Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

End-to-End Model-Based Gait Recognition

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12624))

Included in the following conference series:

  • 1094 Accesses

  • 140 Citations

Abstract

Most existing gait recognition approaches adopt a two-step procedure: a preprocessing step to extract silhouettes or skeletons followed by recognition. In this paper, we propose an end-to-end model-based gait recognition method. Specifically, we employ a skinned multi-person linear (SMPL) model for human modeling, and estimate its parameters using a pre-trained human mesh recovery (HMR) network. As the pre-trained HMR is not recognition-oriented, we fine-tune it in an end-to-end gait recognition framework. To cope with differences between gait datasets and those used for pre-training the HMR, we introduce a reconstruction loss between the silhouette masks in the gait datasets and the rendered silhouettes from the estimated SMPL model produced by a differentiable renderer. This enables us to adapt the HMR to the gait dataset without supervision using the ground-truth joint locations. Experimental results with the OU-MVLP and CASIA-B datasets demonstrate the state-of-the-art performance of the proposed method for both gait identification and verification scenarios, a direct consequence of the explicitly disentangled pose and shape features produced by the proposed end-to-end model-based framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Five dimensions of 23 joints + one root joint sum up to \(5 \times (23 + 1) = 120\).

  2. 2.

    While the original GaitSet paper [22] reported results including the non-enrolled probes, the results here exclude the non-enrolled probes to ensure a fair comparison.

References

  1. Bouchrika, I., Goffredo, M., Carter, J., Nixon, M.: On using gait in forensic biometrics. J. Forensic Sci. 56, 882–889 (2011)

    Article  Google Scholar 

  2. Iwama, H., Muramatsu, D., Makihara, Y., Yagi, Y.: Gait verification system for criminal investigation. IPSJ Trans. Comput. Vis. Appl. 5, 163–175 (2013)

    Article  Google Scholar 

  3. Lynnerup, N., Larsen, P.: Gait as evidence. IET Biometrics 3, 47–54 (2014)

    Article  Google Scholar 

  4. Wagg, D., Nixon, M.: On automated model-based extraction and analysis of gait. In: Proceedings of the 6th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 11–16 (2004)

    Google Scholar 

  5. Yam, C., Nixon, M., Carter, J.: Automated person recognition by walking and running via model-based approaches. Pattern Recogn. 37, 1057–1072 (2004)

    Article  Google Scholar 

  6. Bobick, A., Johnson, A.: Gait recognition using static activity-specific parameters. In: CVPR, vol. 1, pp. 423–430 (2001)

    Google Scholar 

  7. Cunado, D., Nixon, M., Carter, J.: Automatic extraction and description of human gait models for recognition purposes. Comput. Vis. Image Underst. 90, 1–41 (2003)

    Article  Google Scholar 

  8. Yamauchi, K., Bhanu, B., Saito, H.: 3D human body modeling using range data. In: ICPR, pp. 3476–3479 (2010)

    Google Scholar 

  9. Ariyanto, G., Nixon, M.: Marionette mass-spring model for 3d gait biometrics. In: Proceedings of the 5th IAPR International Conference on Biometrics, pp. 354–359 (2012)

    Google Scholar 

  10. Feng, Y., Li, Y., Luo, J.: Learning effective gait features using LSTM. In: ICPR, pp. 325–330 (2016)

    Google Scholar 

  11. Liao, R., Cao, C., Garcia, E.B., Yu, S., Huang, Y.: Pose-based temporal-spatial network (PTSN) for gait recognition with carrying and clothing variations. In: Zhou, J., et al. (eds.) CCBR 2017. LNCS, vol. 10568, pp. 474–483. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69923-3_51

    Chapter  Google Scholar 

  12. Liao, R., Yu, S., An, W., Huang, Y.: A model-based gait recognition method with body pose and human prior knowledge. Pattern Recogn. 98, 107069 (2020)

    Article  Google Scholar 

  13. Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28, 316–322 (2006)

    Article  Google Scholar 

  14. Xu, D., Yan, S., Tao, D., Zhang, L., Li, X., Zhang, H.: Human gait recognition with matrix representation. IEEE Trans. Circuits Syst. Video Technol. 16, 896–903 (2006)

    Google Scholar 

  15. Lu, J., Tan, Y.P.: Uncorrelated discriminant simplex analysis for view-invariant gait signal computing. Pattern Recogn. Lett. 31, 382–393 (2010)

    Article  Google Scholar 

  16. Guan, Y., Li, C.T., Roli, F.: On reducing the effect of covariate factors in gait recognition: a classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 37, 1521–1528 (2015)

    Article  Google Scholar 

  17. Makihara, Y., Suzuki, A., Muramatsu, D., Li, X., Yagi, Y.: Joint intensity and spatial metric learning for robust gait recognition. In: CVPR, pp. 5705–5715 (2017)

    Google Scholar 

  18. Shiraga, K., Makihara, Y., Muramatsu, D., Echigo, T., Yagi, Y.: Geinet: View-invariant gait recognition using a convolutional neural network. In: ICB (2016)

    Google Scholar 

  19. Wu, Z., Huang, Y., Wang, L., Wang, X., Tan, T.: A comprehensive study on cross-view gait based human identification with deep CNNs. IEEE Trans. Pattern Anal. Mach. Intell. 39, 209–226 (2017)

    Article  Google Scholar 

  20. Takemura, N., Makihara, Y., Muramatsu, D., Echigo, T., Yagi, Y.: On input/output architectures for convolutional neural network-based cross-view gait recognition. IEEE Trans. Circuits Syst. Video Technol. 29, 2708–2719 (2019)

    Article  Google Scholar 

  21. Zhang, K., Luo, W., Ma, L., Liu, W., Li, H.: Learning joint gait representation via quintuplet loss minimization. In: CVPR (2019)

    Google Scholar 

  22. Chao, H., He, Y., Zhang, J., Feng, J.: Gaitset: regarding gait as a set for cross-view gait recognition. In: AAAI (2019)

    Google Scholar 

  23. Li, X., Makihara, Y., Xu, C., Yagi, Y., Ren, M.: Joint intensity transformer network for gait recognition robust against clothing and carrying status. IEEE Trans. Inf. Forensics Secur. 1 (2019)

    Google Scholar 

  24. Kusakunniran, W., Wu, Q., Zhang, J., Li, H.: Support vector regression for multi-view gait recognition based on local motion feature selection. In: CVPR, San Francisco, CA, USA, pp. 1–8 (2010)

    Google Scholar 

  25. Makihara, Y., Sagawa, R., Mukaigawa, Y., Echigo, T., Yagi, Y.: Gait recognition using a view transformation model in the frequency domain. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 151–163. Springer, Heidelberg (2006). https://doi.org/10.1007/11744078_12

    Chapter  Google Scholar 

  26. Makihara, Y., Tsuji, A., Yagi, Y.: Silhouette transformation based on walking speed for gait identification. In: CVPR, San Francisco, CA, USA (2010)

    Google Scholar 

  27. Muramatsu, D., Shiraishi, A., Makihara, Y., Uddin, M., Yagi, Y.: Gait-based person recognition using arbitrary view transformation model. IEEE Trans. Image Process. 24, 140–154 (2015)

    Article  MathSciNet  Google Scholar 

  28. Mansur, A., Makihara, Y., Aqmar, R., Yagi, Y.: Gait recognition under speed transition. In: CVPR, pp. 2521–2528 (2014)

    Google Scholar 

  29. Akae, N., Mansur, A., Makihara, Y., Yagi, Y.: Video from nearly still: an application to low frame-rate gait recognition. In: CVPR, Providence, RI, USA, pp. 1537–1543 (2012)

    Google Scholar 

  30. Yu, S., et al.: GaiTGANv 2: invariant gait feature extraction using generative adversarial networks. Pattern Recogn. 87, 179–189 (2019)

    Article  Google Scholar 

  31. He, Y., Zhang, J., Shan, H., Wang, L.: Multi-task GANs for view-specific feature learning in gait recognition. IEEE Trans. Inf. Forensics Secur. 14, 102–113 (2019)

    Article  Google Scholar 

  32. Wang, C., Zhang, J., Wang, L., Pu, J., Yuan, X.: Human identification using temporal information preserving gait template. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2164–2176 (2012)

    Google Scholar 

  33. Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: OpenPose: realtime multi-person 2D pose estimation using Part Affinity Fields. arXiv preprint arXiv:1812.08008 (2018)

  34. Lin, G., Milan, A., Shen, C., Reid, I.D.: RefineNet: multi-path refinement networks for high-resolution semantic segmentation. In: CVPR, pp. 5168–5177 (2017)

    Google Scholar 

  35. Song, C., Huang, Y., Huang, Y., Jia, N., Wang, L.: GaitNet: an end-to-end network for gait based human identification. Pattern Recogn. 96, 106988 (2019)

    Article  Google Scholar 

  36. Zhang, Z., et al.: Gait recognition via disentangled representation learning. In: CVPR, Long Beach, CA (2019)

    Google Scholar 

  37. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: CVPR, pp. 7122–7131 (2018)

    Google Scholar 

  38. Pavlakos, G., Zhu, L., Zhou, X., Daniilidis, K.: Learning to estimate 3D human pose and shape from a single color image. In: CVPR (2018)

    Google Scholar 

  39. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 34, 248:1–248:16 (2015)

    Google Scholar 

  40. Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: ICPR, Hong Kong, China, vol. 4, pp. 441–444 (2006)

    Google Scholar 

  41. Pfister, T., Charles, J., Zisserman, A.: Flowing convnets for human pose estimation in videos. In: ICCV (2015)

    Google Scholar 

  42. Fan, C., et al.: Gaitpart: temporal part-based model for gait recognition. In: CVPR (2020)

    Google Scholar 

  43. Tran, L., Yin, X., Liu, X.: Disentangled representation learning GAN for pose-invariant face recognition. In: CVPR (2017)

    Google Scholar 

  44. Esser, P., Sutter, E., Ommer, B.: A variational U-net for conditional appearance and shape generation. In: CVPR (2018)

    Google Scholar 

  45. Li, X., Makihara, Y., Xu, C., Yagi, Y., Ren, M.: Gait recognition via semi-supervised disentangled representation learning to identity and covariate features. In: CVPR (2020)

    Google Scholar 

  46. Liu, W., Piao, Z., Min, J., Luo, W., Ma, L., Gao, S.: Liquid warping GAN: a unified framework for human motion imitation, appearance transfer and novel view synthesis. In: ICCV (2019)

    Google Scholar 

  47. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  48. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  49. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: New benchmark and state of the art analysis. In: CVPR (2014)

    Google Scholar 

  50. Johnson, S., Everingham, M.: Learning effective human pose estimation from inaccurate annotation. In: CVPR (2011)

    Google Scholar 

  51. Johnson, S., Everingham, M.: Clustered pose and nonlinear appearance models for human pose estimation. In: BMVC (2010)

    Google Scholar 

  52. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6m: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1325–1339 (2014)

    Google Scholar 

  53. Mehta, D., et al.: Monocular 3D human pose estimation in the wild using improved CNN supervision. In: Fifth International Conference on 3D Vision (3DV) (2017)

    Google Scholar 

  54. Hiroharu Kato, Y.U., Harada, T.: Neural 3D mesh renderer. In: CVPR (2018)

    Google Scholar 

  55. Wang, J., et al.: Learning fine-grained image similarity with deep ranking. In: CVPR (2014)

    Google Scholar 

  56. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: CVPR, vol. 2, pp. 1735–1742 (2006)

    Google Scholar 

  57. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  58. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint (2014)

    Google Scholar 

  59. Fang, H.S., Xie, S., Tai, Y.W., Lu, C.: RMPE: regional multi-person pose estimation. In: The IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  60. Otsu, N.: Optimal linear and nonlinear solutions for least-square discriminant feature extraction. In: ICPR, pp. 557–560 (1982)

    Google Scholar 

  61. Xu, C., Makihara, Y., Li, X., Yagi, Y., Lu, J.: Cross-view gait recognition using pairwise spatial transformer networks. IEEE Trans. Circuits Syst. Video Technol. 1 (2020)

    Google Scholar 

  62. Hu, M., Wang, Y., Zhang, Z., Little, J.J., Huang, D.: View-invariant discriminative projection for multi-view gait-based human identification. IEEE Trans. Inf. Forensics Secur. 8, 2034–2045 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by JSPS KAKENHI Grant No. JP18H04115, JP19H05692, and JP20H00607, and the National Natural Science Foundation of China (Grant No. 61727802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Makihara, Y., Xu, C., Yagi, Y., Yu, S., Ren, M. (2021). End-to-End Model-Based Gait Recognition. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12624. Springer, Cham. https://doi.org/10.1007/978-3-030-69535-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69535-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69534-7

  • Online ISBN: 978-3-030-69535-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics