Die Gemini API kann mithilfe von Gemini-Modellen Textausgaben aus verschiedenen Eingaben generieren, darunter Text, Bilder, Videos und Audio.
Hier ist ein einfaches Beispiel, das eine einzelne Texteingabe verwendet:
Python
from google import genai
client = genai.Client()
response = client.models.generate_content(
model="gemini-2.5-flash",
contents="How does AI work?"
)
print(response.text)
JavaScript
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({});
async function main() {
const response = await ai.models.generateContent({
model: "gemini-2.5-flash",
contents: "How does AI work?",
});
console.log(response.text);
}
await main();
Ok
package main
import (
"context"
"fmt"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
result, _ := client.Models.GenerateContent(
ctx,
"gemini-2.5-flash",
genai.Text("Explain how AI works in a few words"),
nil,
)
fmt.Println(result.Text())
}
REST
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [
{
"parts": [
{
"text": "How does AI work?"
}
]
}
]
}'
Apps Script
// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');
function main() {
const payload = {
contents: [
{
parts: [
{ text: 'How AI does work?' },
],
},
],
};
const url = 'https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent';
const options = {
method: 'POST',
contentType: 'application/json',
headers: {
'x-goog-api-key': apiKey,
},
payload: JSON.stringify(payload)
};
const response = UrlFetchApp.fetch(url, options);
const data = JSON.parse(response);
const content = data['candidates'][0]['content']['parts'][0]['text'];
console.log(content);
}
Logisches Denken mit Gemini 2.5
Bei 2.5 Flash- und Pro-Modellen ist die Denkfunktion standardmäßig aktiviert, um die Qualität zu verbessern. Das kann länger dauern und die Tokennutzung erhöhen.
Wenn Sie 2.5 Flash verwenden, können Sie das logische Denken deaktivieren, indem Sie das Thinking-Budget auf null setzen.
Weitere Informationen finden Sie im Leitfaden zum Denken.
Python
from google import genai
from google.genai import types
client = genai.Client()
response = client.models.generate_content(
model="gemini-2.5-flash",
contents="How does AI work?",
config=types.GenerateContentConfig(
thinking_config=types.ThinkingConfig(thinking_budget=0) # Disables thinking
),
)
print(response.text)
JavaScript
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({});
async function main() {
const response = await ai.models.generateContent({
model: "gemini-2.5-flash",
contents: "How does AI work?",
config: {
thinkingConfig: {
thinkingBudget: 0, // Disables thinking
},
}
});
console.log(response.text);
}
await main();
Ok
package main
import (
"context"
"fmt"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
result, _ := client.Models.GenerateContent(
ctx,
"gemini-2.5-flash",
genai.Text("How does AI work?"),
&genai.GenerateContentConfig{
ThinkingConfig: &genai.ThinkingConfig{
ThinkingBudget: int32(0), // Disables thinking
},
}
)
fmt.Println(result.Text())
}
REST
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [
{
"parts": [
{
"text": "How does AI work?"
}
]
}
],
"generationConfig": {
"thinkingConfig": {
"thinkingBudget": 0
}
}
}'
Apps Script
// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');
function main() {
const payload = {
contents: [
{
parts: [
{ text: 'How AI does work?' },
],
},
],
};
const url = 'https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent';
const options = {
method: 'POST',
contentType: 'application/json',
headers: {
'x-goog-api-key': apiKey,
},
payload: JSON.stringify(payload)
};
const response = UrlFetchApp.fetch(url, options);
const data = JSON.parse(response);
const content = data['candidates'][0]['content']['parts'][0]['text'];
console.log(content);
}
Systemanweisungen und andere Konfigurationen
Mit Systemanweisungen können Sie das Verhalten von Gemini-Modellen steuern. Übergeben Sie dazu ein GenerateContentConfig
-Objekt.
Python
from google import genai
from google.genai import types
client = genai.Client()
response = client.models.generate_content(
model="gemini-2.5-flash",
config=types.GenerateContentConfig(
system_instruction="You are a cat. Your name is Neko."),
contents="Hello there"
)
print(response.text)
JavaScript
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({});
async function main() {
const response = await ai.models.generateContent({
model: "gemini-2.5-flash",
contents: "Hello there",
config: {
systemInstruction: "You are a cat. Your name is Neko.",
},
});
console.log(response.text);
}
await main();
Ok
package main
import (
"context"
"fmt"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
config := &genai.GenerateContentConfig{
SystemInstruction: genai.NewContentFromText("You are a cat. Your name is Neko.", genai.RoleUser),
}
result, _ := client.Models.GenerateContent(
ctx,
"gemini-2.5-flash",
genai.Text("Hello there"),
config,
)
fmt.Println(result.Text())
}
REST
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-d '{
"system_instruction": {
"parts": [
{
"text": "You are a cat. Your name is Neko."
}
]
},
"contents": [
{
"parts": [
{
"text": "Hello there"
}
]
}
]
}'
Apps Script
// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');
function main() {
const systemInstruction = {
parts: [{
text: 'You are a cat. Your name is Neko.'
}]
};
const payload = {
systemInstruction,
contents: [
{
parts: [
{ text: 'Hello there' },
],
},
],
};
const url = 'https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent';
const options = {
method: 'POST',
contentType: 'application/json',
headers: {
'x-goog-api-key': apiKey,
},
payload: JSON.stringify(payload)
};
const response = UrlFetchApp.fetch(url, options);
const data = JSON.parse(response);
const content = data['candidates'][0]['content']['parts'][0]['text'];
console.log(content);
}
Mit dem Objekt GenerateContentConfig
können Sie auch Standardgenerierungsparameter wie temperature überschreiben.
Python
from google import genai
from google.genai import types
client = genai.Client()
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=["Explain how AI works"],
config=types.GenerateContentConfig(
temperature=0.1
)
)
print(response.text)
JavaScript
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({});
async function main() {
const response = await ai.models.generateContent({
model: "gemini-2.5-flash",
contents: "Explain how AI works",
config: {
temperature: 0.1,
},
});
console.log(response.text);
}
await main();
Ok
package main
import (
"context"
"fmt"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
temp := float32(0.9)
topP := float32(0.5)
topK := float32(20.0)
config := &genai.GenerateContentConfig{
Temperature: &temp,
TopP: &topP,
TopK: &topK,
ResponseMIMEType: "application/json",
}
result, _ := client.Models.GenerateContent(
ctx,
"gemini-2.5-flash",
genai.Text("What is the average size of a swallow?"),
config,
)
fmt.Println(result.Text())
}
REST
curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [
{
"parts": [
{
"text": "Explain how AI works"
}
]
}
],
"generationConfig": {
"stopSequences": [
"Title"
],
"temperature": 1.0,
"topP": 0.8,
"topK": 10
}
}'
Apps Script
// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');
function main() {
const generationConfig = {
temperature: 1,
topP: 0.95,
topK: 40,
responseMimeType: 'text/plain',
};
const payload = {
generationConfig,
contents: [
{
parts: [
{ text: 'Explain how AI works in a few words' },
],
},
],
};
const url = 'https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent';
const options = {
method: 'POST',
contentType: 'application/json',
headers: {
'x-goog-api-key': apiKey,
},
payload: JSON.stringify(payload)
};
const response = UrlFetchApp.fetch(url, options);
const data = JSON.parse(response);
const content = data['candidates'][0]['content']['parts'][0]['text'];
console.log(content);
}
Eine vollständige Liste der konfigurierbaren Parameter und ihrer Beschreibungen finden Sie in der GenerateContentConfig
in unserer API-Referenz.
Multimodale Eingaben
Die Gemini API unterstützt multimodale Eingaben, sodass Sie Text mit Mediendateien kombinieren können. Im folgenden Beispiel wird gezeigt, wie ein Bild bereitgestellt wird:
Python
from PIL import Image
from google import genai
client = genai.Client()
image = Image.open("/path/to/organ.png")
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=[image, "Tell me about this instrument"]
)
print(response.text)
JavaScript
import {
GoogleGenAI,
createUserContent,
createPartFromUri,
} from "@google/genai";
const ai = new GoogleGenAI({});
async function main() {
const image = await ai.files.upload({
file: "/path/to/organ.png",
});
const response = await ai.models.generateContent({
model: "gemini-2.5-flash",
contents: [
createUserContent([
"Tell me about this instrument",
createPartFromUri(image.uri, image.mimeType),
]),
],
});
console.log(response.text);
}
await main();
Ok
package main
import (
"context"
"fmt"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
imagePath := "/path/to/organ.jpg"
imgData, _ := os.ReadFile(imagePath)
parts := []*genai.Part{
genai.NewPartFromText("Tell me about this instrument"),
&genai.Part{
InlineData: &genai.Blob{
MIMEType: "image/jpeg",
Data: imgData,
},
},
}
contents := []*genai.Content{
genai.NewContentFromParts(parts, genai.RoleUser),
}
result, _ := client.Models.GenerateContent(
ctx,
"gemini-2.5-flash",
contents,
nil,
)
fmt.Println(result.Text())
}
REST
# Use a temporary file to hold the base64 encoded image data
TEMP_B64=$(mktemp)
trap 'rm -f "$TEMP_B64"' EXIT
base64 $B64FLAGS $IMG_PATH > "$TEMP_B64"
# Use a temporary file to hold the JSON payload
TEMP_JSON=$(mktemp)
trap 'rm -f "$TEMP_JSON"' EXIT
cat > "$TEMP_JSON" << EOF
{
"contents": [
{
"parts": [
{
"text": "Tell me about this instrument"
},
{
"inline_data": {
"mime_type": "image/jpeg",
"data": "$(cat "$TEMP_B64")"
}
}
]
}
]
}
EOF
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d "@$TEMP_JSON"
Apps Script
// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');
function main() {
const imageUrl = 'http://image/url';
const image = getImageData(imageUrl);
const payload = {
contents: [
{
parts: [
{ image },
{ text: 'Tell me about this instrument' },
],
},
],
};
const url = 'https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent';
const options = {
method: 'POST',
contentType: 'application/json',
headers: {
'x-goog-api-key': apiKey,
},
payload: JSON.stringify(payload)
};
const response = UrlFetchApp.fetch(url, options);
const data = JSON.parse(response);
const content = data['candidates'][0]['content']['parts'][0]['text'];
console.log(content);
}
function getImageData(url) {
const blob = UrlFetchApp.fetch(url).getBlob();
return {
mimeType: blob.getContentType(),
data: Utilities.base64Encode(blob.getBytes())
};
}
Alternative Methoden zum Bereitstellen von Bildern und zur erweiterten Bildverarbeitung finden Sie in unserem Leitfaden zur Bildanalyse. Die API unterstützt auch Dokument-, Video- und Audioeingaben.
Streamingantworten
Standardmäßig gibt das Modell erst dann eine Antwort zurück, wenn der gesamte Generierungsprozess abgeschlossen ist.
Für flüssigere Interaktionen können Sie Streaming verwenden, um GenerateContentResponse
-Instanzen inkrementell zu empfangen, sobald sie generiert werden.
Python
from google import genai
client = genai.Client()
response = client.models.generate_content_stream(
model="gemini-2.5-flash",
contents=["Explain how AI works"]
)
for chunk in response:
print(chunk.text, end="")
JavaScript
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({});
async function main() {
const response = await ai.models.generateContentStream({
model: "gemini-2.5-flash",
contents: "Explain how AI works",
});
for await (const chunk of response) {
console.log(chunk.text);
}
}
await main();
Ok
package main
import (
"context"
"fmt"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
stream := client.Models.GenerateContentStream(
ctx,
"gemini-2.5-flash",
genai.Text("Write a story about a magic backpack."),
nil,
)
for chunk, _ := range stream {
part := chunk.Candidates[0].Content.Parts[0]
fmt.Print(part.Text)
}
}
REST
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:streamGenerateContent?alt=sse" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
--no-buffer \
-d '{
"contents": [
{
"parts": [
{
"text": "Explain how AI works"
}
]
}
]
}'
Apps Script
// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');
function main() {
const payload = {
contents: [
{
parts: [
{ text: 'Explain how AI works' },
],
},
],
};
const url = 'https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:streamGenerateContent';
const options = {
method: 'POST',
contentType: 'application/json',
headers: {
'x-goog-api-key': apiKey,
},
payload: JSON.stringify(payload)
};
const response = UrlFetchApp.fetch(url, options);
const data = JSON.parse(response);
const content = data['candidates'][0]['content']['parts'][0]['text'];
console.log(content);
}
Unterhaltungen über mehrere Themen (Chat)
Unsere SDKs bieten Funktionen zum Erfassen mehrerer Runden von Prompts und Antworten in einem Chat. So können Sie den Unterhaltungsverlauf ganz einfach im Blick behalten.
Python
from google import genai
client = genai.Client()
chat = client.chats.create(model="gemini-2.5-flash")
response = chat.send_message("I have 2 dogs in my house.")
print(response.text)
response = chat.send_message("How many paws are in my house?")
print(response.text)
for message in chat.get_history():
print(f'role - {message.role}',end=": ")
print(message.parts[0].text)
JavaScript
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({});
async function main() {
const chat = ai.chats.create({
model: "gemini-2.5-flash",
history: [
{
role: "user",
parts: [{ text: "Hello" }],
},
{
role: "model",
parts: [{ text: "Great to meet you. What would you like to know?" }],
},
],
});
const response1 = await chat.sendMessage({
message: "I have 2 dogs in my house.",
});
console.log("Chat response 1:", response1.text);
const response2 = await chat.sendMessage({
message: "How many paws are in my house?",
});
console.log("Chat response 2:", response2.text);
}
await main();
Ok
package main
import (
"context"
"fmt"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
history := []*genai.Content{
genai.NewContentFromText("Hi nice to meet you! I have 2 dogs in my house.", genai.RoleUser),
genai.NewContentFromText("Great to meet you. What would you like to know?", genai.RoleModel),
}
chat, _ := client.Chats.Create(ctx, "gemini-2.5-flash", nil, history)
res, _ := chat.SendMessage(ctx, genai.Part{Text: "How many paws are in my house?"})
if len(res.Candidates) > 0 {
fmt.Println(res.Candidates[0].Content.Parts[0].Text)
}
}
REST
curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [
{
"role": "user",
"parts": [
{
"text": "Hello"
}
]
},
{
"role": "model",
"parts": [
{
"text": "Great to meet you. What would you like to know?"
}
]
},
{
"role": "user",
"parts": [
{
"text": "I have two dogs in my house. How many paws are in my house?"
}
]
}
]
}'
Apps Script
// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');
function main() {
const payload = {
contents: [
{
role: 'user',
parts: [
{ text: 'Hello' },
],
},
{
role: 'model',
parts: [
{ text: 'Great to meet you. What would you like to know?' },
],
},
{
role: 'user',
parts: [
{ text: 'I have two dogs in my house. How many paws are in my house?' },
],
},
],
};
const url = 'https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent';
const options = {
method: 'POST',
contentType: 'application/json',
headers: {
'x-goog-api-key': apiKey,
},
payload: JSON.stringify(payload)
};
const response = UrlFetchApp.fetch(url, options);
const data = JSON.parse(response);
const content = data['candidates'][0]['content']['parts'][0]['text'];
console.log(content);
}
Streaming kann auch für Multi-Turn-Unterhaltungen verwendet werden.
Python
from google import genai
client = genai.Client()
chat = client.chats.create(model="gemini-2.5-flash")
response = chat.send_message_stream("I have 2 dogs in my house.")
for chunk in response:
print(chunk.text, end="")
response = chat.send_message_stream("How many paws are in my house?")
for chunk in response:
print(chunk.text, end="")
for message in chat.get_history():
print(f'role - {message.role}', end=": ")
print(message.parts[0].text)
JavaScript
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({});
async function main() {
const chat = ai.chats.create({
model: "gemini-2.5-flash",
history: [
{
role: "user",
parts: [{ text: "Hello" }],
},
{
role: "model",
parts: [{ text: "Great to meet you. What would you like to know?" }],
},
],
});
const stream1 = await chat.sendMessageStream({
message: "I have 2 dogs in my house.",
});
for await (const chunk of stream1) {
console.log(chunk.text);
console.log("_".repeat(80));
}
const stream2 = await chat.sendMessageStream({
message: "How many paws are in my house?",
});
for await (const chunk of stream2) {
console.log(chunk.text);
console.log("_".repeat(80));
}
}
await main();
Ok
package main
import (
"context"
"fmt"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
history := []*genai.Content{
genai.NewContentFromText("Hi nice to meet you! I have 2 dogs in my house.", genai.RoleUser),
genai.NewContentFromText("Great to meet you. What would you like to know?", genai.RoleModel),
}
chat, _ := client.Chats.Create(ctx, "gemini-2.5-flash", nil, history)
stream := chat.SendMessageStream(ctx, genai.Part{Text: "How many paws are in my house?"})
for chunk, _ := range stream {
part := chunk.Candidates[0].Content.Parts[0]
fmt.Print(part.Text)
}
}
REST
curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:streamGenerateContent?alt=sse \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [
{
"role": "user",
"parts": [
{
"text": "Hello"
}
]
},
{
"role": "model",
"parts": [
{
"text": "Great to meet you. What would you like to know?"
}
]
},
{
"role": "user",
"parts": [
{
"text": "I have two dogs in my house. How many paws are in my house?"
}
]
}
]
}'
Apps Script
// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');
function main() {
const payload = {
contents: [
{
role: 'user',
parts: [
{ text: 'Hello' },
],
},
{
role: 'model',
parts: [
{ text: 'Great to meet you. What would you like to know?' },
],
},
{
role: 'user',
parts: [
{ text: 'I have two dogs in my house. How many paws are in my house?' },
],
},
],
};
const url = 'https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:streamGenerateContent';
const options = {
method: 'POST',
contentType: 'application/json',
headers: {
'x-goog-api-key': apiKey,
},
payload: JSON.stringify(payload)
};
const response = UrlFetchApp.fetch(url, options);
const data = JSON.parse(response);
const content = data['candidates'][0]['content']['parts'][0]['text'];
console.log(content);
}
Unterstützte Modelle
Alle Modelle der Gemini-Familie unterstützen die Textgenerierung. Weitere Informationen zu den Modellen und ihren Funktionen finden Sie auf der Seite Modelle.
Best Practices
Tipps für Prompts
Für die einfache Textgenerierung reicht oft ein Zero-Shot-Prompt aus, ohne dass Beispiele, Systemanweisungen oder eine bestimmte Formatierung erforderlich sind.
Für individuellere Ausgaben:
- Verwenden Sie Systemanweisungen, um das Modell zu steuern.
- Geben Sie einige Beispiele für Eingaben und Ausgaben an, um das Modell zu unterstützen. Dies wird oft als Few-Shot-Prompting bezeichnet.
Weitere Tipps finden Sie in unserem Leitfaden zum Erstellen von Prompts.
Strukturierte Ausgabe
In einigen Fällen benötigen Sie möglicherweise eine strukturierte Ausgabe, z. B. im JSON-Format. Weitere Informationen finden Sie in unserem Leitfaden zur strukturierten Ausgabe.