Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Population Dynamics in a Homogeneous Environment

  • Chapter
Mathematical Ecology

Part of the book series: Biomathematics ((BIOMATHEMATICS,volume 17))

  • 848 Accesses

  • 28 Citations

Abstract

Ecology, freely translated from the Greek expression, means “the study of the household of nature.” A population is a collection of organisms, usually of the same species, that occupy a prescribed region and function together as an ecological entity. While most populations consist of a single species, the definition of a population is intended to be sufficiently broad to include assemblages of species such as those that can interbreed to produce viable hybrids. Another example might be lichen populations where the algae and fungi are so closely associated that they function as a single species. Population ecology, in the sense meant here, refers to the structure and function of a collection of organisms as an autecological unit and, as such, addresses the more purely biological aspects of ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andrewartha, H.G., Birch, L.C. (1945). The Distribution and Abundance of Animals. University of Chicago Press, Chicago

    Google Scholar 

  • Ayala, F.J. (1968). Genotype, environment, and population numbers. Science 162: 1453–1459

    Article  Google Scholar 

  • Beverton, R.J.H., Holt, S.J. (1957). On the dynamics of exploited fish populations. Ministry of Agriculture, Fisheries, and Food (London). Fisheries Investigations Series 2 (19)

    Google Scholar 

  • Bodenheimer, F.S. (1937a). Population problems of social insects. Biol. Rev. 12: 393–340

    Article  Google Scholar 

  • F.S. (1937b). Studies in animal populations: II. Seasonal population trends of the honeybee. Quart. Rev. Biol. 12: 406–425

    Google Scholar 

  • Brauer, F., Sanchez, D.A. (1975). Constant rate population harvesting: equilibrium and stability. Theoret. Pop. Biol. 8: 12–30

    Google Scholar 

  • Braun, M. (1975). Differential Equations and Their Applications. Springer-Verlag, New York, 718 pp.

    MATH  Google Scholar 

  • Carlson, T. (1913). Uber Geschwindigkeit und GroBe der Hefevermehrung in Wiirze. Biochem. Z. 57: 313–334

    Google Scholar 

  • Clark, C.W. (1976). Mathematical Bioeconomics: The Optimal Management of Renewable Resources. Wiley, New York, 352 pp.

    MATH  Google Scholar 

  • Coddington, E.A., Levinson, N. (1955). Theory of Ordinary Differential Equations. McGraw-Hill, New York

    MATH  Google Scholar 

  • Coleman, B.O. (1979). Nonautonomous logistic equations as models of the adjustment of populations to environmental change. Math. Biosci. 45: 159–176

    Google Scholar 

  • Connell, J.H. (1961). Effects of competition, predation by Thais lapillus, and other factors on natural populations of the barnacle Balanus balanoides. Ecol. Monogr. 31: 61–104

    Article  Google Scholar 

  • Davidson, J. (1938). Trans. Roy. Soc. South Australia 62: 342–346

    Google Scholar 

  • DeAngelis, D.L., Goldstein, R.A., O’Neill, R.V. (1975). A model for trophic interaction. Ecology 56: 881–982

    Article  Google Scholar 

  • Frost, B.W. (1974). Feeding processes at lower trophic levels in pelagic communities. In: The Biology of the Oceanic Pacific ( C. B. Miller, ed.). Oregon State University Press, Corvallis, 59–77

    Google Scholar 

  • Fujii, K. (1968). Studies on interspecies competition between the azuki bean weevil and the southern cowped weevil: III. Some characteristics of strains of two species. Researches on Population Ecology 70 (1): 87–98.

    Article  Google Scholar 

  • Kyoto Univ., Kyoto, Japan Gallopin, G.C. (1971). A generalized model of a resource-population system: I. General properties. II. Stability analysis. Oecologia 7: 382–413; 7: 414–432

    Google Scholar 

  • Gause, G.F. (1934). The Struggle for Existence. Williams and Wilkins, Baltimore Gilpin, M.E. (1979). Spiral chaos in a predator-prey model. Amer Nat. 113: 306–308

    Google Scholar 

  • Gilpin, M.E., Ayala, F.J. (1973). Global models of growth and competition. Proc. Nat. Acad. Sci. USA 70: 3590–3593

    Article  MATH  Google Scholar 

  • Goel, N.S., Maitra, S.C., Montroll, E.W. (1971). On the Volterra and other nonlinear models of interacting populations. Rev. Mod. Phys. 43: 231–276

    Google Scholar 

  • Gompertz, B. (1925). On the nature of the function expressive of the law of human mortability. Phil. Trans. 115: 513–585

    Article  Google Scholar 

  • Gray, J. (1929). The kinetics of growth. Br. J. Exp. Biol. 6: 248–274

    Google Scholar 

  • Hallam, T.G., Clark, C.E. (1981). Nonautonomous logistic equations as models of population in a deteriorating environment. J. Theor. Biol. 93: 303–311

    Google Scholar 

  • Hassell, M.P. (1971). Mutual interference between searching insect parasites. J. Anim. Ecol. 40: 473–486

    Article  Google Scholar 

  • Hassell, M.P. (1978). The Dynamics of Arthropod Predator-Prey Systems. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Hassell, M., Lawton, J., May, R. (1976). Pattern of dynamical behavior in single-species populations. J. Anim. Ecol. 45: 471–486

    Google Scholar 

  • Holling, C.S. (1959). The components of predation as revealed by a study of small-mammal predation of the European pine sawfiy. Canad Ent. 91: 293–320

    Article  Google Scholar 

  • Hutchinson, G.E. (1978). An Introduction to Population Ecology. Yale University Press, New Haven, 260 pp.

    MATH  Google Scholar 

  • Ivlev, U.S. (1961). Experimental ecology of the feeding of fishes. Yale University Press, New Haven

    Google Scholar 

  • Kavanagh, A J., Richards, W.O. (1934). The autocatalytic growth curve. Amer Nat. 68: 54–59

    Article  Google Scholar 

  • Lakshmikantham, V., Leela, S. (1969). Differential and Integral Inequalities. Academic Press, New York

    MATH  Google Scholar 

  • Leunberger, D.G. (1979). Dynamic Systems. Wiley, New York, 446 pp.

    Google Scholar 

  • Levins, R. (1970). Extinction. Some Mathematical Questions in Biology. Vol. 2. Amer. Math. Soc.

    Google Scholar 

  • Providence RJ., 75–107 MacArthur, R.H., Connell, J.H. (1966). The biology of populations. Wiley, New York

    Google Scholar 

  • MacLulich, D.A. (1937). Fluctuations in numbers of the varying Hare (Lepus Americanus). University of Toronto Studies, Biol. Ser. 43: 1–136

    Google Scholar 

  • May, R.M. (ed.) (1976). Theoretical Ecology. Saunders. Philadelphia, 317 pp.

    Google Scholar 

  • M’Kendrick, A.G., Kesava Pai, M. (1911). The rate of multiplication of microorganisms: A mathematical study. Proc. Roy. Soc. Edinb. 31: 649–655

    Google Scholar 

  • Monod, J. (1950). La technique du culture continue: theorie et applications. Ann. Inst. Pasteur 79: 390–410

    Google Scholar 

  • Murdoch, W.W., Oaten, A. (1975). Predation and population stability. Adv. Ecol. Res. 9: 1–131

    Google Scholar 

  • Murray, B.G., Jr. (1979). Population Dynamics, Alternative Models. Academic Press, New York

    Google Scholar 

  • On, A.J. (1954). An outline of the dynamics of animal populations. Australian J. Zool. 2: 9–65

    Google Scholar 

  • O’Neill, R.V., Gardner, R.H., Weller, D.E. (1982). Chaotic models as representations of ecological systems. Amer Nat. 120: 259–263

    Article  Google Scholar 

  • Pearl, R. (1982). The influence of density of population upon egg production in Drosophila melanogaster. J. Exp. Zool. 63: 57–84

    Google Scholar 

  • Pielou, E.C. (1977). Mathematical Ecology. Wiley-Interscience, New York Riley, G.A. (1943). Physiological aspects of spring diatom flowerings. Bull. Bingham Oceanogr. Coll. 8: 1–53

    Google Scholar 

  • Rosenzweig, M. (1971). Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171: 385–387

    Article  Google Scholar 

  • Roughgarden, J. (1979). Theory of Population Genetics and Evolutionary Ecology: An Introduction. MacMillan, New York, 634 pp.

    Google Scholar 

  • Salt, G.W. (1967). Predation in experimental protozoan populations (Woodruffia-Paramecuim). Ecol. Monogr. 37: 113–144

    Google Scholar 

  • Schoener, T.W. (1973). Population growth regulated by intraspecific competition for energy or time. Theor Pop Biol. 4: 56–84

    Article  Google Scholar 

  • Shelford, V.E. (1943). The relationship of snowy owl migration to the abundance of the collared lemming. Auk. 62: 592–594

    Google Scholar 

  • Smale, S., Williams, R.F. (1976). The qualitative analysis of a difference equation of population growth. J. Math. Biol. 3:

    Google Scholar 

  • Smith, F.E. (1963). Population dynamics in Daphnia magna and a new model for population growth. Ecology 44: 651–663

    Article  Google Scholar 

  • Smith, R.H., Mead, R. (1980). The dynamics of discrete-time stochastic models of population growth. J. Theor. Biol. 86: 607–627

    Google Scholar 

  • Terao, A., Tanaka, T. (1928). Influence of temperature upon the rate of reproduction in the water-flea Moina macrocopa. Strauss. Proc. Imper. Acad. ( Japan ) 4: 553–555

    Google Scholar 

  • Utida, S. (1957). Cyclic fluctuations of population density intrinsic to the host-parasite system. Ecology 38: 442–449

    Article  Google Scholar 

  • Utida, S. (1967). Damped oscillation of population density at equilibrium. Res Pop Ecol. 9: 1–9

    Article  Google Scholar 

  • Verhulst, P.-F. (1938). Notice sur la loi que la population suit dans son accroissement. Correspondances Mathematiques et Physiques 10: 113–121

    Google Scholar 

  • von Bertalanfly, L. (1951). Theoretische Biologie, Vol. 2. Stoflwechsel, Wachstum, 2nd ed. Francke, Bern

    Google Scholar 

  • Watt, K.E.F. (1959). A mathematical model for the effect of densities of attacked and attacking species on the numbers attacked. Canad Ent. 91: 129–144

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hallam, T.G. (1986). Population Dynamics in a Homogeneous Environment. In: Hallam, T.G., Levin, S.A. (eds) Mathematical Ecology. Biomathematics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69888-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69888-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69890-3

  • Online ISBN: 978-3-642-69888-0

  • eBook Packages: Springer Book Archive

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics