Abstract
Complex networks are solid models to describe human behavior. However, most analyses employing them are bounded to observations made on dyadic connectivity, whereas complex human dynamics involve higher-order relations as well. In the last few years, hypergraph models are rising as promising tools to better understand the behavior of social groups. Yet even such higher-order representations ignore the importance of the rich attributes carried by the nodes. In this work we introduce ASH, an Attributed Stream-Hypernetwork framework to model higher-order temporal networks with attributes on nodes. We leverage ASH to study pairwise and group political discussions on the well-known Reddit platform. Our analysis unveils different patterns while looking at either a pairwise or a higher-order structure for the same phenomena. In particular, we find out that Reddit users tend to surround themselves by like-minded peers with respect to their political leaning when online discussions are proxied by pairwise interactions; conversely, such a tendency significantly decreases when considering nodes embedded in higher-order contexts - that often describe heterophilic discussions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Original network data available at https://github.com/virgiiim/EC_Reddit_CaseStudy.
References
Aksoy, S.G., Joslyn, C., Marrero, C.O., Praggastis, B., Purvine, E.: Hypernetwork science via high-order hypergraph walks. EPJ Data Sci. 9(1), 16 (2020)
Battiston, F., Amico, E., Barrat, A., Bianconi, G., Ferraz de Arruda, G., Franceschiello, B., Iacopini, I., Kéfi, S., Latora, V., Moreno, Y., et al.: The physics of higher-order interactions in complex systems. Nature Phys. 17(10), 1093–1098 (2021)
Battiston, F., Cencetti, G., Iacopini, I., Latora, V., Lucas, M., Patania, A., Young, J.G., Petri, G.: Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1–92 (2020)
Bhagat, S., Cormode, G., Muthukrishnan, S.: Node classification in social networks. In: Social Network Data Analytics, pp. 115–148. Springer (2011)
Cencetti, G., Battiston, F., Lepri, B., Karsai, M.: Temporal properties of higher-order interactions in social networks. Sci. Rep. 11(1), 1–10 (2021)
Chiappori, A., Cazabet, R.: Quantitative evaluation of snapshot graphs for the analysis of temporal networks. In: International Conference on Complex Networks and Their Applications, pp. 566–577. Springer (2021)
Chowdhary, S., Kumar, A., Cencetti, G., Iacopini, I., Battiston, F.: Simplicial contagion in temporal higher-order networks. J. Phys. Complex. 2(3), 035019 (2021)
Chunaev, P.: Community detection in node-attributed social networks: a survey. Comput. Sci. Rev. 37, 100286 (2020)
Cinelli, M., Morales, G.D.F., Galeazzi, A., Quattrociocchi, W., Starnini, M.: The echo chamber effect on social media. Proc. Nat. Acad. Sci. 118(9) (2021)
Citraro, S., Milli, L., Cazabet, R., Rossetti, G.: \(\{\backslash Delta\}\)-conformity: multi-scale node assortativity in feature-rich stream graphs (2021). arXiv:2111.15534
Citraro, S., Rossetti, G.: Identifying and exploiting homogeneous communities in labeled networks. Appl. Netw. Sci. 5(1), 1–20 (2020)
Comrie, C., Kleinberg, J.: Hypergraph ego-networks and their temporal evolution. In: 2021 IEEE International Conference on Data Mining (ICDM), pp. 91–100. IEEE (2021)
Divakaran, A., Mohan, A.: Temporal link prediction: a survey. New Gen. Comput. 38(1), 213–258 (2020)
Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)
Iacopini, I., Petri, G., Barrat, A., Latora, V.: Simplicial models of social contagion. Nature Commun. 10(1), 1–9 (2019)
Interdonato, R., Atzmueller, M., Gaito, S., Kanawati, R., Largeron, C., Sala, A.: Feature-rich networks: going beyond complex network topologies. App. Netw. Sci. 4(1), 1–13 (2019)
Latapy, M., Viard, T., Magnien, C.: Stream graphs and link streams for the modeling of interactions over time. Social Netw. Anal. Mining 8(1), 1–29 (2018)
Morini, V., Pollacci, L., Rossetti, G.: Toward a standard approach for echo chamber detection: reddit case study. Appl. Sci. 11(12), 5390 (2021)
Musciotto, F., Battiston, F., Mantegna, R.N.: Detecting informative higher-order interactions in statistically validated hypergraphs. Commun. Phys. 4(1), 1–9 (2021)
Newman, M.E.: Mixing patterns in networks. Phys. Rev. E 67(2), 026126 (2003)
Parmentier, P., Viard, T., Renoust, B., Baffier, J.F.: Introducing multilayer stream graphs and layer centralities. In: International Conference on Complex Networks and Their Applications, pp. 684–696. Springer (2019)
Peel, L., Delvenne, J.C., Lambiotte, R.: Multiscale mixing patterns in networks. Proc. Nat. Acad. Sci. 115(16), 4057–4062 (2018)
Ribeiro, B., Perra, N., Baronchelli, A.: Quantifying the effect of temporal resolution on time-varying networks. Sci. Rep. 3(1), 1–5 (2013)
Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey. ACM Comput. Surv. (CSUR) 51(2), 1–37 (2018)
Rossetti, G., Citraro, S., Milli, L.: Conformity: a path-aware homophily measure for node-attributed networks. IEEE Intel. Syst. 36(1), 25–34 (2021)
Simard, F., Magnien, C., Latapy, M.: Computing betweenness centrality in link streams (2021). arXiv:2102.06543
Torres, L., Blevins, A.S., Bassett, D., Eliassi-Rad, T.: The why, how, and when of representations for complex systems. SIAM Rev. 63(3), 435–485 (2021)
Zanin, M., Papo, D., Sousa, P.A., Menasalvas, E., Nicchi, A., Kubik, E., Boccaletti, S.: Combining complex networks and data mining: why and how. Phys. Rep. 635, 1–44 (2016)
Acknowledgments
This work is supported by the European Union—Horizon 2020 Program under the scheme “INFRAIA-01-2018-2019—Integrating Activities for Advanced Communities”, Grant Agreement n. 871042, “SoBigData++: European Integrated Infrastructure for Social Mining and Big Data Analytics” (http://www.sobigdata.eu).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Failla, A., Citraro, S., Rossetti, G. (2023). Attributed Stream-Hypernetwork Analysis: Homophilic Behaviors in Pairwise and Group Political Discussions on Reddit. In: Cherifi, H., Mantegna, R.N., Rocha, L.M., Cherifi, C., Miccichè, S. (eds) Complex Networks and Their Applications XI. COMPLEX NETWORKS 2016 2022. Studies in Computational Intelligence, vol 1077. Springer, Cham. https://doi.org/10.1007/978-3-031-21127-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-21127-0_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21126-3
Online ISBN: 978-3-031-21127-0
eBook Packages: EngineeringEngineering (R0)