Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Recent advances in functional genomics for sugar beet (Beta vulgaris L.) improvement: progress in determining the role of BvSTI in pest resistance in roots

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

To gain knowledge of root resistance mechanisms in sugar beet, Beta vulgaris L., our laboratory has been studying the interaction of sugar beet with its most devastating insect pest, the sugar beet root maggot (SBRM; Tetanops myopaeformis Roder). Damage from SBRM infestations is a serious problem and current control measures rely on environmentally damaging insecticides. We recently reported root-specific gene expression incited by SBRM feeding in a moderately resistant F1016 and a susceptible parental F1010 line. AcDNA expressed sequence tag (EST) coding for a serine (trypsin-type) protease inhibitor (BvSTI) was identified and investigated further here. BvSTI shares sequence similarity with a root-specific tomato gene whose expression is induced by insect feeding. Since serine proteases comprise the major digestive enzymes in root maggot midguts, we hypothesize BvSTI may be involved in resistance. To elucidate the functional role of BvSTI, its coding region was fused to the CaMV 35S promoter and constitutively expressed in sugar beet hairy roots and N. benthamiana plants. In BvSTI-transformed F1010 hairy roots, trypsin inhibitory activity increased 2 to 4-fold. Using a polyacrylamide gel assay, new trypsin-like PI activity was detected in BvSTI-N. benthamiana plants. Since SBRM cannot be reared in vitro, two other insects that utilize serine digestive proteases, fall armyworm (Spodoptera frugiperda) and tobacco hornworm (Manduca sexta), were screened for resistance. To date, we demonstrated that 1) fall armyworm will feed on sugar beet hairy roots and 2) tobacco hornworm fed BvSTI-N. benthamiana leaves had reduced weights and pupal sizes. These results suggest that BvSTI may contribute to the moderate resistance of F1016 roots to SBRM. Functional analysis of additional ESTs will further support efforts to characterize the components of sugar beet root resistance mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.

    Article  CAS  Google Scholar 

  • Brenner ED, Lambert KN, Kaloshian I, Williamson VM (1998) Characterization of LeMir, a Root-Knot Nematode-Induced Gene in Tomato with an Encoded Product Secreted from the Root. Plant Physiology 118: 237–247.

    Article  CAS  Google Scholar 

  • Broadway RM, Missurelli EL (1990) Regulatory mechanisms of tryptic inhibitory activity in cabbage plants. Phytochemistry 29: 3721–3725.

    Article  CAS  Google Scholar 

  • Cai D Klein M Kifle S Harloff H-J, Sandal NN Marcker KA Klein-Lankhorst RM, Salentijn EMJ, Lange W, Stiekema WJ, Wyss U, Grundler FMW, Jung C (1997) Positional cloning of a gene for nematode resistance in sugar beet. Science 275: 832–834.

    Article  CAS  Google Scholar 

  • Campbell L (1992) Registration of F1010 sugar beet germplasm. Crop Science 30: 429–430.

    Article  Google Scholar 

  • Campbell LG, Anderson AW, Dregseth RJ (2000) Registration of F1015 and F1016 Sugarbeet Germplasms with Resistance to the Sugarbeet Root Maggot. Crop Science 40: 867–868.

    Article  Google Scholar 

  • Chan L, DeLumex BO (1982) Properties of trypsin inhibitor from winged bean (Psophocarpus tetragonolonus) seed isolated by affinity chromotography. Journal of Agricultural and Food Chemistry 30: 42–46.

    Article  CAS  Google Scholar 

  • De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Rao Movva N, Thompson C, Van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO Journal 6: 2513–2518.

    Article  CAS  Google Scholar 

  • Dregseth RJ, Boetel M, Schroeder AJ, Carlson RB, Armstrong JS (2003) Oat cover cropping and soil insecticides in an integrated sugar beet root maggot (Diptera: Otitidae) management program. Journal of Economic Entomology 96: 1426–1432.

    Article  Google Scholar 

  • Ehlers U, Commandeur U, Frank R, Landsmann J, Koenig R, Burgermeister, W (1991) Cloning of the coat protein gene from beet necrotic yellow vein virus and its expression in sugar beet hairy roots. Theoretical and Applied Genetics 81: 777–781.

    Article  CAS  Google Scholar 

  • Francis SA, Luterbacher MC (2003) Identification and exploitation of novel disease resistance genes in sugar beet. Pest Management Science 59: 225–230.

    Article  CAS  Google Scholar 

  • Gamborg U, Miller R, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research 50: 48–51.

    Article  Google Scholar 

  • Hall RD, Riksen-Grunisma T, Weyens GJ, Rosquin IJ, Denys PN, Evans IJ, Lathouwers JE, Lefebvre MP, Dunwell JM, van Tunen A, Krens FA (1996) A high efficiency technique for the generation of transgenic sugarbeet from stomatal guard cells. Nature Biotechnology 14: 1133–1138.

    Article  CAS  Google Scholar 

  • Herwig R, Schulz B, Weisshaar B, Hennig S, Steinfath M, Drungowski M, Stahl D, Wruck W, Menze A, O’Brien J, Lehrach H, Radelof U (2002) Construction of a ‘unique’ cDNA clone set by oligonucleotide fingerprinting allows access to 25000 potential sugar beet genes. Plant Journal 32: 845–857.

    Article  Google Scholar 

  • Hisano H, Kimoto Y, Hayakawa H, Takeichi J, Domae T, Hashimoto R, Abe J, Asano S, Kanazawa A, Shimamoto Y (2004) High frequency Agrobacterium-mediated transformation and plant regeneration via direct shoot formation from leaf explants in Beta vulgaris and Beta maritima. Plant Cell Reports 22: 910–918.

    Article  CAS  Google Scholar 

  • Ivic-Haymes SD, Smigocki AC (2005a) Biolistic transformation of highly regenerative sugar beet (Beta vulgaris L.) leaves. Plant Cell Reports 23: 699–704.

    Article  CAS  Google Scholar 

  • Ivic-Haymes S, Smigocki A (2005b) Identification of highly regenerative plants within sugar beet (Beta vulgaris L.) breeding lines for molecular breeding. In vitro Cellular and Developmental Biology — Plant 41: 483–488.

    Article  Google Scholar 

  • Jofuku KD, Goldberg RB (1989) Kunitz trypsin inhibitor genes are differentially expressed during the soybean life cycle and in transformed tobacco plants. The Plant Cell 1: 1079–1093.

    Article  CAS  Google Scholar 

  • Jongsma MA, Baker PL, Stiekema WJ (1993) Quantitative determination of serine proteinase inhibitor activity using a radial diffusion assay. Analytical Biochemistry 212: 79–84.

    Article  CAS  Google Scholar 

  • Kifle S, Shao M, Jung C, Cai D (1999) An improved transformation protocol for studying gene expression in hairy roots of sugar beet (Beta vulgaris L.) Plant Cell Reports 18: 514–519.

    Article  CAS  Google Scholar 

  • Kishchenko EM, Komarnitskii IK, Kuchuk NV (2005) Production of transgenetic sugarbeet (Beta vulgaris L.) plants resistant to phosphinothricin. Cell Biology International 29: 15–19.

    Article  CAS  Google Scholar 

  • Kloos D, Oltmanns H, Dock C, Stahl Dd, Hehl R (2002) Isolation and molecular analysis of six taproot expressed genes from sugar beet. Journal of Experimental Botany 53: 1533–1534.

    Article  CAS  Google Scholar 

  • Larson RL, Hill, AL, Nunez A (2007) Characterization of protein changes associated with sugar beet (Beta vulgaris) resistance and susceptibility to Fusarium oxysporum. Journal of Agricultural and Food Chemistry 55: 7905–7915.

    Article  CAS  Google Scholar 

  • Lathouwers J, Weyens G, Lafebvre M (2005) Transgenic research in sugar beet. In: J. Pidgeon, M.R. Morland, J.D.A. Wevers, and R. Beckers (eds.), Genetic Modification in Sugar Beet. International Institute for Beet Research, Brussels, Belgium. pp. 5–24.

    Google Scholar 

  • Lennefors BL, Savenkov EI, Benesefelt J, Wremerth-Weich E, van Roggen P, Tuvesson S, Valkonen JPT, Gielen J (2006) dsRNA-mediated resistance to Beet Necrotic Yellow Vein Virus infections in sugar beet (Beta vulgaris L. ssp. vulgaris) Molecular Breeding 18: 313–325.

    Article  CAS  Google Scholar 

  • Maleki M, Hashemi SH, Malboobi MA, Samani Zadeh HR (2003) Expression of the Iranian coat protein gene (P21) of Beet Necrotic Yellow Vein Virus (BNYVV) in transgenic sugar beet plants. 7th International Congress of Plant Molecular Biology, Barcelona, Spain. pp. 371.

    Google Scholar 

  • Mannerlöf M, Lennefors BL, Tenning P (1996) Reduced titer of BNYVV in transgenic sugar beets expressing the BNYVV coat protein. Euphytica 90: 293–299.

    Article  Google Scholar 

  • Mannerlöf M, Tuvesson S, Steen P, Tenning P (1997) Transgenic sugar beet tolerant to glyphosate. Euphytica 94: 83–91.

    Article  Google Scholar 

  • Mugnier J (1987) Infection by Polymyxa betae and Plasmodiophora brassicae of roots containing root-inducing transferred DNA of Agrobacterium rhizogenes. Phytopathology 77: 539–542.

    Article  Google Scholar 

  • Nagendran S, McGrath JM (2006) Host-pathogen interaction of sugarbeet seedlings with Rhizoctonia solani. Annual International Plant & Animal Genome Conference. Abstract No. W182.

  • Nielsen KK, Nielsen JE, Madrid SM, Mikkelsen JD (1997) Characterization of a new antifungal chitin-binding peptide from sugar beet leaves. Plant Physiology 113: 83–91.

    Article  CAS  Google Scholar 

  • Ninkovic S, Miljuš-Djukiæ J, Radoviæ S, Maksimoviæ V, Lazareviæ J, Vinterhalter B, Neškoviæ M, Smigocki A (2007) Phytodecta fornicata Brüggemann resistance mediated by oryzacystatin II proteinase inhibitor transgene. Plant Cell, Tissue and Organ Culture 91: 289–294.

    Article  CAS  Google Scholar 

  • Panella L, Lewellen RT (2006) Broadening the genetic base of sugarbeet: introgression from wild relatives. Euphytica 154: 383–400.

    Article  Google Scholar 

  • Paul H, van Deelen JEM, Henken B, de Bock TSM, Lange W, Krens FA (1990) Expression in vitro of resistance to Heterodera schachtii in hairy roots of an alien monotelosomic addition plant of Beta vulgaris, transformed by Agrobacterium rhizogenes. Euphytica 48: 153–157.

    Article  Google Scholar 

  • Paul H, Zijlstra C, Leeuwangh JE, Krens FA, Huizing HJ (1987) Reproduction of the beet cyst nematode Heterodera schachtii Schm. on transformed root cultures of Beta vulgaris L. Plant Cell Reports 6: 379–381.

    Article  CAS  Google Scholar 

  • Pidgeon J, Morland MR, Wevers JDA, Beckers R (2005) Genetic Modification in Sugar Beet. Advances in Sugar Beet Research, Vol 6, International Institute for Beet Research, Brussels, Belgium.

    Google Scholar 

  • Puthoff DP, Smigocki AC (2007) Insect feeding-induced differential expression of Beta vulgaris root genes and their regulation by defense-associated signals. Plant Cell Reports 26: 71–84.

    Article  CAS  Google Scholar 

  • Schulte D, Cai D, Kleine M, Fan LSW, Jung C (2006) A complete physical map of a wild beet (Beta procumbens) translocation in sugar beet. Molecular Genetics and Genomics 275: 504–511.

    Article  CAS  Google Scholar 

  • Sévenier R, Hall RD, van der Meer IM, Hakkert, H.J.C., van Tunen, A.J. and Koops, A.J. (1998) High level fructan accumulation in a transgenic sugar beet. Nature Biotechnology 16: 843–846.

    Article  Google Scholar 

  • Skaracis GN (2005) Genetic Engineering. In: Bincardi, E., Campbell, L.G., Skaracis, G.N. and M. De Biaggi, (eds.) Genetics and Breeding of Sugar Beet. Science Publishers, Enfield, NH. pp. 255–268.

    Google Scholar 

  • Smigocki AC (1991) Cytokinin content and tissue distribution in plants transformed by a reconstructed isopentenyl transferase gene. Plant Molecular Biology 16: 105–115.

    Article  CAS  Google Scholar 

  • Smigocki AC, Campbell LG, Larson R, Wozniak CA (2007b) Sugar beet. In: Kole, C. and T.C. Hall (eds.), A Compendium of Transgenic Crop Plants, Vol. 3. Blackwell Publishing, Malden, MA (in press)

    Google Scholar 

  • Smigocki AC, Campbell LG, Wozniak CA (2003) Leaf extracts from cytokinin-overproducing transgenic plants are lethal to sugar beet root maggot (Tetanops myopaeformis) larvae. Journal of Sugar Beet Research 40: 197–207.

    Article  Google Scholar 

  • Smigocki AC, Ivic-Haymes S, Campbell L, Boetel M (2006) A sugarbeet root maggot (Tetanops myopaeformis Röder) bioassay using Beta vulgaris L. seedlings and in vitro propagated transformed hairy roots. Journal of Sugar Beet Research 43: 1–13.

    Article  Google Scholar 

  • Smigocki AC, Puthoff DP, S, I-H, Zuzga S (2007a) A Beta vulgaris proteinase inhibitor gene (BvSTI) regulated by sugar beet root maggot feeding on moderately resistant F1016 roots. American Society of Sugar Beet Technologists Proceedings 34: 143–150.

    Google Scholar 

  • Snyder GW, Ingersoll JC, Smigocki AC, Owens LD (1999) Introduction of pathogen defense genes and a cytokinin biosynthetic gene into sugarbeet (Beta vulgaris L.) by Agrobacterium or particle bombardment. Plant Cell Reports 18: 829–834.

    Article  CAS  Google Scholar 

  • Srinivasan A, Giri AP, Gupta VS (2006) Structural and functional diversities in Lepidopteran serine proteases. Cellular and Molecular Biology Letters 11: 132–154.

    Article  CAS  Google Scholar 

  • Tertivanidis K, Goudoula C, Vasilikiotis C, Hassiotou E, Perl-Treves R, Tsaftaris A (2004) Superoxide dismutase transgenes in sugarbeets confer resistance to oxidative agents and the fungus C. beticola. Transgenic Research 13: 225–233.

    Article  CAS  Google Scholar 

  • Wang H-Y, Huang Y-C, Chen S-F, Yeh K-W (2003) Molecular cloning, characterization and gene expression of a water deficiency and chilling induced proteinase inhibitor I gene family from sweet potato (Ipomoea batatas Lam.) leaves. Plant Science 165: 191–203.

    Article  CAS  Google Scholar 

  • Weyens G, Ritsema T, Van Dun K, Meyer D, Lommel M, Lathouwers J, Rosquin I, Denys P, Nijs M, Tossens A, Turk S, Gerrits N, Bink S, Walraven B, Lefèbvre M, Smeekens S (2004) Production of tailor-made fructans in sugar beet by expression of onion fructosyltransferase genes. Plant Biotechnology Journal 2: 321–327.

    Article  CAS  Google Scholar 

  • Wilhite SE, TC E, Puizdar V, Armstrong S, Smigocki AC (2000) Inhibition of aspartyl and serine proteinases in the midgut of sugar beet root maggot with proteinase inhibitors. Entomologia Experimentalis et Applicata 97: 229–233.

    Article  CAS  Google Scholar 

  • Wozniak CA (1993) Culture of sugarbeet root maggots in sugarbeet cell cultures. Plant Resistance Insects Newsletter 19: 18–20.

    Google Scholar 

  • Yang AF, Duan XG, Gu XF, Gao F, Zhang JR (2005) Efficient transformation of beet (Beta vulgaris) and production of plants with improved salt-tolerance. Plant Cell, Tissue and Organ Culture 83: 259–270.

    Article  CAS  Google Scholar 

  • Yuancong Z (1997) Cold-tolerant transgenic sugar beet. Asia Pacific Biotech News, 14 and 15: 340.

    Google Scholar 

  • Zhao H, Holladay JE, Brown HM, Zhang C (2007) Metal Chlorides in Ionic Liquid Solvents Convert Sugars to 5-Hydroxymethylfurfural. Science 316: 1597–1600.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Smigocki.

Additional information

Disclaimer: Mention and/or use of a commercial or proprietary product to the exclusion of others does not constitute endorsement by the USDA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smigocki, A.C., Ivic-Haymes, S.D., Puthoff, D.P. et al. Recent advances in functional genomics for sugar beet (Beta vulgaris L.) improvement: progress in determining the role of BvSTI in pest resistance in roots. Sugar Tech 10, 91–98 (2008). https://doi.org/10.1007/s12355-008-0016-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12355-008-0016-y

Keywords