Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Attributed Stream-Hypernetwork Analysis: Homophilic Behaviors in Pairwise and Group Political Discussions on Reddit

  • Conference paper
  • First Online:
Complex Networks and Their Applications XI (COMPLEX NETWORKS 2016 2022)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1077))

Included in the following conference series:

  • 1936 Accesses

  • 1 Citation

Abstract

Complex networks are solid models to describe human behavior. However, most analyses employing them are bounded to observations made on dyadic connectivity, whereas complex human dynamics involve higher-order relations as well. In the last few years, hypergraph models are rising as promising tools to better understand the behavior of social groups. Yet even such higher-order representations ignore the importance of the rich attributes carried by the nodes. In this work we introduce ASH, an Attributed Stream-Hypernetwork framework to model higher-order temporal networks with attributes on nodes. We leverage ASH to study pairwise and group political discussions on the well-known Reddit platform. Our analysis unveils different patterns while looking at either a pairwise or a higher-order structure for the same phenomena. In particular, we find out that Reddit users tend to surround themselves by like-minded peers with respect to their political leaning when online discussions are proxied by pairwise interactions; conversely, such a tendency significantly decreases when considering nodes embedded in higher-order contexts - that often describe heterophilic discussions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 263.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 329.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 329.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Original network data available at https://github.com/virgiiim/EC_Reddit_CaseStudy.

References

  1. Aksoy, S.G., Joslyn, C., Marrero, C.O., Praggastis, B., Purvine, E.: Hypernetwork science via high-order hypergraph walks. EPJ Data Sci. 9(1), 16 (2020)

    Article  Google Scholar 

  2. Battiston, F., Amico, E., Barrat, A., Bianconi, G., Ferraz de Arruda, G., Franceschiello, B., Iacopini, I., Kéfi, S., Latora, V., Moreno, Y., et al.: The physics of higher-order interactions in complex systems. Nature Phys. 17(10), 1093–1098 (2021)

    Google Scholar 

  3. Battiston, F., Cencetti, G., Iacopini, I., Latora, V., Lucas, M., Patania, A., Young, J.G., Petri, G.: Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1–92 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bhagat, S., Cormode, G., Muthukrishnan, S.: Node classification in social networks. In: Social Network Data Analytics, pp. 115–148. Springer (2011)

    Google Scholar 

  5. Cencetti, G., Battiston, F., Lepri, B., Karsai, M.: Temporal properties of higher-order interactions in social networks. Sci. Rep. 11(1), 1–10 (2021)

    Article  Google Scholar 

  6. Chiappori, A., Cazabet, R.: Quantitative evaluation of snapshot graphs for the analysis of temporal networks. In: International Conference on Complex Networks and Their Applications, pp. 566–577. Springer (2021)

    Google Scholar 

  7. Chowdhary, S., Kumar, A., Cencetti, G., Iacopini, I., Battiston, F.: Simplicial contagion in temporal higher-order networks. J. Phys. Complex. 2(3), 035019 (2021)

    Article  Google Scholar 

  8. Chunaev, P.: Community detection in node-attributed social networks: a survey. Comput. Sci. Rev. 37, 100286 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cinelli, M., Morales, G.D.F., Galeazzi, A., Quattrociocchi, W., Starnini, M.: The echo chamber effect on social media. Proc. Nat. Acad. Sci. 118(9) (2021)

    Google Scholar 

  10. Citraro, S., Milli, L., Cazabet, R., Rossetti, G.: \(\{\backslash Delta\}\)-conformity: multi-scale node assortativity in feature-rich stream graphs (2021). arXiv:2111.15534

  11. Citraro, S., Rossetti, G.: Identifying and exploiting homogeneous communities in labeled networks. Appl. Netw. Sci. 5(1), 1–20 (2020)

    Article  Google Scholar 

  12. Comrie, C., Kleinberg, J.: Hypergraph ego-networks and their temporal evolution. In: 2021 IEEE International Conference on Data Mining (ICDM), pp. 91–100. IEEE (2021)

    Google Scholar 

  13. Divakaran, A., Mohan, A.: Temporal link prediction: a survey. New Gen. Comput. 38(1), 213–258 (2020)

    Article  Google Scholar 

  14. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)

    Article  Google Scholar 

  15. Iacopini, I., Petri, G., Barrat, A., Latora, V.: Simplicial models of social contagion. Nature Commun. 10(1), 1–9 (2019)

    Article  Google Scholar 

  16. Interdonato, R., Atzmueller, M., Gaito, S., Kanawati, R., Largeron, C., Sala, A.: Feature-rich networks: going beyond complex network topologies. App. Netw. Sci. 4(1), 1–13 (2019)

    Google Scholar 

  17. Latapy, M., Viard, T., Magnien, C.: Stream graphs and link streams for the modeling of interactions over time. Social Netw. Anal. Mining 8(1), 1–29 (2018)

    MATH  Google Scholar 

  18. Morini, V., Pollacci, L., Rossetti, G.: Toward a standard approach for echo chamber detection: reddit case study. Appl. Sci. 11(12), 5390 (2021)

    Article  Google Scholar 

  19. Musciotto, F., Battiston, F., Mantegna, R.N.: Detecting informative higher-order interactions in statistically validated hypergraphs. Commun. Phys. 4(1), 1–9 (2021)

    Article  Google Scholar 

  20. Newman, M.E.: Mixing patterns in networks. Phys. Rev. E 67(2), 026126 (2003)

    Article  MathSciNet  Google Scholar 

  21. Parmentier, P., Viard, T., Renoust, B., Baffier, J.F.: Introducing multilayer stream graphs and layer centralities. In: International Conference on Complex Networks and Their Applications, pp. 684–696. Springer (2019)

    Google Scholar 

  22. Peel, L., Delvenne, J.C., Lambiotte, R.: Multiscale mixing patterns in networks. Proc. Nat. Acad. Sci. 115(16), 4057–4062 (2018)

    Article  MathSciNet  Google Scholar 

  23. Ribeiro, B., Perra, N., Baronchelli, A.: Quantifying the effect of temporal resolution on time-varying networks. Sci. Rep. 3(1), 1–5 (2013)

    Article  Google Scholar 

  24. Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey. ACM Comput. Surv. (CSUR) 51(2), 1–37 (2018)

    Article  Google Scholar 

  25. Rossetti, G., Citraro, S., Milli, L.: Conformity: a path-aware homophily measure for node-attributed networks. IEEE Intel. Syst. 36(1), 25–34 (2021)

    Article  Google Scholar 

  26. Simard, F., Magnien, C., Latapy, M.: Computing betweenness centrality in link streams (2021). arXiv:2102.06543

  27. Torres, L., Blevins, A.S., Bassett, D., Eliassi-Rad, T.: The why, how, and when of representations for complex systems. SIAM Rev. 63(3), 435–485 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zanin, M., Papo, D., Sousa, P.A., Menasalvas, E., Nicchi, A., Kubik, E., Boccaletti, S.: Combining complex networks and data mining: why and how. Phys. Rep. 635, 1–44 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the European Union—Horizon 2020 Program under the scheme “INFRAIA-01-2018-2019—Integrating Activities for Advanced Communities”, Grant Agreement n. 871042, “SoBigData++: European Integrated Infrastructure for Social Mining and Big Data Analytics” (http://www.sobigdata.eu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Citraro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Failla, A., Citraro, S., Rossetti, G. (2023). Attributed Stream-Hypernetwork Analysis: Homophilic Behaviors in Pairwise and Group Political Discussions on Reddit. In: Cherifi, H., Mantegna, R.N., Rocha, L.M., Cherifi, C., Miccichè, S. (eds) Complex Networks and Their Applications XI. COMPLEX NETWORKS 2016 2022. Studies in Computational Intelligence, vol 1077. Springer, Cham. https://doi.org/10.1007/978-3-031-21127-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21127-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21126-3

  • Online ISBN: 978-3-031-21127-0

  • eBook Packages: EngineeringEngineering (R0)

Keywords

Publish with us

Policies and ethics