Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Checking Conservativity of Overloaded Definitions in Higher-Order Logic

  • Conference paper
Term Rewriting and Applications (RTA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4098))

Included in the following conference series:

  • 420 Accesses

  • 11 Citations

Abstract

Overloading in the context of higher-order logic has been used for some time now. We define what we mean by Higher-Order Logic with Conservative Overloading (HOLCO). HOLCO captures how overloading is actually applied by the users of Isabelle.

We show that checking whether definitions obey the rules of HOLCO is not even semi-decidable.

The undecidability proof reveals strong ties between our problem and the dependency pair method by Arts and Giesl for proving termination of TRSs via the notion overloading TRS. The dependency graph of overloading TRSs can be computed exactly. We exploit this by providing an algorithm that checks the conservativity of definitions based on the dependency pair method and a simple form of linear polynomial interpretation; the algorithm also uses the strategy of Hirokawa and Middeldorp of recursively calculating the strongly connected components of the dependency graph. The algorithm is powerful enough to deal with all overloaded definitions that the author has encountered so far in practice.

An implementation of this algorithm is available as part of a package that adds conservative overloading to Isabelle. This package also allows to delegate the conservativity check to external tools like the Tyrolean Termination Tool or the Automated Program Verification Environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Obua, S.: Conservative Overloading in Higher-Order Logic. Technical Report, Institut für Informatik, Technische Universität München (2006), http://www4.in.tum.de/~obua/checkdefs

  2. Paulson, L.C.: The Foundation of a Generic Theorem Prover. Journal of Automated Reasoning 5(3), 363–397 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Wenzel, M.: Type Classes and Overloading in Higher-Order Logic. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 307–322. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  4. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  5. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge U.P., NewYork (1998)

    Google Scholar 

  6. Terese: Term Rewriting Systems. Cambridge U.P., New York (2003)

    Google Scholar 

  7. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Computer Science 236, 133–178 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. Information and Computation 199, 172–199 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ruohonen, K.: Reversible Machines and Post’s Correspondence Problem for Biprefix Morphisms. Journal of Information Processing and Cybernetics 21(12), 579–595 (1985)

    MATH  MathSciNet  Google Scholar 

  10. The HOL System Description, http://hol.sourceforge.net/

  11. Harrison, J.: The HOL Light theorem prover, http://www.cl.cam.ac.uk/~jrh/hol-light/

  12. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Automated Termination Proofs with AProVE. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 210–220. Springer, Heidelberg (2004), http://www-i2.informatik.rwth-aachen.de/AProVE/

    Chapter  Google Scholar 

  13. Hirokawa, N., Middeldorp, A.: Tyrolean Termination Tool. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 175–184. Springer, Heidelberg (2005), http://cl2-informatik.uibk.ac.at/ttt/

    Chapter  Google Scholar 

  14. Obua, S.: Proving Bounds for Real Linear Programs in Isabelle/HOL. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 227–244. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Urban, C.: Nominal Techniques in Isabelle/HOL. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 38–53. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Project Bali, http://isabelle.in.tum.de/Bali

  17. Vanderbei, R.J.: Linear Programming, 2nd edn. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  18. Giesl, J.: Generating Polynomial Orderings for Termination Proofs. In: Hsiang, J. (ed.) RTA 1995. LNCS, vol. 914, pp. 426–431. Springer, Heidelberg (1995)

    Google Scholar 

  19. Brucker, A.D., Wolff, B.: A Proposal for a Formal OCL Semantics in Isabelle/HOL. In: Carreño, V.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410, pp. 99–114. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Giesl, J., Arts, T.: Verification of Erlang Processes by Dependency Pairs. Applicable Algebra in Engineering, Communication and Computing 12, 39–72 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Obua, S. (2006). Checking Conservativity of Overloaded Definitions in Higher-Order Logic. In: Pfenning, F. (eds) Term Rewriting and Applications. RTA 2006. Lecture Notes in Computer Science, vol 4098. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11805618_16

Download citation

  • DOI: https://doi.org/10.1007/11805618_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36834-2

  • Online ISBN: 978-3-540-36835-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics