Coding Is When We’re Least Productive – Codemanship’s Blog

I’ve seen so many times how 10 lines of code can end up being worth £millions, and 10,000 ends up being worthless.

Coding Is When We’re Least Productive – Codemanship’s Blog

Tagged with

Responses

1 Like

# Liked by Aaron Crowder on Thursday, February 12th, 2026 at 10:06pm

Related links

The Future of Software Development is Software Developers – Codemanship’s Blog

The hard part of computer programming isn’t expressing what we want the machine to do in code. The hard part is turning human thinking – with all its wooliness and ambiguity and contradictions – into computational thinking that is logically precise and unambiguous, and that can then be expressed formally in the syntax of a programming language.

That was the hard part when programmers were punching holes in cards. It was the hard part when they were typing COBOL code. It was the hard part when they were bringing Visual Basic GUIs to life (presumably to track the killer’s IP address). And it’s the hard part when they’re prompting language models to predict plausible-looking Python.

The hard part has always been – and likely will continue to be for many years to come – knowing exactly what to ask for.

Tagged with

The Recurring Cycle of ‘Developer Replacement’ Hype

Here’s what the “AI will replace developers” crowd fundamentally misunderstands: code is not an asset—it’s a liability. Every line must be maintained, debugged, secured, and eventually replaced. The real asset is the business capability that code enables.

If AI makes writing code faster and cheaper, it’s really making it easier to create liability. When you can generate liability at unprecedented speed, the ability to manage and minimize that liability strategically becomes exponentially more valuable.

This is particularly true because AI excels at local optimization but fails at global design. It can optimize individual functions but can’t determine whether a service should exist in the first place, or how it should interact with the broader system. When implementation speed increases dramatically, architectural mistakes get baked in before you realize they’re mistakes.

Tagged with

The Hidden Cost of AI Coding – Terrible Software

Feels like an emerging trend:

Instead of that deep immersion where I’d craft each function, I’m now more like a curator? I describe what I want, evaluate what the AI gives me, tweak the prompts, and iterate. It’s efficient, yes. Revolutionary, even. But something essential feels missing — that state of flow where time vanishes and you’re completely absorbed in creation. If this becomes the dominant workflow across teams, do we risk an industry full of highly productive yet strangely detached developers?

Tagged with

AI ambivalence | Read the Tea Leaves

Here’s the main problem I’ve found with generative AI, and with “vibe coding” in general: it completely sucks out the joy of software development for me.

I hate the way they’ve taken over the software industry, I hate how they make me feel while I’m using them, and I hate the human-intelligence-insulting postulation that a glorified Excel spreadsheet can do what I can but better.

Tagged with

AI is Stifling Tech Adoption | Vale.Rocks

Want to use all those great features that have been in landing in browsers over the past year or two? View transitions! Scroll-driven animations! So much more!

Well, your coding co-pilot is not going to going to be of any help.

Large language models, especially those on the scale of many of the most accessible, popular hosted options, take humongous datasets and long periods to train. By the time everything has been scraped and a dataset has been built, the set is on some level already obsolete. Then, before a model can reach the hands of consumers, time must be taken to train and evaluate it, and then even more to finally deploy it.

Once it has finally released, it usually remains stagnant in terms of having its knowledge updated. This creates an AI knowledge gap. A period between the present and AI’s training cutoff. This gap creates a time between when a new technology emerges and when AI systems can effectively support user needs regarding its adoption, meaning that models will not be able to service users requesting assistance with new technologies, thus disincentivising their use.

So we get this instead:

I’ve anecdotally noticed that many AI tools have a ‘preference’ for React and Tailwind when asked to tackle a web-based task, or even to create any app involving an interface at all.

Tagged with

Related posts

Codewashing

Whether you’re generating slop or code, underneath it’s the same shoggoth with a smiley face.

Automation

Take my job. Please.

Inertia

Two JavaScript frameworks—Svelte and Astro—share a philosophy, but take subtly different approaches.

Mind the gap

If you’re making a library or framework, treat it like a polyfill.

Going Offline—the talk of the book

…of the T-shirt.