-
Notifications
You must be signed in to change notification settings - Fork 166
Description
I want to use the agent which I trained in from your rl-agents instead of the stablebaseline implementation. How can I use it in a code like this:
import warnings
import gym
import highway_env
from stable_baselines3 import DQN
import json
import os
import cv2
import numpy as np
ACTIONS_ALL = {
0: 'LANE_LEFT',
1: 'IDLE',
2: 'LANE_RIGHT',
3: 'FASTER',
4: 'SLOWER'
}
config = {
"observation": {
"type": "Kinematics",
"features": ["presence", "x", "y", "vx", "vy"],
"normalize": False
}
}
env = gym.make("highway-fast-v0")
env.configure(config)
env.reset()
model = DQN.load(
"C:\Users\davin\Documents\Studium\Bachelorarbeit\davin-holten-bachelor\highway_dqn\highway_dqn\DQNFast2\rl_model_500000_steps.zip")
basic_traces_folder = "basic_traces"
simb_traces_folderRL = "simb_tracesRL"
if not os.path.exists(basic_traces_folder):
os.makedirs(basic_traces_folder)
if not os.path.exists(simb_traces_folderRL):
os.makedirs(simb_traces_folderRL)
fileCounter = 1
Crash = False
critical_distance = False
critical_distanceY = False
for i in range(1,50):
frames = []
steps = 0
done = truncated = False
obs = env.reset()
dest_state = obs.tolist()
Crash = False
critical_distance = False
critical_distanceY = False
videoCounter=i
while not (done or truncated):
action, _states = model.predict(obs, deterministic=True)
obs, reward, done, info = env.step(int(action))
dest_state = obs.tolist()
check= False
checkY = False
steps += 1
# Trace Creation