Thanks to visit codestin.com
Credit goes to www.sciencedaily.com

New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Concorde

The Aerospatiale-BAC Concorde supersonic transport (SST) was one of only two models of supersonic passenger airliners to have seen commercial service. Concorde had a cruise speed of Mach 2.02 (around 2,170 km/h or 1,350 mph) and a maximum cruise altitude of 60,000 feet (18 300 metres) with a delta wing configuration and a reheat-equipped evolution of the engines originally developed for the Avro Vulcan strategic bomber. In regular service, Concorde employed a relatively efficient cruise-climb. As aircraft lose weight from consuming fuel, they can fly at progressively higher altitudes. This is (generally) more efficient, so conventional airliners employ a stepped climb, where air traffic control will approve a change to a higher flight level as the flight progresses.

Related Stories
 


Matter & Energy News

October 18, 2025

A collaboration between the University of Michigan and AFRL has resulted in 3D-printed metamaterials that can block vibrations using complex geometries. Inspired by nature and theoretical physics, these “kagome tubes” demonstrate how geometry ...
Researchers discovered how to stabilize a high-performance sodium compound, giving sodium-based solid-state batteries the power and stability they’ve long lacked. The new material conducts ions far ...
A team of engineers at North Carolina State University has designed a polymer “Chinese lantern” that can rapidly snap into multiple stable 3D shapes—including a lantern, a spinning top, and more—by compression or twisting. By adding a ...
Scientists have developed an ultra-thin, paper-like LED that emits a warm, sunlike glow, promising to revolutionize how we light up our homes, devices, and workplaces. By engineering a balance of red, yellow-green, and blue quantum dots, the ...
Scientists at EPFL have reimagined 3D printing by turning simple hydrogels into tough metals and ceramics. Their process allows multiple infusions of metal salts that form dense, high-strength structures without the porosity of earlier methods. ...
Researchers have found a way to extract almost every photon from diamond color centers, a key obstacle in quantum technology. Using hybrid nanoantennas, they precisely guided light from nanodiamonds into a single direction, achieving 80% efficiency ...
In a remarkable leap for quantum physics, researchers in Japan have uncovered how weak magnetic fields can reverse tiny electrical currents in kagome metals—quantum materials with a woven atomic structure that frustrates electrons into forming ...
An international team has confirmed that large quantum systems really do obey quantum mechanics. Using Bell’s test across 73 qubits, they proved the presence of genuine quantum correlations that can’t be explained classically. Their results show ...
Researchers at Columbia have created a chip that turns a single laser into a “frequency comb,” producing dozens of powerful light channels at once. Using a special locking mechanism to clean ...
Solar energy is now the cheapest source of power worldwide, driving a massive shift toward renewables. Falling battery prices and innovations in solar materials are making clean energy more reliable than ever. Yet, grid congestion and integration ...
A Penn State research team found that streetlights could double as affordable EV charging stations. After installing 23 units in Kansas City, they discovered these chargers were faster, cheaper, and more eco-friendly than traditional stations. Their ...
Scientists at OIST have, for the first time, directly tracked the elusive “dark excitons” inside atomically thin materials. These quantum particles could revolutionize information technology, as they are more stable and resistant to ...

Latest Headlines

updated 12:56 pm ET