Thanks to visit codestin.com
Credit goes to www.scribd.com

0% found this document useful (0 votes)
44 views18 pages

Numerical Methods: Root Finding & Iteration Techniques

The document outlines various numerical methods for solving equations, including the Bisection method, Euler's method, and Gauss-Seidel iteration. It includes examples and calculations for approximating roots and solving differential equations. Additionally, it provides questions for practice and evaluation in a numerical methods course.

Uploaded by

Rex Graham
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
44 views18 pages

Numerical Methods: Root Finding & Iteration Techniques

The document outlines various numerical methods for solving equations, including the Bisection method, Euler's method, and Gauss-Seidel iteration. It includes examples and calculations for approximating roots and solving differential equations. Additionally, it provides questions for practice and evaluation in a numerical methods course.

Uploaded by

Rex Graham
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 18

Iteration

Second : Iteration
First : ByAns.
Iteration
Third: So So (U)= Q1. Note
question
So
f(1.375)
So-1.25-1
=(1.25)°
f(.25)
root
f(i.5)>0 the
f(2) Bisection
root
root f(1.5) = f(x) Find (Very This Note:|Hours]
TThree
ime:
Year-
2020
Dec.
=1.953-1.25-1
=0.297<0
lies lies 2-2-1
roots 1'-| Attempt : solution
lies =x'-x- tcarries
he
(1.5) =
=0.2246>0 l+1.5 1.5-1=0.875
=3.375- Attempt
between (.375) = +1.5
1.25 between 2 betweenl lies
-|=-1Method
f(x) real Section -A is Short
=1.25 between
=8-3=5
-1.375-1 -1.375 1.25 (positive) -1.5-1 l=0
x-x-1 =root Answer
3
all provided all
Sections
25 and (negative) : marks. Five
and
(negative)
and
(positive) 1.5 and
1
of Each by
1.375 1.5 (positive) questions,
the Questions) Dr. as
2 =0 [3
per
equation: Sangeeta
instructions.
x
5=
Numerical
Methods
15]
Gupta
decimal
places. Iteration
Eighth : Iteration
Seventh : Iteration
Sixth : Iteration
Fifth :
So So
f(1.321) So so
Iteration:
Fourth
root root =0.0183
f(1.329)>0
root
f(1.344) f(1.313)
So
root root
X7=: X6= X5
= X4
=
of lies
=-0.0158< lies lies lies
f(x)
1.321+1.329 between 1.313+1.329 between 1.313+1.344
=0.0837
between =-0.0494
1.313+1.375 between +1.3751.25
= 2
x' 2 2 2
-x 1.321 >
0 1.313 1.313 0 1.313 < IMaximum
Marks:
751
0
-
=1.325 (negative) =1.321
(positive) =1.329 (positive)-=1.344 =1.313
| and and and (negative)
and BCA-S04
=
0 1.329 1.329 1.344 1.375
is
1.32
upto
2
Givenp3. -x belation
put n have
We h=0.1,
Ans.
orA+1=E A=E-1 sf(x) where perator V:
So t
is f or botiesrator A:
where Af(a)difference wher hi valueisan
=0, Euler's given dx
Yn+1=yn +hYn+1dyy--f(«) =(E-1)f(x) -f(x)
Ef(x) = =
between f(x fla Vf(a cal ed
+h
h),backward
first
fa c=al ed
+ f(x) the
y
any
OjeratorDefinE:
inisEf(x)crement e
2,
1, 1,x= =
yy+X dx
+h)-f(x) +h) f(a)h), = operators
=
3,
=yn
method E
f(a)are
f(a first interval. f(x to
... y+x =f(a +h)
forward + the
(Yo x0
+ +hf(x, and are
h) BCA
tXYn
n is 0.1h=
0, the
+h)-f(a) the f(a) - E,
with A: Vth
Yn) values difference values
of andSemester
A
y
= of of
inx
f(x) of f(x) thV.Also
e
for 1 a of function /
x atfunction at function Numerical
x x
= = = obtain
0. a, a, f(x). f(x)
a f(x). a
Find + +
relation
Methods
h. h.
y(0.3)
2020/ /
between
by
113
Euler's
and E
method A.

taking
Methods / 2020 / 114 BCA Vth Semester /Numerical Methods / 2020/ 115
Semester/Numerical/
8CAVA
Section-B Ilird approximation :
(Short Answer Questions)
ote:.AttemptanyTwo questions. Each
uestioncarries 7.5 marks.
(7.5 x 2 = 15]
/ll-0.:) Picard's method to approximate
=l.l+01 b6.Use
hen x = 0.2, given that y =1 when x 4

0and dy = X-y.
--x - 3 24
dx
(0.2)' (0.2)
yr0.2)=1+(0.2 -(0.2) 3 24
Ans. =x-y=f(x.y) =0.8374
1R-0.27 dx
.IS3-0.2 x =0. y(0)= 1 IVth approximation :
icard's Method :
approximation :
3 4
x

K4-03
=1N4-4.1
2 3 12 120
=13158
2
[at x=02] y (02)-08I74 ARs.

Qe Defne Sinpson's three-eight ule for Numerical integration. -0.2


Q7. Find the value of y when x = 10 for
the following table:
ss SmTSUt'Y 38 Rde: 2
=0.82 5 6
12 13 14 16
lnd approximation :
z=in *z imcam wtich 2ssumessthe ialues p } , corresponding to the valas af Ans. x =5, x,=6, x=9, x,=|1
Y, = 12. y, = 13, y, = 14, y;= i6
by Lagrange's formulay x-10
(00- 6X10-9%10-11),12
(5-6X5-9X5-11)
Wra io you uderstanó by Gausss (10-5X10-9X10-11)
elimánations method ? (6-5X6-9X6-11)
-x13

00-5X10-6X10-1) x<4
(9-SX9- 6X9 -11)
=i+: (10-5X10-6X10-9),16
{Fur Mre leformatisn Pleas Refer 92 (-5X11-6x1] -9)
Unit-IV Page-88| )02) =1 +(02)* -(02) -
(02)3
6
=083867
/ 11n
Numorcal Mothods / 2020 acA VIh Sementor /
BCA VVn Semostor / Numericol Meothods / 2020 / 117
5x 4x() Section - C
4×l-I) 5Ix)13+ 4x 3x(2) (Long Answer Questions)
433+ Il.67+ 5.33
Attempt any Three questions. Each Now 3) 20 17- y2) +22)}
15 marks.
14.7 Ans. estion carries i
[15 x 3 = 45] 17--(-1.0275) +20.0109))
20
following data : Apply Gauss-Seidal iteration method
Q8. UsingBessel's formula, find y(25) from the olve theequations. 10025
20 24
32
28
35
32
40 20x + y 2z 17 y3) -[-18-
20 3x(3) +(2)1
24
3x 420y - Z -18
Ans. Bessel's Formula :
2x -3y + 20z = 25 -18- 3(1.0025)+1.0109]
u(u GauSS-Seidal 0.9998
s.
Iteration Method :
2 3
t....
20x + y- 2z = 17 z 2 5 - 2x(3) +3y(3)|
Difference table is 3x+ 20y -z=-18
2% -3y + 20z = 25 25-2(1.0025) + 3(-0.9998)]
Ayu hese equation can be written as =0.9998
20 x(4) 17-y5) +22(3))
24
24
-5
x=(07-y+22) ..(1)
32-4
28 35
5
y= -18-3x + z) ..(2) l7-(-0.9998) +2(0.9998))
32 40 =0.9997
1
Z= (25-2x +3y) ...(3) y(4) =-18-3x(4) +z1
et start with x) = 0, y) = 0, z(l) = 0 in eq. (1)
u-X-225-240.2s
h 4 A
(2)
20 -18- 3(0.9997)+0.9998]
-7-y) +22)--0.85
20
=-0.9999

>aago.9-(-y-s.l). 3!
ut x(2) = 0.85, z(1) =0 in equation (2)

y2) =-18-3x(2) +z01


(4) 25-2x(4) - 3y(4)1
[25- 2(0.9997) + 3(-0.9999)]
1 =1.0000

=33.5 -0.75 +0.1406+0.054687 -18-3x 0.85 +0] Hence, x= 1.0, y = (-1.0), z = L.0 Ans.

=-1.0275
=32.945287 Ans. Q10. Use Runge-Kutta method of fourth
From equation (3) order, to find y (0.2) for the equation.
dy y y(o= 1, take h =0.2
z(2) =[25
20
-2x(2) +3y(2) dx y+x
Ans.
[25-2(0.85) + 3(-1.0275)]
dy_yX
dx y + x
-f(x,y)
=1.0109
Yo1 at xo =0, h 0.2
ocA Vh Semester /Numerical Methods
BCA VO Senesteri Numerca
Methods / 2020 /e 118 2020 / 119
Reege-ketta Method :
using
hod,nearer to
Newton-Raphson's
findthe root of x4- - 10
x =: 2 correct to three
0 Pron (l ).(2). (3)
ofdecimal
2-0.2 02 LAlso obtain the rate of
enceo f Newton-Raphson's

=02
+0.1-0.1 #x)= x*-x-10

2 Using Tayiorstheorerm
Raphson's Method :
=92 (108335 -0.1 fxn) flay e, fia
.98385-0.1 =0.1662
4

(Yo*ks-9021662+ 02) =0.14144 L1662 - 0.27

43 -1
4

=16727 A.
4%? -1 aE f"ia) -
-9, 1,2,3, ... in equation (1)
by using
(aj Trapezitel re put xy =2
(b) Simpsort's 1/3 nde.

3u2+10-=171
2 2 4 4/2-1

441 871)' -1
31+19 341256, 19-= 1254 As. 2?2

413-1 441256)' -!
14,-141e Rate of
Converyesee :
L t differert from the rot of fx) -9 i a

Hesce the Rzte of Cunveszese o c


hy bievon's Mettod: Kaçhoon method is Qadratic Secoss
-1741-171911 Am.
2,
(-f1-ý-4,
(4-54-Sf-4
-24
t13-2 6512

24

24 -11%+34s-24j (-192A1)
15 24
1
-55522 -170x +120-8-82 -192x -51'-35*-30r -2:-10x -8x]
129
-(-20% +189%-400% +120}
249

3)=+9,2 -20x +6] Ans.


hls is required Cubic Polynomial.
aCAVth Semester /
Nmerical Metbods / 2021 / 122
Numerical Methods the,
Find
form ofthe function from folowing given data:
Year - Dec. 2021 3
f(x): 3 6

IMaxiBCA-
mum Ma504rky:
11 1%
TimeThre Hngrs
ate Aemgt aSertis per istrcts f(x)
This seigrine is pred br Dr, Unvashi Chaudhary sf(x) s'(s)'f) s
6
Section - A
(Very Short Answer Questions)
ote : Attempt any Two questions. Each 18
question carries 7.5 9
Q1 Find a root of the equation f(x) =x- 4x marks. [2x7 27

met7.5-h1odi5)n
four itestions. -9 =0 using the
bisection -=X

1-9= -13
ton Forward Interpolation formula :
y=f(ko)+ Af
2

":*5-=2-3)=25
The
25=(25 -425)-9=3375 ie.negative
s
=3+3x +(x-x)
tew 25 3.
ierzxs2: A=25, 4=3 Ans.

6
.-21=(25-3) =275 (3. Evaluate
dx
by Trapezoidat Rule.
2=05 -4275,-9=9.7687>0 6l+?
ie.positive
iterztun 3:L,-25 £ x, 2.75 |ABs. Divide the Range of integration (0,6) into six
equal parts each width 6-0
-=1, hence h-1
6

(2625) =2625)
(25-275)= 2.625
The -42.625)
ros s ttween
2625 arnd 2.75. -9=3.5878>0 i.e.positive X0 =0y =lil+)= 1
lteratison4:Lan
2625 ard , =2.75 1/2=0.5
X)=2|1I/5 =0.2

f(26815)=
:The "3*2)=a425+275)-9==)2..363911<0815 ie.negative
rooA ies(2.6275) - 42.6075)
tetween 2.625 arnd 2.6875.
X3 =3
X4=4
WI0=0.10
/I7=0.0588235
T/26 =0.384615
1/37 =0.0270270
Matrix Given
Ans. Q5. B range 0 Q4.
Ans. <xs05
1ly-z=33 8x-3y
4x+ 12 Y6=Y5
yS)4-0I*;y) )4=Y3
10-0liai*)=0+0.x0' +o»)=0 x Tratezndal
Rue
+y+4z= 2x Solve =0.
y2*))-01(a)=0+0.10.1'
0140025+
0.+(0.001))=0.05
X(04)
+08;)=0001+0.x(0.2)° +o'3*y2)=0.001 n+l=Yn Euier's
Given Use
form 8x-3y
4x+ 0+0.1 (sx<0.5
fx.y)=x*y
8 |2 2x Euler's
-3 1 of 2z= + +-0.1(1)=0.005
by + Formula dx
the 0.x2+y)=0.030022+0.1(0.5)*
11y
Gauss-elimination
23 +
y+
hf(x + 0.1, = =+y,
2 4 given - 42
2z=Z Method
: x,
=|23
=B
AX
Xsystem =
33 2312
= yn
) 0.2,
= Jn,nSD827=1.2569 An.
h- with 2/0
BCA
VIh
of..3) .2) .(1) =0.3, x, 0.1, 502+0|
h
+06588 Sesester
equation
method. 0.X(0.3) + x, =0,
y, 0.1
=

given
is 0.4, = x, find
to
Numeric/
/
+(0.005))=0.0140025 x=0.5 =0
by: +(0.030022)' ) the +0.3846)
(00140025)2y + solution Methods
+0).0270271 2021 /
of
0.551I1 =
)=0.030022 /e
dx dy
134

+y,
y(l}=0inthe

Pt Now matNoWrxform
from marks.
0.
By
Note
carries15
I=3,y=2,
=1z 3
x=3.35
Put
value
y=1.857x2
the
value
elimínate y 412707 [2
I equation(1
aiste
the Attempt :
means
2x=6.715 2x+ 7y=13.002 7y+ 14z=
of
7y+Z==0.857
25 x1 7 +4y1iz 42 from x
21 18 147y
2 25
following 1.857+ and y 14 of 21z= 18 142= + y 14
0.857
x inz from |
(l)
of any inz equation 25
equation
by and
Newton's 4(0.857) =25 2
table. One
equation
25
= nd
question (4) (5)
f(x): | Ans. =(1)
12
dividedQuestions)
Answer
(Short with .5)
48 4 the
out
Section-B help
100| difference
of of
294 the equaztion
following
900 | formula
10
11
13
(4)
1210 |
find Three
2028
tquestions.
he
value
of
f(8) [1 Eachx
and question
15
f(15) 15] =
Ant. Q7.
From f15) I8)- fix,
=3150 =48- n
the 48=fíkgi-
á8
445
2.0 |4 10
2.7183 -
123.3201 dy given 52(15- 52/8 (x
7.38916.04964.95304.0352 -4X52} (x
Jy12 table. - -
4} 4)
- g)4firg) 2028 13
1210i1 BCA
(15 (8
*00.735|
3.318) 07351| 0.412 Find - (x 04
V
L0751 02 G.8978
33931.0966 y
- 4N8
4X1s-SX45) 4*x-SNI5) -
Semester
dy dy - -ir
2.0 18 16 1.2 10 5x45)-(8 409 310
- /Numerkcal
-0.08135 0.198%
0,2429 0.1627 0.1333
1.2.x=
at
okK
+(15- - (r
7.38916.04964.93304.05523.32012.7183 4X8-x)4f(xg)+
-4Xx
+ 4X15-5X15-7) Methods
0.01203- 0.04410.03610.0294 5\8 - -SXx
o361-(0.09) -7) 2021
/

0.002) 0.0080.0067 x! -7) /


|x 12A
1x
0.0013

Approximation
second :
First f:(x, Given approximationAh
Approximation:
Third
+Ji(.ygdds
Y4=yo
Approximation
Fourth :
Approximation PimetcUsaringdhod's
oroximsoatliountion
y3 =1+x+
-1-,1-xydx y) iy
-lt**** ==1+x+xX
Yo X*y.y= =
=l+*+**+ y obtain
upto a
+} 2
x. pCA
f(x.y2) y0) of Vh
3
6 at the
12012
3
x =I of
Semester
= equation.
24 4 dx 0 successive
24 4
Numerical /
\+x
dx

the
Approximation
Third : Second : Approximation
Approximation First : Regulaequation
given
Since Ans. 09.question Note:
We x-2= Methods
Required Sinilarly
L.695.
f(x)=(1.652)
-2=-0.2207 -(1.5))*2)-x2f(x)
-(1.652) ,2)K2)-x>iix;)f(x=(1.5j
-2-0.875 have
Given
Find folfowing
Questions)
Answer
(Long
Attempt
x}=|1.6956 f(x,)
Falsi i)<9. f(2)-2ffl)-2-x-2
f(0) fx)=x
0 a
carries 2021 /
xit) L.652(2) f(x)
root, -2(-0.2207)
x=15.x,2 fxz)-
f(x) x'-x- by real Section C
-
x 20-0.875)
1.52) - 2-(-2) Method lies
2-(-02207)= =-0.2207, = = 2 False /
correct |.6953 L.652, 2--0.875) -0.875, between 2) root
22.5 Five any 127
2 Two
to x, formula Position= of
f{x,) 0, marks.
0 tquestions.
thce i(x,) 2 bence
1 he questions
and [2
-2 =1.652 =2 : 2.real equation
decinai
6865 |
Method. 22.5 x
root
pluces of =Each out
the x45] of
is
GiAnsven, Q11.Find Gaus' Ans. thefollowing
table. Q10,
Forward Interpolate
X 66 the =32.398
-012)-.S.S-S(-1.5|-25).
dx value interpolation
by BCA
the of
93 PopuBatiYeona()
r
09729O91 Ans mean
integral 2 Formula 10
2 ofSemesteVtrh
Tear Gauss's
20
1951 1941 1931 1921 1911 1901
: (1)
6 dy
13
formula /Numerical
Popl(in ation
thousand)
the Methods
20 1
080.923
0,5902|05 6 sing (y) population
Simpson's 2021 /
/
6 4 for 120

6
and
hia. 3

lterationIist Given s e04,04. he


et9.0)=020-02 Using
Runge-Kuta =07833979
rule, we
get
=0.783958 18 aCA
Vth
Semester
method
Numerical /
fourth of
Mthods
order
solve 2024 I
11
L.2056+0 1) [1.2-005601 |121+001)L21-01
=01967 =1aty(wi0th)
0)-=0.1%7
equation
Rewrite
the Ans. Q13. Iteration:
Secnsd
y0.4)=y1 k4 kË
=hf(x(
y04-7x
-134)B) +4z]A)
x*5-1ly 292=71
+8y+ 3x+11y-
+13z=104
7x+52y4z=9583x 3x83x+ Find
7x+52y+ =1.37515
=1.1959 hf(*j =
29 + the -7;)
&y+ 1ly *k + 34209
solution h,y1
+10.1891 =0.2
292 13z 4z- +2k2 +kg)
=
La.1959)
(1.1959)-(0.2)(139018
71 of =02
104 =95the + 2k3 +
3) 1) 2(0.1795)a.5752-(04)|
La37s2
+(o4) La28565
system
ka) + +(0.3 | L0.29045)
(0.3) + (0.2)2 +
=0.1959
by 2(0.1793)
+ =0+0.2-0.2
}=4 +h
Gauss-Seidel (147018
+0.1688]
|=0.2:
f1.562895
I.742895 4)=09456(0.2)
Method.
=0.16879
=0.1688 +0.04
43209
=0.1793
=0.17949
x0.1795 =0.1891

Approximation
Fourth : Approximation
Third : Approximation
ucoNd : Putx
Since
at
x4x3*95-I1(141187)
Z4 Y4=71-3(1.05)
X=1.05, Third Zy 271-3X0.9877)
-8(1.4187)]
=1.9566
Y3 =104-7(0.9877) 83
Putx-|1446y,=1.L.34354599 1.,LADp1446,.1446z=0ro-x).iZm=0ationin:
Z=18207
1
=71-3(1.057) 29 1
1 83 1 and
[104-7(1.057)
y=
and 29 1
95 95-110.8459) equation
(A).we
Fourth
-110.369) 04-71.05) y
= in
ACA
1.366, equation
Approximation, Vh
z=1.96 - in
8(1.369)] SemasterMsmercaf
-
&1.367]-13(1.962)41.962)] +
-13(1.9566)] -13(L.3207)]41.3207)] + equation(C B).
+4(1.9566)] we
zet

= zet
the =1.96 1.962
values =1.367 =1.057 =1 =
369 l.05 = 1.41137 = 0.9877 zet
we
of
x, ethorts
y,
are z
same, 2021A F

correct 131
to
second

decimal

place
-1375-1=0246
.f1373)=(379
leration :3 leratlon2: Now Iteration .The fa)-x-1*0 Ans us0ng Q1.0btalnquestion Note (Very
Funcion,decimal
places.
solutlThionaisNote: TiHoThrnue:ne Year-
Now . Now . 2022
Dec.
().29)=(125-26-|=-9296815
root
f03)=(0.5-1.5)-\=0315 12)-2-2-1*S
1 ro¡t bisection Attempt : Alfempt
y*|lroatie3s +13-1373 root lies Lta1,b2 : lics f(x)=x-1a0 real a carries Short
Section A
- pronided
ies betwoen betwecn
method al
bebween between root marks. 3Answerall Sectloms
and 1 of by
125 1.25S 1.S.
and I
2 correct the questions.
Questjons) Dr. per as
and and equation
(3x5=15) Urvashi
instructions.
1.375 1.5 Numeri
Methodscat
threeto Each Chaudhary
Iteration :6 lleration
:A0.5:3125)=(0.roThte 3125
-\3125-\=N515 Iteration4:
called isiference
Afinite Dference
ForwardAs, palrs:forward Q2.
ordered f(1303)=
Hence-.187634 -1.3281-|
:fO323)=(03231)}
=-0014S
lteratlon7:
=00ZAI1Nothew,
-134315-\A13479=134979
Define the rot lies
forvard dlifference roct
Aijg)=ix+h)-f) forward of 13125+13281 lies between
Gifference. he
2
betweæn 3-133-13125 |MMaa:"
almunm
table equation 13125
S+1313,=\343T5 1.3125 BCA-S04
differenca,
forthefollowing -=|3203 and
l3203 is and 1.375
1.3435
Make
(20,7MO.
9.0250)(22,7183),
3891),
MIst
we
|Ans,
+92=16 2X+y+2= 10
Ihe X+4y 3x+2y Solve
M. rex
=22, Findt X4
4 X3
3
y+Jz=6 elimx+4y+z
inate l6=2xty+z= 10
+2y+3z= 3x
I8 given
= the =9.0128
+3z18 02
18| 4.95304.16
|738912.0 |60496
=0.2 h9.025022 3.312|201 1.0
0|55214
27183
X
value
system following (1L2,3.3201), of BCA
x dy 3-72=Dy2 Vih
from 159+-(03964)+-(0)--0094-0019--00
linearof atx=22for Semester
the system L.6359 13395 1.0966 0.3978 0.7351 06018 Vy
second equations (1.4,4.052),(1.6, Numerical /
and .) .) .4) equations
linear of 3 02964 02429 0.198 01627 0133 t
) third are the
equation, : following Methods
4
D0535 0.041 0.0361 00294
we 2022113 I
have using 9.094 0.080 0.0067 4.9530), ordered
Gaurs O.014 0.0013 (1.8, pairs:
elimination 6 6.0496),
method:
)from it
The Givez
Ans when Q5. `a Put Ntultipy
ts Pt Now
seconi Sove the value vahue
oov x= gliminak
solution quation ()b
zroxizion 0 ofy of
using the equation inz
trz equation is nd y
te x z thm
Picard's =7,y= in
inteyesns equation BCA
is .y=,x=0 -9,z=$ {$l equarìon and VWA
method. (\ we qustion subtrat Semester
($)
mignt we get by
'y=1 get value ($multirl
) equathon
become ofy fom /Numerca

Proceeding So, :. have Iteration


Second :
Hence
Iteration
First : roThote
We Ansusing
. 06. question the Note Methods
Hence, f(x)=(2.058823)
-2(2.0S8823)-s find f[x) questions, Find following :
f(2.08126366)
root 3)=3-2x3-s=16 1-2x|-5=6 f)=f[0) =x'false Attempt(Short
=2.089639211
the 2.08126366(6)-3(-0.147204057) =2.08126366
=-0.390799917
root2x(16)-3(-)_35af(b)-b(f(a) A2)=2-2
liex2-5=
between s method
- of a 2022 /
root in
lie-3(-0.390799917)
s 2.058823(16) lies l6-(-1) -f(a)
f(b) =( =x-
f(x) real carries Section
this between -2 2x = Questions)
root Answer /
=2.094460846of =2.092739575
=2.09388371 X6 X4 between - Three any 134
=2.094305452
the X6 way, = x =)$ 7.5
16.147204057 2.08126366
-0.147204057 16.390799917 and 2 0-5=2x-50 ofquestiion
outot Two
we equation: the tmarks.
)=x'-2x obtain
2.058823 17
so:
3, position. -
=2.058823 (7.5: B
a=2&b G2=15)
&3. &3
-5 Hence Each
is
2.0945. we
jas mpson's Evaluate 8. missing 4|81 2|9
I= teX==31
rm
=-124124-4x
4x =0 sy=0 3 the
12 4 6 12

0.93060485 0.84089640.707106780.5087426
0

y=Vsinx
Wsin
rule
3 is
31
4 124 -x
81x-9
|90-2x X-15
6 Ay
mis terming
0.982815 0 dx, x 4 ay pcA
with 81 3
in Vth
-3x105 X-19 Semester
h=. the
12 sin following
12 x
dx -4x124
s'y /Numerical
using

a09. Note:
of Simpson
Now Methods
Find Ans. the =0 real question=3.60523926]=1.1872836 12x3
02
nx=0.370root isfx) Use the
the f(x) correct
root
Questions)
Answer
(Long
root followingAttempt 2022 /
= =-0.349373236
f(x)=2.55901
Xn+|=Xn 5826 f(x) rootNewton-Raphson
= +1] 0.8408964 +2(y2
+0.982815)
-0485)
0+4(0.5087426+
-0.00001274,=0.36880-4=1.X3 f(x2) f(x)=-0.056587 =0.2+. x
=-0.f(x2)002715
5830287 f(x)=1.75330
=0.33653+ X)
between 4e* lies carries
to of Section-C rule /
between
sin 3the +y4 135
decimal
x 15 any
0 -| equation marks. Five + +
it (0.349373236) f(a,) f(x)
2.559015826 and =0 Three 2(0.70710678+ y6
foll1.ows58302870.002775 0056587
1.75330 0 t..tYn-2)+yn]
0.5 places, and questions.
that method questions
the=0.37055
0.36880 = 0.5. 4e (15
=0.33653 given sin x3=45]
required to 0.9306
that -1fixnd Each out
Put Aus. following
table.the
Ans.
Q11. Q10.
the
Lagrange's
Use values Using
fox)
Simpson's Lagr
(x(X-(XDX-3XX
=(x
(0- = = in
(X2 (No- x0
-
interpolation
-4)12)+-0X(24)
-1)[x-7x (x-0Xx
(3-0)(3-1)(3 -I)Xx
4) the
(X- range's
-1)[x- 3Xx I)(0 formula
n= - - 0X2 N0)(x BCA
1)(x-4) 3\0
rule Sx - formulainterpolatlon Vth
+ + 4) - -)(x
to
12] 4),-12)+(X-0)(X-
12- XD(x2 Semes
-
evaluatedx 2x(x
2x - ter
X3)-x3) 12

-1)(x
-x)2 Numerlcnl
/
(4-0)(4-1)(4
+ - formula,
find
the
1 6 3 8x (1-
+ -3)(10)(1
y=
J01+x 2x-6x] -4) (x|
0.54545 0.667 0.8571 (x3 (x Methods
0.5 0.6 0.75 + (x-
1+X 2x(x 3)(X - -
- X0(X| X0(x
X0X0)(x
4) /
with 1)(x (X3 functionform 2022
(o) - - 24
- - X2(x
X2
n=
-3) X|(X|)(x-
X3 /
(x| the of 136
6
-X3) -
-x2) X)
x2)3
1

y(x)
from

Iteration
Second :
Iteration
First : Ans.
-2X+z=9
10X.+
w2.Solve
nethodbiven
2x2y
Kimpson
Iteration
Third :
Put Put Put Put Put Rewrite
+ +
48 0.5] +48 +2[y3
+2(0.667) 3h rul2th8e
Put Put
x X= y X= 20y below
y Y=-2.38 x =0.9= 0,y=io-22-
z=
x11.09165=0.69322
3y 1+3(0.8571+
x =ky x Z=1.667
=y
xy=yin =
x,Z=0 the +
=
Xg= Zy1.809
1.407
Xy1.2094
yY2=-2.108 = z=0 [22+ 9-2y1-] 1the + - by Y6+3(y1
X 2z system
y2,Z=Z,in equation 10z +
,y=y2 ZZin , Z=z in Y9+)
=-44 Gauss's + BCA
in
equation = y2
in equation
2x 2x 22 0.75
in equation equation of + + Vh
equation + + yn] y4
equation equation 3y] 22] linear
Siedel + Semester
(1) 0.6 +
y5
(2) +0.54545)
(2) (1) (3) equations +
(1) (3) Iterative yt..] /
Numerical
we
...(3) "..(2) ...(1)
get
Iteration
Fourth :
Fifth PutMethods
Put
where methodQ13. Put
Step Ans. four x= y = x
hf(x0.Yo) kË
= 1 1,y=-2,z=2 Iteration =Y3 yY3-2.1196
Z,= Y3, = X3
=0.2[1
=0.2
: (x)
dxdydecimal
y(O)
X=1.1310
Using Ys=-2.064
1.807 Z,
Y4=-2.0599
1.809Z4
=
xy=1.1394) X , 2022
/
=0.202
-ozfo-o-o-o)
0.0102]
=0.2[1
+ =0.202
x0=0, -=|+y,
=
find
:
z= 1.845
X3
Z=,
/
+ 1 = y(0.2)
fourth-order in in 137
(0. Yo + places,
0 equation
equation
1)-] y?
0,= y(0)
h and
-0.2 =0, given (2)
y(0.4) (3)
h=0.2
Ranga-Kutta
dx
correct
=1
+
y² to
+02=04227
+k=0.
04)=yj
2027 2:h-0+02-0.2 Nep
}*y0.)eya
+h=l+020'
=02027
02
0404-044 BCA

*kgl=041+(0+02028)=.202)}-0.208 Samesr
/Mmial
2160)=0.2027
Methods
02188
02062 )2/ /
2
|=0.218 022/
138

Raphson
Newton By AS. here
.
ba
Using ords. MSWercareis
sAttemptote y
toines 3Short This tmtTeHo:hreurs Vear-De2c0.23
solNutoiotes:AnpltreomvpidtqeudestiSoenctionsal
operator.
=VE=A
AnsEV &Shift V 2.
operator,
, operator iterative
'N'
Prove f(,)=3x =N is
Newton-Raphson Section -A
positiveformulaa required tAnswer
that
A 2K+N -+N f(%) short Each3 al
questions. instructioby
fns.rom:
0s is EV
difference
backward not
marks. Type
forward =VE number, N, to Mrs.
=
A, hod,
exceeding
compute met(3x5=15] VerQuestions)
y Sangeeta Numerical
Methods
difference where as
per
find 75
E
is From
4 |35 2|1 1|0
Ans. function Q3. +h) Ef(x)-Ef(x-h)
VEf(:)=9|f(x EV
=
Vf(x)=f(x)-f(k-h)
5 Find =VE=& EV(1) VE=A =fx+h)-f(x)
8 6 and =f(x+h)-{(x)
f(x given the
=hf(*)
12-02 1 1
(2)
4! 2!
01|5 86 below first
I|23|45 (Maximum
Marks:13)
3 derivative . 2) BCA-504
4 |-6 the at
pointx
|10 of
1.2 =the
|z=2.5 =5
22 X-y+z=1 0y=-6’R3-3R2 Gauss-elimination
method: 4. Ans.
z==2.5 1|x1-10-1
[1 R3 0-1
0y=-6
2]z5 -30 ’R3-2RË R3R2 -52| -32 -
-6y=-6 2x
1-5y 3x Solve =0.23
y=l| ’R2 +2y-
X-y+Z=1
=]-0.9-1.08 0.95
1Tx]1 -1. 4(0.2)
+ the
3R1 + 4z=53z=-6 -3r+ following 2(0.2)
2x-5y -1S(0.2)
X-y+z=1 24
- 1
X3
2y-
+ + SCA
4z equations
=5=-6 3z 22(0.2) 3(0.2)- Vth

-610 6(0.2)6 -Semester


by
using /Numerical

iteration II: iteration :I xty²Ans.y'= of 05.


y y) method
the X-1+2.5=1
x=0.5 Methods/
=1+ =yo initialPerform
=1+x+1+x*+: =yo =l+|(x+)
=l+|(+I) dx dx f(x,
dx
to 2023
JO
Jx0 +
[+
2
y) y'=x+y;y(=10.) find
value two
+ =x 7
2-1x,|d f(x,y)
X
f(,yo) +
y? approXimate
problem
Picard's
an
iterations
of
140
y(0) 1=
dx
4
+ 2
dx
2x solution
dx

root
Iapproximation1=2-4=2
: f)=1-4
f(2) +Ans.
o6. estion Not
apositivesrequired hee:
(Short approximatiokonl is
x(2);
Now, Here Let Using following =1+
Here =-1.0369
f(1.6667) Attempt
526 lies =
8-8+1 carries Answer I+x+
=142-1||-2|
x) =1 f(x) method
root 2
=1.6667
xl2) + Y1=-2,y2 x1=l, x0) between =
not Section -B 23x2 +
X
+
y1=-1.0369,=1.6667,X1
=1.8364 =14x2|-2|+|1|=X+M2-X|x2ly| x* any =1 -
exceeding
of three
4x-4x the of marks.
+1=0.
7.5
2x3 2x3 BCA
3 and
1 twTYpe
o 3
=2 + False
equation
Vh
=1.6667
Iy1|+ly2l 2,.
1 questions. questions 4
x
20 X
Semester
2.03690.3333
y2 =2
X2 Questions)
position, [7.5 200Short 20 x
4 4
x1.0369 =! words.x
answer
2 Numerical /
= Each out
find 15] of
x3):Methods
Here
x(5); Here =-0.0172
f(1.8581)
Q7.Using
formula,
takes ’ Here =-0.00195
f(1.8605)
put knowthatWe Ans.
real =1.8605
x)+ =1.8364x(5) + /
f(a+
a =1.8608
=1.8581+x(4)
=1.8581
X=1.8364,
y1=-0.1526, 2023
=nh) on root y1=-0,0172,
=l
y2 X1
=1.8581,
0, 4 3 2 =1.860s,
y1=-0.00195,y2 XË
=| =1.8605 /
n the find
=x,f(a)+ = 123 5013 Newton's 1.8608
is
141
h=| following
0
the
73 37 13 A 1.001950.1395 1.15260.1636
"Cjafa) 1 cubic
forward
1.01720.1419
=2
X2
y2 =2
=1 X2
13
<0.00195 x0.1526
values
polynomial -x0.0172
- 50 3
"C,ari(a) 123
interpolation
4

which
+..
2023 / 14a
Semester/Numerical Methods /
BCA Vh BCAVth Semester/ Numerical Methods / 2023 / 143

CAf0)+ Caf(0) +-,..... 3- COS X


f(x)=f(0 fx)-2x -
letK0)=4
=-0.99
2! 3! AI) -1.999, f(1.5)
f(2) =0.0006
=-l+x+ N(X -I)x + x(x -3x + 2) x2 rootlies between .5 and 2, since f(1.5).f(2) <0
=-l+x+6x-óx +2(0x-3x+ 2x)
1.5+2 =1.75, f(1.75) =-0.499
=-}-Zx +6x2+ -6r+4x 2
=2x-x -1 lies between 1.75 and 2
Ans. Soroot
1.75+2
=1.875, f(0.875) =-0.249
Q8. Using Simpson's rule, find the f(x)dx given that: 2
So root lies between 1.875 and 2
1 2 3 4 5
f(x) 10 50 70 80 100 (0)=1.9375, f(1.9375) =-0.12
root lies between 1.9375 and2
Ans.
(4) =1.96875, f(1.96875) = -0.061
root lies between 1.96875 and 2
By Simpson's 3 Rule
x) =1.9844, fU.9844) =-0.03
(x0 +nh
y(áx)=o+Ya)+4(y| +y3 t...) +2(y2 +y4 +..) root lies between 1.9844 and 2

f(x) =y (6) =1.9922, f(1.9922) =-0.01


1 10= yo So root lies between 1.9922
2 50 =y1
3
10=y2 )=1.9961
So root is 1.99 Ans.
4
80= y3
5 100 =y4 Q10. Using Lagrange's
x=2fromthefollowinginterpolation formula, find the value of y
=ffydalyo *y4)+391*y)+2y2) table:
X 3
corresponding to
4
-10-100) +3S0 +80)+2× 70] Ans,
6 S0 105

+390+140]
a

|x0
-{640] =213.33 Ans. 6 50 105
f(a) (b) f(c) (d)
Lagrange's Interpolation Formula :
Note: Atempt any three(Long Answer Section -C f(x)=(%-b(x -cXx- d) (x-aXx-Cx-)f(b)+ (x - ajx -b)x -d)
carries 15 marks. Answerquestions
is out ofType Questions)
the following (a -b\a-cXa -d) xf(a) + (b-aXb- cXb-d) (c- ujc - b}c -d) xf{c) +,..
Q9. Find a
ARs. 2x =3 +positive root of
required in detail. five questions. Each question (X-Jx-3Xx -4),c (x-0XX - 3Xx -4),63-0X -j-4),50
cos% the equation 2x =3 +cos x by [15 x3 45]
(0-1X0-3X0- 4) (|-0X1-- 3X1-4) (3-0)X3 - j(3- 4)
Bisection menod (x -0Xx-X%-3), 05
(4-0X4-1E4-3)
Simpsoa's By
1vauate
0.6923 .9000
=ls-94695
1.6]= -
=-0.5)
rule :
Y6

Simpson'
usingsby
3(0.9737 +
,

12.5695
L6
+0.9+0.6925 )
=0,7856

+0.5903) rule.

Ans.
2x+
0.3

iterationII: lteration
Put | : 12
=0, y
iteration IV
:

yl=1-*+z]=3.555s
z021-+2y]=6944
=1-x2)+1=7.037 ) y
iterationIIl :

2-**291
X-x+3y-
2yty+z|||z3x Solvo byt
y3) +2y]=9.s601
D21-2 =0 +
D-y)-0=3088
0)-21-x)+2y]=9963 ==0.333 1 in 4z X-2y+4721
Gauss-Seidel
-1-+z=7.383 cquation 21 BCA

y(4)=-5.61x(4)
219)=8.858
=11.081 ..(3) ..(2) ...(1) VIIh
(1)
Somoster
method

Numorlcal /

iteration :V
iteration VI
: Methods
Ans. (take whenorderQ13.
Step1: Here
h=0.1
k4 kË dxdy Apply
dx h x to
hf(x0.yo) =
=0.1[0 -= 2023 /
=0.|0.1 = =0.1 f(x, = =0.2, find =10.83z6) =8.0yl--6.313
0) x6)
hf(x0 0.1) x+y»
+ y) Runge-Kutta /
++h, 1]= = an =1.571y5)
=12.3697) x(5) 145
(1.I
yo 0.1 = +y', x and given
approximate -6.313 =
168)*]=0.1347 +k3) 0. x=0,
y=l at
1I[x0 y that
=
1 method
=1.1152
yá] + h=0.1
when
Ans.
x value
= fourth
0 of
y
146
/
2023
/
Methods

Numerlcal =0.1551 =0.1576


0.1576)]=0.1823
=0.I[0.1+0.1+(|.1165+
Semoster/
=0011(Ll65491347|
2k+kal-0.165 ka]=0.1571
l65)²]=0.1347 2
VIh h=0.1
BCA
1L65
+22) +k3) + Ans.

+y 2k3 =1.l165
+0.1571
+ tk- (1.1
Y=1.1165, +h,y1 +
2k, kË
=hf[x1,y)
+ 0.1 2
0.1
0.1+
=0.12 +2kz +k =1.2736
k=k+y
=0.1| x hf(x1 k=-kjy
y(0.1)- =hf =
y(0.2)
Step
2: ky =
k4
So

You might also like