Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

NEST: The Neural Simulation Tool

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Computational Neuroscience
  • 162 Accesses

  • 1 Citation

Synonyms

NEST; Neural Simulation Tool; SYNOD

Definition

NEST, the Neural Simulation Tool, is optimized for large networks of spiking model neurons. NEST includes a wide range of neuron and synapse models and provides high-level commands to create spatially structured networks. NEST is controlled through a Python-based interface and supports parallel simulation. NEST is available from www.nest-simulator.org under a GNU Public License.

Detailed Description

NEST is optimized for networks of neurons whose subthreshold dynamics can be described by a small number of differential equations. By default, NEST simulations operate on a fixed time grid. However, NEST also supports precisely timed spikes (Morrison et al. 2007b; Krishnan et al. 2018), combining the precision of event-driven simulators (Henker et al. 2012) with the efficiency of grid-based simulation. Furthermore, NEST allows the simulation of neurons coupled by gap junctions (Hahne et al. 2015) and of networks of rate-based neurons...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Davison A, Brüderle D, Eppler J, Kremkow J, Muller E, Pecevski D, Perrinet L, Yger P (2008) PyNN: a common interface for neuronal network simulators. Front Neuroinform 2(11). https://doi.org/10.3389/neuro.11.011.2008

  • Diesmann M, Gewaltig MO, Aertsen A (1995) SYNOD: an environment for neural systems simulations. language interface and tutorial. Tech. Rep. GC-AA-/95-3, The Weizmann Institute of Science, The Grodetsky Center for Research of Higher Brain Functions, Weizmann Institute of Science, Israel

    Google Scholar 

  • Djurfeldt M, Hjorth J, Eppler JM, Dudani N, Helias M, Potjans TC, Bhalla US, Diesmann M, Kotaleski JH, Ekeberg O (2010) Run-time interoperability between neuronal network simulators based on the music framework. Neuroinformatics 8(1):43–60. https://doi.org/10.1007/s12021-010-9064-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Eppler JM, Helias M, Muller E, Diesmann M, Gewaltig MO (2008) PyNEST: a convenient interface to the NEST simulator. Front Neuroinform 2(12). https://doi.org/10.3389/neuro.11.012.2008

  • Eppler JM, Kupper R, Plesser HE, Diesmann M (2009) A testsuite for a neural simulation engine. In: Frontiers in neuroinformatics. Conference abstract: 2nd INCF Congress of Neuroinformatics. International Neuroinformatics Coordinating Facility, Plzen. https://doi.org/10.3389/conf.neuro.11.2009.08.042

    Chapter  Google Scholar 

  • Gewaltig MO, Morrison A, Plesser HE (2012) NEST by example: an introduction to the neural simulation tool NEST. In: Le Novère N (ed) Computational systems neurobiology, Springer Science+Business Media, Dordrecht, Chap. 18, pp 533–558, https://doi.org/10.1007/978-94-007-3858-418

  • Hahne J, Helias M, Kunkel S, Igarashi J, Bolten M, Frommer A, Diesmann M (2015) A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations. Front Neuroinform 9(22). https://doi.org/10.3389/fninf.2015.00022

  • Hahne J, Dahmen D, Schuecker J, Frommer A, Bolten M, Helias M, Diesmann M (2017) Integration of continuous-time dynamics in a spiking neural network simulator. Front Neuroinform 11(34). https://doi.org/10.3389/fninf.2017.00034

  • Henker S, Partzsch J, Schüffny R (2012) Accuracy evaluation of numerical methods used in state-of-the-art simulators for spiking neural networks. J Comput Neurosci 32:309–326. https://doi.org/10.1007/s10827-011-0353-9

    Article  PubMed  Google Scholar 

  • Jordan J, Ippen T, Helias M, Kitayama I, Sato M, Igarashi J, Diesmann M, Kunkel S (2018) Extremely scalable spiking neuronal network simulation code: from laptops to exascale computers. Front Neuroinform 12(2). https://doi.org/10.3389/fninf.2018.00002

  • Krishnan J, Mana PP, Helias M, Diesmann M, Napoli ED (2018) Perfect detection of spikes in the linear sub-threshold dynamics of point neurons. Front Neuroinform 11(75). https://doi.org/10.3389/fninf.2017.00075

  • Kunkel S, Eppler JM, Plesser HE, Gewaltig MO, Diesmann M, Morrison A (2010) NEST: science-driven development of neuronal network simulation software. In: Frontiers in Neuroscience. Conference Abstract: Neuroinformatics 2010, https://doi.org/10.3389/conf.fnins.2010.13.00105

  • Kunkel S, Schmidt M, Eppler JM, Plesser HE, Masumoto G, Igarashi J, Ishii S, Fukai T, Morrison A, Diesmann M, Helias M (2014) Spiking network simulation code for petascale computers. Front Neuroinform 8(78). https://doi.org/10.3389/fninf.2014.00078

  • Morrison A, Mehring C, Geisel T, Aertsen A, Diesmann M (2005) Advancing the boundaries of high connectivity network simulation with distributed computing. Neural Comput 17:1776–1801

    Article  Google Scholar 

  • Morrison A, Aertsen A, Diesmann M (2007a) Spike-time dependent plasticity in balanced recurrent networks. Neural Comput 19:1437–1467

    Article  Google Scholar 

  • Morrison A, Straube S, Plesser HE, Diesmann M (2007b) Exact subthreshold integration with continuous spike times in discrete time neural network simulations. Neural Comput 19:47–79

    Article  Google Scholar 

  • Plesser HE, Enger H (2013) NEST topology user manual

    Google Scholar 

  • Plesser HE, Eppler JM, Morrison A, Diesmann M, Gewaltig MO (2007) Efficient parallel simulation of large-scale neuronal networks on clusters of multiprocessor computers. In: Kermarrec AM, Bougé L, Priol T (eds) Euro-Par 2007: parallel processing, Lecture notes in computer science, vol 4641. Springer-Verlag, Berlin, pp 672–681. https://doi.org/10.1007/978-3-540-74466-5

    Chapter  Google Scholar 

  • Potjans W, Morrison A, Diesmann M (2010) Enabling functional neural circuit simulations with distributed computing of neuromodulated plasticity. Front Comput Neurosci 4:141. https://doi.org/10.3389/fncom.2010.0014

    Article  PubMed  PubMed Central  Google Scholar 

  • Rotter S, Diesmann M (1999) Exact digital simulation of time-invariant linear systems with applications to neuronal modeling. Biol Cybern 81:381–402

    Article  CAS  Google Scholar 

  • Zaytsev YV, Morrison A (2013) Increasing quality and managing complexity in neuroinformatics software development with continuous integration. Front Neuroinform 6(31). https://doi.org/10.3389/fninf.2012.00031

  • Zaytsev YV, Morrison A (2014) CyNEST: a maintainable Cython-based interface for the NEST simulator. Front Neuroinform 8(23). https://doi.org/10.3389/fninf.2014.00023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Ekkehard Plesser .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Plesser, H.E., Diesmann, M., Gewaltig, MO., Morrison, A. (2019). NEST: The Neural Simulation Tool. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_258-6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_258-6

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7320-6

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Living Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    NEST: The Neural Simulation Tool
    Published:
    29 October 2018

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_258-6

  2. Original

    NEST: The Neural Simulation Tool
    Published:
    18 April 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_258-5