
the depth-first searches. Consider the following graph and assume that we
traverse it beginning at vertex 0.

e Implement iterative deepening search as a function ids: (vertex ->
bool) -> graph -> vertex -> unit that stops once it reaches a vertex
that satisfies the function passed as argument.

e In case of the traversal of a complete binary tree starting at the root,
show that iterative deepening search is no costlier than breadth-first and
depth-first searches.

Shortest Paths

13.16  Generalize the function dijkstra for distances of an arbitrary type, for
example in the form of a functor.

13.17 Redo exercise 13.2 for Dijkstra’s algorithm. Note: When a path is
improved, the corresponding table must be updated.
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13.18 Redo the steps of the Bellman-Ford algorithm, illustrated in figure 13.6,
assuming that the weight of the arc 0 — 4 is -3.

13.19 Warshall’s algorithm (exercise 7.6) can be easily adapted to compute
all shortest paths in a graph. This is the Floyd-Warshall algorithm. Let
V ={0,...,N — 1}. Initially, the distance d;; between vertices i and j equals
the weight of the corresponding arc, if there is one, and is otherwise co. The
algorithm then computes the minimal distance d; ; from i to j in O(N3) time
as follows:

for k from 0 to N — 1
for ¢ from 0 to N — 1
for j from 0 to N —1
d@j — min(di,j, di,k + ko)

Write a function that implements this algorithm. How can we treat the general
case, when vertices are not necessarily the integers 0,..., N — 17

13.20 Although Dijkstra’s algorithm allows us to find a path of minimal cost,
it may visit a number of vertices in the graph unnecessarily. Suppose we use
Dijkstra’s algorithm to find the shortest path (in terms of distance) between
two cities on a road network. The algorithm will explore the network in larger
and larger concentric circles centered around the starting city, until it reaches
the destination city. If we take the example of the French road network, and if
we seek the shortest path between Paris and Nice, it is likely that almost all the
cities of France will have been visited before Nice is reached.

The A* algorithm allows us to solve this problem through a finer control of
the order in which vertices are visited. This control takes the form of a heuristic
that estimates the distance remaining between a vertex and the destination.
The A* algorithm is identical to Dijkstra’s algorithm, except that the queue
no longer uses distance to the source as priority, but rather the sum of this
distance and the value given by the heuristic. If the heuristic is admissible, that
is, if it never overestimates the remaining distance, then the A* algorithm will
find the shortest path. An admissible heuristic for the road-network example
is the distance as a crow flies. If the heuristic always returns zero, we recover
Dijkstra’s algorithm.
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Let us consider the example of an infinite grid in which each point is linked
to its eight direct neighbors.

35S
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The cost here is the Euclidean distance, that is, four neighbors are at distance 1,
and the other four at distance v/2. We can therefore use as heuristic the Eu-
clidean distance between the point in question (x,y) and the destination point
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The figure above shows the result of the A* algorithm finding a path from
point (0,0), labelled 1, to point (5,10), labelled 103, the black nodes being
excluded from the grid. As we see, only 103 nodes were visited. Dijkstra’s
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algorithm would also have found the shortest path, but the total number of
visited nodes would have been much larger (over 800).
Assume we are given a function heuristic: graph -> vertex -> vertex -> float,
and implement the A* algorithm by modifying the code of program 101. Apply
this to the preceding example and verify that we do indeed arrive at the result
of the figure above.

13.21 “French solitaire” differs from that of exercise 13.14, called “English

solitaire,” by virtue of four additional pegs present in positions (1,1), (5,1),
(1,5), and (5,5).

French solitaire is, surprisingly, much harder to solve than English solitaire.
Furthermore, there exist combinations of starting/final configurations that do
not admit of a solution, for example, the configuration in which the central peg
is removed at the start and the last peg must be placed at the center?. We will
accordingly loosen the conditions on the positions of the initial and final pegs.

One approach to solving French solitaire consists in using the A* algorithm
presented in the preceding exercise. Modify the code of exercise 13.14 as follows:

e Add the 8 new moves linked to the 4 new pegs to the the list of all possible
moves.

e Write a heuristic function that evaluates how “compactly” pegs are laid
out on the board. Given the representation of the grid as an integer,
we may compute a rough approximation by counting the number of bit

3It is only recently that we have rediscovered how French solitaire was played in the 18th
century: Initially, all cells contain a peg, and the player removes a peg of her choice. This
peg can then be placed back on the board at any moment during the game. With these rules,
there is then a solution in which the central peg is taken out at the start and the final peg is
placed in the center. Here, however, we maintain the same rules as in English solitaire.



13.5. Exercises 439

inversions, that is, the number of times that we pass from a 1 bit to a
0 bit, and vice versa.

e Finally, replace depth-first search with the A*algorithm. Here is an exam-
ple of initial and final configurations for which there exists a solution.

As in exercise 13.14, present the solution by displaying all successive configura-
tions of the board.

13.22 It is possible to combine the ideas of iterative deepening search (exer-
cise 13.15) and the A* algorithm (exercise 13.20), to obtain an algorithm known
as IDA* (iterative deepening A*). The idea is as follows: At each iteration, we
execute a depth-first search of all the states where the heuristic does not exceed
a given threshold, without seeking to memoize already visited states. Once the
search is over, we take as the new threshold the smallest value of the heuristic
obtained during the previous search. In other words, each iteration pushes the
threshold of the heuristic a little further until a path is found or no vertex takes
a value greater than the threshold. To initiate the process, it suffices to take
as initial threshold the heuristic for the root vertex. As with the A*algorithm,
an admissible heuristic, that is, one that never overestimates the remaining dis-
tance, guarantees that IDA* will find a shortest path. The IDA* algorithm was
discovered by Korf [17] in 1985.
Assume we are given a function heuristic: graph -> vertex -> vertex -> float,

and modify the code of exercise 13.15 to implement the IDA*algorithm. The
following exercise proposes an application of this algorithm.

13.23 A good application of the IDA* algorithm proposed in the preceding
exercise is the game of fifteen. The game consists in a 4 x 4 grid containing 15
tiles, numbered from 1 to 15. The sixteenth position is empty, and we may place
in it one of the adjacent tiles. Initially, the tiles are scrambled, for example as
follows:
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14111916
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The aim is to place the tiles in increasing order?.

11213
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819 |10]|11

12113 | 14| 15

To solve the game, we will use the following heuristic: For each tile, we compute
the distance that separates it from its final position, in terms of number of rows
and columns. This is called the Manhattan distance. In the preceding example,
tile 7 is initially at distance 4 from its final position because it has to be moved
up by one row, and right by three columns. For a given configuration, we then
take the sum of the Manhattan distances of the fifteen tiles, which is a lower
bound on the number of moves that remain to be done. This is an admissible
heuristic, and we will thus be able to find a smallest solution. Solve the game
using the IDA* algorithm. The example of the game of fifteen is presented in
the article by Korf that introduced the IDA* algorithm.

Minimum Spanning Tree

13.24 Show that the set of arcs returned by Kruskal’s algorithm does indeed
form a tree.

13.25 Show that the result of Kruskal’s algorithm is indeed a minimum span-
ning tree.

13.26 Improve the code of program 103 so that it stops as soon as N — 1 arcs
have been added to the spanning tree.

4Not all initial configurations admit a solution.
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13.27 Reimplement program 103 using a priority queue rather than a sorting
algorithm. How does it differ from the previous exercise?
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