Thanks to visit codestin.com
Credit goes to Github.com

Skip to content

[Pad] wrong example in Operators.md #7467

@xiguadong

Description

@xiguadong

in https://github.com/onnx/onnx/blob/main/docs/Operators.md#Pad , example mode=reflect as belows

data = [
    [1.0, 1.2],
    [2.3, 3.4],
    [4.5, 5.7],
]

pads = [0, 2, 0, 0]

mode = 'reflect'

output = [
    [1.0, 1.2, 1.0, 1.2],
    [2.3, 3.4, 2.3, 3.4],
    [4.5, 5.7, 4.5, 5.7],
]

it's strange, I test with code and shows different results and the same behaivor in pytorch got error:

(3, 2)
(3, 4)
ori 
 [[1.  1.2]
 [2.3 3.4]
 [4.5 5.7]]
reflect pad 
 [[0.  1.2 1.  1.2]
 [0.  3.4 2.3 3.4]
 [0.  5.7 4.5 5.7]]
torch.Size([3, 2])
Traceback (most recent call last):
  File "/data/pengyancao/workspace/npu-codebase/cache/t_ort.py", line 41, in <module>
    ty = torch.nn.functional.pad(x, pad=[2,0],mode="reflect")
         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/usr/local/lib/python3.12/dist-packages/torch/nn/functional.py", line 5290, in pad
    return torch._C._nn.pad(input, pad, mode, value)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
RuntimeError: Argument #4: Padding size should be less than the corresponding input dimension, but got: padding (2, 0) at dimension 1 of input [3, 2]

test code:

import onnxruntime as ort
import onnxruntime
import onnx
import numpy as np
from onnx.onnx_pb import TensorProto
import torch
op = onnx.OperatorSetIdProto()
op.version = 11
opsets = [op]

x_type = onnx.helper.make_tensor_type_proto(TensorProto.FLOAT, None)
y_type = onnx.helper.make_tensor_type_proto(TensorProto.FLOAT, None)

inp = onnx.helper.make_value_info("x", x_type)
outp = onnx.helper.make_value_info("y", y_type)

pads = np.array([0,2,0,0])
pads = onnx.numpy_helper.from_array(pads, "pad")

node = onnx.helper.make_node("Pad", ["x", "pad"], ["y"], "op1", mode="reflect")
graph = onnx.helper.make_graph([node],"g1", [inp], [outp], [pads])
model = onnx.helper.make_model(graph, ir_version=6, opset_imports=opsets)
# onnx.checker.check_model(model)
onnx.save_model(model, "cache/t_reflex_pad.onnx")

session =  ort.InferenceSession("cache/t_reflex_pad.onnx")
x = np.array([
    [1.0, 1.2],
    [ 2.3, 3.4],
    [ 4.5, 5.7],
]).astype(np.float32)

print(x.shape)
y = session.run(None, {"x": x})
print(y[0].shape)
print("ori \n", x)
print("reflect pad \n",y[0])

x = torch.from_numpy(x)
print(x.shape)
ty = torch.nn.functional.pad(x, pad=[2,0],mode="reflect")
print(ty.shape)
print("reflect pad torch \n",ty)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions