Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Advertisement

Log in

Metal nanogrids, nanowires, and nanofibers for transparent electrodes

  • Solution-processed transparent electrodes
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Metals possess the highest conductivity among all room-temperature materials; however, ultrathin metal films demonstrate decent optical transparency but poor sheet conductance due to electron scattering from the surface and grain boundaries. This article discusses engineered metal nanostructures in the form of nanogrids, nanowires, or continuous nanofibers as efficient transparent and conductive electrodes. Metal nanogrids are discussed, as they represent an excellent platform for understanding the fundamental science. Progress toward low-cost, nano-ink-based printed silver nanowire electrodes, including silver nanowire synthesis, film fabrication, wire-wire junction resistance, optoelectronic properties, and stability, are also discussed. Another important factor for low-cost application is to use earth-abundant materials. Copper-based nanowires and nanofibers are discussed in this context. Examples of device integrations of these materials are also given. Such metal nanostructure-based transparent electrodes are particularly attractive for solar cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. D.S. Hecht, L.B. Hu, G. Irvin, Adv. Mater. 23, 1482 (2011).

    Google Scholar 

  2. L. Hu, D.S. Hecht, G. Gruner, Nano Lett. 4, 2513 (2004).

    Google Scholar 

  3. M.W. Rowell, M.D. McGehee, Energy Environ. Sci. 4, 131 (2010).

  4. G.T. Koishiyev, J.R. Sites, Sol. Energy Mater. Sol. Cells 93, 350 (2009).

  5. Z.C. Wu, Z.H. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, A.F. Hebard, A.G. Rinzler, Science 305, 1273 (2004).

  6. L.B. Hu, D.S. Hecht, G. Gruner, Chem. Rev. 110, 5790 (2011).

  7. S. Bae, H. Kim, Y. Lee, X.F. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Ozyilmaz, J.H. Ahn, B.H. Hong, S. Iijima, Nat. Nanotechnol. 5, 574 (2010).

  8. J.K. Wassei, R.B. Kaner, Mater. Today 13, 52 (2010).

  9. B. O’Connor, C. Haughn, K.H. An, K.P. Pipe, M. Shtein, Appl. Phys. Lett. 93 (2008).

  10. D.S. Ghosh, L. Martinez, S. Giurgola, P. Vergani, V. Pruneri, Opt. Lett. 34, 325 (2009).

  11. M.G. Kang, H.J. Park, S.H. Ahn, T. Xu, L.J. Guo, IEEE J. Sel. Top. Quantum Electron. 16, 1807 (2010).

  12. P.B. Catrysse, S.H. Fan, Nano Lett. 10, 2944 (2010).

  13. J.Y. Lee, S.T. Connor, Y. Cui, P. Peumans, Nano Lett. 8, 689 (2008).

  14. J.M. Park, T.G. Kim, K. Constant, K.M. Ho, J. Micro/Nanolithogr. MEMS MOEMS 10 (2011).

  15. S.H. Ahn, L.J. Guo, Nano Lett. 10, 4228 (2010).

  16. S.H. Ahn, L.J. Guo, ACS Nano 3, 2304 (2009).

  17. M.G. Kang, L.J. Guo, J. Vac. Sci. Technol., B 25, 2637 (2007).

  18. L.B. Hu, H.S. Kim, J.Y. Lee, P. Peumans, Y. Cui, ACS Nano 4, 2955 (2010).

  19. S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland, J.N. Coleman, ACS Nano 3, 1767 (2009).

  20. Y. Chang, M.L. Lye, H.C. Zeng, Langmuir 21, 3746 (2005).

  21. A.R. Rathmell, S.M. Bergin, Y.L. Hua, Z.Y. Li, B.J. Wiley, Adv. Mater. 22, 3558 (2010).

  22. H. Wu, L.B. Hu, M.W. Rowell, D.S. Kong, J.J. Cha, J.R. McDonough, J. Zhu, Y.A. Yang, M.D. McGehee, Y. Cui, Nano Lett. 10, 4242 (2010).

  23. D. Li, Y.N. Xia, Adv. Mater. 16, 1151 (2004).

    Google Scholar 

  24. M.G. Kang, T. Xu, H.J. Park, X.G. Luo, L.J. Guo, Adv. Mater. 22, 4378 (2010).

    Google Scholar 

Download references

Acknowledgment

We acknowledge support from the King Abdullah University of Science and Technology (KAUST) Investigator Award (No. KUS-11–001–12) and U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangbing Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, L., Wu, H. & Cui, Y. Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bulletin 36, 760–765 (2011). https://doi.org/10.1557/mrs.2011.234

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.234