Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

The first heat: production of entanglement entropy in the early universe

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 27 November 2019
  • Volume 2019, article number 157, (2019)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
The first heat: production of entanglement entropy in the early universe
Download PDF
  • Sergei Khlebnikov1 &
  • Akhil Sheoran1 
  • 505 Accesses

  • 1 Citation

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Entanglement entropy (EE) of a spatial region quantifies correlations between the region and its surroundings. For a free scalar in the adiabatic vacuum in de Sitter space the EE is known to remain low, scaling as the surface area of the region. Here, we study the evolution of entanglement after the universe transitions from de Sitter to flat space. We concentrate on the case of a massless minimally coupled scalar. We find numerically that, after the de Sitter stage ends, the EE and the Ŕenyi entropy rapidly grow and saturate at values obeying the volume law. The final state of the subsystem (region) is a partially thermalized state reminiscent of a generalized Gibbs ensemble. We comment on application of our results to the question of when and how cosmological perturbations decohere.

Article PDF

Download to read the full article text

Similar content being viewed by others

Strong-coupling dynamics and entanglement in de Sitter space

Article Open access 18 March 2021

\( T\overline{T} \) and EE, with implications for (A)dS subregion encodings

Article Open access 23 April 2020

Entanglement entropy from one-point functions in holographic states

Article Open access 15 June 2016

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Cosmology
  • Early Universe
  • Quantum Correlation and Entanglement
  • Quantum Physics
  • Statistical Physics
  • Thermodynamics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. S. Khlebnikov and M. Kruczenski, Locality, entanglement, and thermalization of isolated quantum systems, Phys. Rev. E 90 (2014) 050101(R) [INSPIRE].

  2. P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. 0504 (2005) P04010 [cond-mat/0503393] [INSPIRE].

  3. H. Casini, H. Liu and M. Mezei, Spread of entanglement and causality, JHEP 07 (2016) 077 [arXiv:1509.05044] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. J.S. Cotler, M.P. Hertzberg, M. Mezei and M.T. Mueller, Entanglement growth after a global quench in free scalar field theory, JHEP 11 (2016) 166 [arXiv:1609.00872] [INSPIRE].

    Article  ADS  Google Scholar 

  5. V.F. Mukhanov and G.V. Chibisov, Quantum fluctuations and a nonsingular universe, JETP Lett. 33 (1981) 532 [Pisma Zh. Eksp. Teor. Fiz. 33 (1981) 549] [INSPIRE].

  6. S.W. Hawking, The development of irregularities in a single bubble inflationary universe, Phys. Lett. B 115 (1982) 295 [INSPIRE].

  7. A.A. Starobinsky, Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations, Phys. Lett. B 117 (1982) 175 [INSPIRE].

  8. A.H. Guth and S.-Y. Pi, Fluctuations in the new inflationary universe, Phys. Rev. Lett. 49 (1982) 1110 [INSPIRE].

    Article  ADS  Google Scholar 

  9. R. Brandenberger, V. Mukhanov and T. Prokopec, Entropy of the gravitational field, Phys. Rev. D 48 (1993) 2443 [gr-qc/9208009] [INSPIRE].

  10. T. Prokopec, Entropy of the squeezed vacuum, Class. Quant. Grav. 10 (1993) 2295 [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Gasperini and M. Giovannini, Entropy production in the cosmological amplification of the vacuum fluctuations, Phys. Lett. B 301 (1993) 334 [gr-qc/9301010] [INSPIRE].

  12. M. Kruczenski, L.E. Oxman and M. Zaldarriaga, Large squeezing behavior of cosmological entropy generation, Class. Quant. Grav. 11 (1994) 2317 [gr-qc/9403024] [INSPIRE].

  13. C. Kiefer, D. Polarski and A.A. Starobinsky, Entropy of gravitons produced in the early universe, Phys. Rev. D 62 (2000) 043518 [gr-qc/9910065] [INSPIRE].

  14. J. Maldacena and G.L. Pimentel, Entanglement entropy in de Sitter space, JHEP 02 (2013) 038 [arXiv:1210.7244] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. R. Simon, N. Mukunda and B. Dutta, Quantum-noise matrix for multimode systems: U(n) invariance, squeezing, and normal forms, Phys. Rev. A 49 (1994) 1567.

  16. M. Rigol, V. Dunjko, V. Yurovsky and M. Olshanii, Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1d lattice hard-core bosons, Phys. Rev. Lett. 98 (2007) 050405 [cond-mat/0604476].

  17. P. Calabrese, F.H.L. Essler and M. Fagotti, Quantum quenches in the transverse field Ising chain: II. Stationary state properties, J. Stat. Mech. 2012 (2012) P07022 [arXiv:1205.2211].

  18. M.P.A. Fisher, P.B. Weichman, G. Grinstein and D.S. Fisher, Boson localization and the superfluid-insulator transition, Phys. Rev. B 40 (1989) 546 [INSPIRE].

  19. J. Williamson, On the algebraic problem concerning the normal forms of linear dynamical systems, Amer. J. Math. 58 (1936) 141.

    Article  MathSciNet  Google Scholar 

  20. D. Polarski and A.A. Starobinsky, Semiclassicality and decoherence of cosmological perturbations, Class. Quant. Grav. 13 (1996) 377 [gr-qc/9504030] [INSPIRE].

  21. G.W. Gibbons and S.W. Hawking, Cosmological event horizons, thermodynamics and particle creation, Phys. Rev. D 15 (1977) 2738 [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN, 47907, U.S.A.

    Sergei Khlebnikov & Akhil Sheoran

Authors
  1. Sergei Khlebnikov
    View author publications

    Search author on:PubMed Google Scholar

  2. Akhil Sheoran
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Sergei Khlebnikov.

Additional information

ArXiv ePrint: 1907.00487

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khlebnikov, S., Sheoran, A. The first heat: production of entanglement entropy in the early universe. J. High Energ. Phys. 2019, 157 (2019). https://doi.org/10.1007/JHEP11(2019)157

Download citation

  • Received: 10 July 2019

  • Revised: 01 November 2019

  • Accepted: 06 November 2019

  • Published: 27 November 2019

  • DOI: https://doi.org/10.1007/JHEP11(2019)157

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Cosmology of Theories beyond the SM
  • Integrable Field Theories
  • Classical Theories of Gravity
  • Field Theories in Lower Dimensions
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature