Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Dual gravitational charges and soft theorems

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 09 October 2019
  • Volume 2019, article number 123, (2019)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Dual gravitational charges and soft theorems
Download PDF
  • Hadi Godazgar1,
  • Mahdi Godazgar  ORCID: orcid.org/0000-0001-8926-77452 &
  • C. N. Pope3,4 
  • 532 Accesses

  • 37 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We consider the consequences of the dual gravitational charges for the phase space of radiating modes, and find that they imply a new soft NUT theorem. In particular, we argue that the existence of these new charges removes the need for imposing boundary conditions at spacelike infinity that would otherwise preclude the existence of NUT charges.

Article PDF

Download to read the full article text

Similar content being viewed by others

On the properties of a deformed extension of the NUT space-time

Article Open access 27 August 2020

Pure Gauss–Bonnet NUT black hole solution: II

Article Open access 21 May 2025

Gravitational dyonic amplitude at one-loop and its inconsistency with the classical impulse

Article Open access 25 February 2021

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Classical and Quantum Gravity
  • Differential Geometry
  • General Relativity
  • Gravitational Physics
  • Newtonian Physics
  • Soft and Granular Matter
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. H. Godazgar, M. Godazgar and C.N. Pope, Subleading BMS charges and fake news near null infinity, JHEP01 (2019) 143 [arXiv:1809.09076] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. H. Godazgar, M. Godazgar and C.N. Pope, New dual gravitational charges, Phys. Rev.D 99 (2019) 024013 [arXiv:1812.01641] [INSPIRE].

  3. H. Godazgar, M. Godazgar and C.N. Pope, Tower of subleading dual BMS charges, JHEP03 (2019) 057 [arXiv:1812.06935] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. E.T. Newman and R. Penrose, “New conservation laws for zero rest-mass fields in asymptotically flat space-time, Proc. Roy. Soc. Lond.A 305 (1968) 175.

  5. G. Barnich and C. Troessaert, BMS charge algebra, JHEP12 (2011) 105 [arXiv:1106.0213] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. U. Kol and M. Porrati, Properties of dual supertranslation charges in asymptotically flat spacetimes, Phys. Rev.D 100 (2019) 046019 [arXiv:1907.00990] [INSPIRE].

  7. S. Ramaswamy and A. Sen, Dual-mass in general relativity, J. Math. Phys.22 (1981) 2612.

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Ashtekar and A. Sen, NUT 4-momenta are forever, J. Math. Phys.23 (1982) 2168.

    Article  ADS  MathSciNet  Google Scholar 

  9. A.H. Taub, Empty space-times admitting a three parameter group of motions, Ann. Math.53 (1951) 472.

    Article  ADS  MathSciNet  Google Scholar 

  10. E. Newman, L. Tamburino, and T. Unti, Empty space generalization of the Schwarzschild metric, J. Math. Phys.4 (1963) 915.

    Article  ADS  MathSciNet  Google Scholar 

  11. T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, JHEP05 (2015) 151 [arXiv:1401.7026] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. S. Weinberg, Infrared photons and gravitons, Phys. Rev.140 (1965) B516 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Strominger, Asymptotic symmetries of Yang-Mills theory, JHEP07 (2014) 151 [arXiv:1308.0589] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Strominger, On BMS invariance of gravitational scattering, JHEP07 (2014) 152 [arXiv:1312.2229] [INSPIRE].

    Article  ADS  Google Scholar 

  15. T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New symmetries of massless QED, JHEP10 (2014) 112 [arXiv:1407.3789] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A. Strominger and A. Zhiboedov, Gravitational memory, BMS supertranslations and soft theorems, JHEP01 (2016) 086 [arXiv:1411.5745] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. A. Strominger, Magnetic corrections to the soft photon theorem, Phys. Rev. Lett.116 (2016) 031602 [arXiv:1509.00543] [INSPIRE].

    Article  ADS  Google Scholar 

  18. S.W. Hawking, M.J. Perry and A. Strominger, Soft hair on black holes, Phys. Rev. Lett.116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].

    Article  ADS  Google Scholar 

  19. M.M. Sheikh-Jabbari, Residual diffeomorphisms and symplectic soft hairs: the need to refine strict statement of equivalence principle, Int. J. Mod. Phys.D 25 (2016) 1644019 [arXiv:1603.07862] [INSPIRE].

  20. S.W. Hawking, M.J. Perry and A. Strominger, Superrotation charge and supertranslation hair on black holes, JHEP05 (2017) 161 [arXiv:1611.09175] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. E. Conde and P. Mao, BMS supertranslations and not so soft gravitons, JHEP05 (2017) 060 [arXiv:1612.08294] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. S. Choi, U. Kol and R. Akhoury, Asymptotic dynamics in perturbative quantum gravity and BMS supertranslations, JHEP01 (2018) 142 [arXiv:1708.05717] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  23. A. Campoleoni, D. Francia and C. Heissenberg, Asymptotic symmetries and charges at null infinity: from low to high spins, EPJ Web Conf.191 (2018) 06011 [arXiv:1808.01542] [INSPIRE].

    Article  Google Scholar 

  24. M. Campiglia and A. Laddha, Asymptotic charges in massless QED revisited: A view from Spatial Infinity, JHEP05 (2019) 207 [arXiv:1810.04619] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. P. Mao and X. Wu, More on gravitational memory, JHEP05 (2019) 058 [arXiv:1812.07168] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. E. Himwich, Z. Mirzaiyan and S. Pasterski, A note on the subleading soft graviton, arXiv:1902.01840 [INSPIRE].

  27. L. Freidel, F. Hopfmüller and A. Riello, Asymptotic renormalization in flat space: symplectic potential and charges of electromagnetism, arXiv:1904.04384 [INSPIRE].

  28. E.S. Kutluk, A. Seraj and D. Van Den Bleeken, Strolling along gravitational vacua, arXiv:1904.12869 [INSPIRE].

  29. T. Adamo, L. Mason and A. Sharma, Celestial amplitudes and conformal soft theorems, arXiv:1905.09224 [INSPIRE].

  30. F. Alessio and M. Arzano, Note on the symplectic structure of asymptotically flat gravity and BMS symmetries, Phys. Rev.D 100 (2019) 044028 [arXiv:1906.05036] [INSPIRE].

  31. A. Laddha and A. Sen, A classical proof of the classical soft graviton theorem in D > 4, arXiv:1906.08288 [INSPIRE].

  32. T. He and P. Mitra, New magnetic symmetries in (d + 2)-dimensional QED, arXiv:1907.02808 [INSPIRE].

  33. S. Choi and R. Akhoury, Subleading soft dressings of asymptotic states in QED and perturbative quantum gravity, JHEP09 (2019) 031 [arXiv:1907.05438] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. G. Barnich and C. Troessaert, Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited, Phys. Rev. Lett.105 (2010) 111103 [arXiv:0909.2617] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence, JHEP05 (2010) 062 [arXiv:1001.1541] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity: 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond.A 269 (1962) 21.

  37. R.K. Sachs, Gravitational waves in general relativity: 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond.A 270 (1962) 103.

  38. H. Stephani et al., Exact solutions of Einstein’s field equations, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2003).

    Book  Google Scholar 

  39. M. Henneaux and C. Troessaert, Hamiltonian structure and asymptotic symmetries of the Einstein-Maxwell system at spatial infinity, JHEP07 (2018) 171 [arXiv:1805.11288] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. M. Henneaux and C. Troessaert, The asymptotic structure of gravity at spatial infinity in four spacetime dimensions, arXiv:1904.04495 [INSPIRE].

  41. A. Virmani, Asymptotic flatness, Taub-NUT and variational principle, Phys. Rev.D 84 (2011) 064034 [arXiv:1106.4372] [INSPIRE].

  42. V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev.D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].

  43. A. Ashtekar and M. Streubel, Symplectic geometry of radiative modes and conserved quantities at null infinity, Proc. Roy. Soc. Lond.A 376 (1981) 585.

  44. A. Ashtekar, Asymptotic quantization: Based on 1984 Naples lectures, Bibliopolis, Naples, Italy (1987).

    MATH  Google Scholar 

  45. M. Henneaux and C. Troessaert, Asymptotic symmetries of electromagnetism at spatial infinity, JHEP05 (2018) 137 [arXiv:1803.10194] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. A. Strominger, Lectures on the infrared structure of gravity and gauge theory, arXiv:1703.05448 [INSPIRE].

  47. G. Bossard, H. Nicolai and K.S. Stelle, Gravitational multi-NUT solitons, Komar masses and charges, Gen. Rel. Grav.41 (2009) 1367 [arXiv:0809.5218] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. S.J. Fletcher and A.W.C. Lun, The Kerr spacetime in generalized Bondi-Sachs coordinates, Class. Quant. Grav.20 (2003) 4153.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

  1. Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Mühlenberg 1, D-14476, Potsdam, Germany

    Hadi Godazgar

  2. School of Mathematical Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, U.K.

    Mahdi Godazgar

  3. George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, College Station, TX, 77843, U.S.A.

    C. N. Pope

  4. DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, Cambridge, CB3 OWA, U.K.

    C. N. Pope

Authors
  1. Hadi Godazgar
    View author publications

    Search author on:PubMed Google Scholar

  2. Mahdi Godazgar
    View author publications

    Search author on:PubMed Google Scholar

  3. C. N. Pope
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Mahdi Godazgar.

Additional information

ArXiv ePrint: 1908.01164

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godazgar, H., Godazgar, M. & Pope, C.N. Dual gravitational charges and soft theorems. J. High Energ. Phys. 2019, 123 (2019). https://doi.org/10.1007/JHEP10(2019)123

Download citation

  • Received: 16 August 2019

  • Accepted: 18 September 2019

  • Published: 09 October 2019

  • DOI: https://doi.org/10.1007/JHEP10(2019)123

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Space-Time Symmetries
  • Classical Theories of Gravity
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature