Abstract
Homeobox genes encode sequence-specific transcription factors (SSTFs) that recognize specific DNA sequences and regulate organogenesis in all eukaryotes. They are essential in specifying spatial and temporal cell identity and as a result, their mutations often cause severe developmental defects. Pitx genes belong to the PRD class of the highly evolutionary conserved homeobox genes in all animals. Vertebrates possess three Pitx paralogs, Pitx1, Pitx2, and Pitx3 while non-vertebrates have only one Pitx gene. The ancient role of regulating left–right (LR) asymmetry is conserved while new functions emerge to afford more complex body plan and functionalities. In mouse, Pitx1 regulates hindlimb tissue patterning and pituitary development. Pitx2 is essential for the development of the oral cavity and abdominal wall while regulates the formation and symmetry of other organs including pituitary, heart, gut, lung among others by controlling growth control genes upon activation of the Wnt/ß-catenin signaling pathway. Pitx3 is essential for lens development and migration and survival of the dopaminergic neurons of the substantia nigra. Pitx gene mutations are linked to various congenital defects and cancers in humans. Pitx gene family has the potential to offer a new approach in regenerative medicine and aid in identifying new drug targets.
Similar content being viewed by others
Availability of data and material
Information provided is based on published works from our team and many others.
Code availability
Not applicable.
References
Vonk PJ, Ohm RA (2018) The role of homeodomain transcription factors in fungal development. Fungal Biol Rev 32:219–230. https://doi.org/10.1016/j.fbr.2018.04.002
Son S-H, Son Y-E, Cho H-J, Chen W, Lee M-K, Kim L-H, Han D-M, Park H-S (2020) Homeobox proteins are essential for fungal differentiation and secondary metabolism in Aspergillusnidulans. Sci Rep 10:6094. https://doi.org/10.1038/s41598-020-63300-4
Matsumoto N, Okada K (2001) A homeobox gene, PRESSED FLOWER, regulates lateral axis-dependent development of Arabidopsis flowers. Genes Dev 15:3355–3364. https://doi.org/10.1101/gad.931001
Wang Y, Henriksson E, Söderman E, Henriksson KN, Sundberg E, Engström P (2003) The arabidopsis homeobox gene, ATHB16, regulates leaf development and the sensitivity to photoperiod in Arabidopsis. Dev Biol 264:228–239. https://doi.org/10.1016/j.ydbio.2003.07.017
Masucci JD, Rerie WG, Foreman DR, Zhang M, Galway ME, Marks MD, Schiefelbein JW (1996) The homeobox gene GLABRA2 is required for position-dependent cell differentiation in the root epidermis of Arabidopsis thaliana. Development 122:1253–1260
Mukherjee K, Brocchieri L, Bürglin TR (2009) A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol 26:2775–2794. https://doi.org/10.1093/molbev/msp201
Holland PW, Booth HAF, Bruford EA (2007) Classification and nomenclature of all human homeobox genes. BMC Biol 5:47. https://doi.org/10.1186/1741-7007-5-47
Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, Signorovitch AY, Moreno MA, Kamm K, Grimwood J, Schmutz J, Shapiro H, Grigoriev IV, Buss LW, Schierwater B, Dellaporta SL, Rokhsar DS (2008) The Trichoplax genome and the nature of placozoans. Nature 454:955–960. https://doi.org/10.1038/nature07191
Angotzi AR, Ersland KM, Mungpakdee S, Stefansson S, Chourrout D (2008) Independent and dynamic reallocation of pitx gene expression during vertebrate evolution, with emphasis on fish pituitary development. Gene 417:19–26. https://doi.org/10.1016/j.gene.2008.03.013
Watanabe H, Schmidt HA, Kuhn A, Höger SK, Kocagöz Y, Laumann-Lipp N, Özbek S, Holstein TW (2014) Nodal signalling determines biradial asymmetry in Hydra. Nature 515:112–115. https://doi.org/10.1038/nature13666
Berleth T, Burri M, Thoma G, Bopp D, Richstein S, Frigerio G, Noll M, Nüsslein-Volhard C (1988) The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J 7:1749–1756
Frohnhöfer HG, Nüsslein-Volhard C (1986) Organization of anterior pattern in the Drosophila embryo by the maternal gene bicoid. Nature 324:120–125. https://doi.org/10.1038/324120a0
Li G, Liu X, Xing C, Zhang H, Shimeld SM, Wang Y (2017) Cerberus–Nodal–Lefty–Pitx signaling cascade controls left–right asymmetry in amphioxus. Proc Natl Acad Sci 114:3684–3689. https://doi.org/10.1073/pnas.1620519114
Hu G, Li G, Wang H, Wang Y (2017) Hedgehog participates in the establishment of left-right asymmetry during amphioxus development by controlling Cerberus expression. Development 144:4694–4703. https://doi.org/10.1242/dev.157172
Yoshiba S, Hamada H (2014) Roles of cilia, fluid flow, and Ca2+ signaling in breaking of left-right symmetry. Trends Genet 30:10–17. https://doi.org/10.1016/j.tig.2013.09.001
Logan M, Pagán-Westphal SM, Smith DM, Paganessi L, Tabin CJ (1998) The transcription factor Pitx2 mediates situs-specific morphogenesis in response to left–right asymmetric signals. Cell 94:307–317. https://doi.org/10.1016/S0092-8674(00)81474-9
Schier AF, Shen MM (2000) Nodal signalling in vertebrate development. Nature 403:385–389. https://doi.org/10.1038/35000126
Whitman M (2001) Nodal signaling in early vertebrate embryos: themes and variations. Dev Cell 1:605–617. https://doi.org/10.1016/S1534-5807(01)00076-4
Shen MM (2007) Nodal signaling: developmental roles and regulation. Development 134:1023–1034. https://doi.org/10.1242/dev.000166
Shen MM, Schier AF (2000) The EGF–CFC gene family in vertebrate development. Trends Genet 16:303–309. https://doi.org/10.1016/s0168-9525(00)02006-0
Campione M, Franco D (2016) Current perspectives in cardiac laterality. J Cardiovasc Dev Dis. https://doi.org/10.3390/jcdd3040034
Grimes DT, Burdine RD (2017) Left–right patterning: breaking symmetry to asymmetric morphogenesis. Trends Genet 33:616–628. https://doi.org/10.1016/j.tig.2017.06.004
Franco D, Sedmera D, Lozano-Velasco E (2017) Multiple roles of Pitx2 in cardiac development and disease. J Cardiovasc Dev Dis. https://doi.org/10.3390/jcdd4040016
Campione M, Steinbeisser H, Schweickert A, Deissler K, van Bebber F, Lowe LA, Nowotschin S, Viebahn C, Haffter P, Kuehn MR, Blum M (1999) The homeobox gene Pitx2: mediator of asymmetric left–right signaling in vertebrate heart and gut looping. Development 126:1225–1234
Kitamura K, Miura H, Miyagawa-Tomita S, Yanazawa M, Katoh-Fukui Y, Suzuki R, Ohuchi H, Suehiro A, Motegi Y, Nakahara Y, Kondo S, Yokoyama M (1999) Mouse Pitx2 deficiency leads to anomalies of the ventral body wall, heart, extra- and periocular mesoderm and right pulmonary isomerism. Development 126:5749–5758
Lin CR, Kioussi C, O’Connell S, Briata P, Szeto D, Liu F, Izpisúa-Belmonte JC, Rosenfeld MG (1999) Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature 401:279–282. https://doi.org/10.1038/45803
Yoshioka H, Meno C, Koshiba K, Sugihara M, Itoh H, Ishimaru Y, Inoue T, Ohuchi H, Semina EV, Murray JC, Hamada H, Noji S (1998) Pitx2, a bicoid-type homeobox gene, is involved in a lefty-signaling pathway in determination of left–right asymmetry. Cell 94:299–305. https://doi.org/10.1016/s0092-8674(00)81473-7
Lamba P, Hjalt TA, Bernard DJ (2008) Novel forms of Paired-like homeodomain transcription factor 2 (PITX2): generation by alternative translation initiation and mRNA splicing. BMC Mol Biol 9:31. https://doi.org/10.1186/1471-2199-9-31
Furukawa T, Kozak CA, Cepko CL (1997) rax, a novel paired-type homeobox gene, shows expression in the anterior neural fold and developing retina. Proc Natl Acad Sci 94:3088–3093. https://doi.org/10.1073/pnas.94.7.3088
Lanctôt C, Lamolet B, Drouin J (1997) The bicoid-related homeoprotein Ptx1 defines the most anterior domain of the embryo and differentiates posterior from anterior lateral mesoderm. Development 124:2807–2817
Lanctôt C, Moreau A, Chamberland M, Tremblay ML, Drouin J (1999) Hindlimb patterning and mandible development require the Ptx1 gene. Development 126:1805–1810
Shih HP, Gross MK, Kioussi C (2007) Expression pattern of the homeodomain transcription factor Pitx2 during muscle development. Gene Expr Patterns 7:441–451. https://doi.org/10.1016/j.modgep.2006.11.004
Drouin J, Lamolet B, Lamonerie T, Lanctôt C, Tremblay JJ (1998) The PTX family of homeodomain transcription factors during pituitary developments. Mol Cell Endocrinol 140:31–36. https://doi.org/10.1016/s0303-7207(98)00026-4
Martin DM, Skidmore JM, Philips ST, Vieira C, Gage PJ, Condie BG, Raphael Y, Martinez S, Camper SA (2004) Pitx2 is required for normal development of neurons in the mouse subthalamic nucleus and midbrain. Dev Biol 267:93–108. https://doi.org/10.1016/j.ydbio.2003.10.035
L’Honoré A, Coulon V, Marcil A, Lebel M, Lafrance-Vanasse J, Gage P, Camper S, Drouin J (2007) Sequential expression and redundancy of Pitx2 and Pitx3 genes during muscle development. Dev Biol 307:421–433. https://doi.org/10.1016/j.ydbio.2007.04.034
Zagoraiou L, Akay T, Martin JF, Brownstone RM, Jessell TM, Miles GB (2009) A cluster of cholinergic pre-motor interneurons modulates mouse locomotor activity. Neuron 64:645–662. https://doi.org/10.1016/j.neuron.2009.10.017
Gage PJ, Suh H, Camper SA (1999) Dosage requirement of Pitx2 for development of multiple organs. Development 126:4643–4651
Zhao S, Maxwell S, Jimenez-Beristain A, Vives J, Kuehner E, Zhao J, O’Brien C, de Felipe C, Semina E, Li M (2004) Generation of embryonic stem cells and transgenic mice expressing green fluorescence protein in midbrain dopaminergic neurons. Eur J Neurosci 19:1133–1140. https://doi.org/10.1111/j.1460-9568.2004.03206.x
Smidt MP, van Schaick HSA, Lanctôt C, Tremblay JJ, Cox JJ, van der Kleij AAM, Wolterink G, Drouin J, Burbach JPH (1997) A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc Natl Acad Sci USA 94:13305–13310
Mitsiadis TA, Drouin J (2008) Deletion of the Pitx1 genomic locus affects mandibular tooth morphogenesis and expression of the Barx1 and Tbx1 genes. Dev Biol 313:887–896. https://doi.org/10.1016/j.ydbio.2007.10.055
Lu M-F, Pressman C, Dyer R, Johnson RL, Martin JF (1999) Function of Rieger syndrome gene in left–right asymmetry and craniofacial development. Nature 401:276–278. https://doi.org/10.1038/45797
Shih HP, Gross MK, Kioussi C (2007) Cranial muscle defects of Pitx2 mutants result from specification defects in the first branchial arch. Proc Natl Acad Sci 104:5907–5912. https://doi.org/10.1073/pnas.0701122104
Evans AL, Gage PJ (2005) Expression of the homeobox gene Pitx2 in neural crest is required for optic stalk and ocular anterior segment development. Hum Mol Genet 14:3347–3359. https://doi.org/10.1093/hmg/ddi365
Zhou Y, Cheng G, Dieter L, Hjalt TA, Andrade FH, Stahl JS, Kaminski HJ (2009) An altered phenotype in a conditional knockout of Pitx2 in extraocular muscle. Invest Ophthalmol Vis Sci 50:4531–4541. https://doi.org/10.1167/iovs.08-2950
Varnum DS, Stevens LC (1968) Aphakia, a new mutation in the mouse. J Hered 59:147–150. https://doi.org/10.1093/oxfordjournals.jhered.a107667
Semina EV, Reiter RS, Murray JC (1997) Isolation of a new homeobox gene belonging to the Pitx/Rieg Family: expression during lens development and mapping to the aphakia region on mouse chromosome 19. Hum Mol Genet 6:2109–2116. https://doi.org/10.1093/hmg/6.12.2109
Ho H-Y, Chang K-H, Nichols J, Li M (2009) Homeodomain protein Pitx3 maintains the mitotic activity of lens epithelial cells. Mech Dev 126:18–29. https://doi.org/10.1016/j.mod.2008.10.007
Skidmore JM, Waite MR, Alvarez-Bolado G, Puelles L, Martin DM (2012) A novel TaulacZ allele reveals a requirement for Pitx2 in formation of the mammillothalamic tract. Genesis 50:67–73. https://doi.org/10.1002/dvg.20793
Martinat C, Bacci J-J, Leete T, Kim J, Vanti WB, Newman AH, Cha JH, Gether U, Wang H, Abeliovich A (2006) Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype. Proc Natl Acad Sci USA 103:2874–2879. https://doi.org/10.1073/pnas.0511153103
van den Munckhof P, Luk KC, Ste-Marie L, Montgomery J, Blanchet PJ, Sadikot AF, Drouin J (2003) Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons. Development 130:2535–2542. https://doi.org/10.1242/dev.00464
Nunes I, Tovmasian LT, Silva RM, Burke RE, Goff SP (2003) Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci 100:4245–4250. https://doi.org/10.1073/pnas.0230529100
Liu W, Selever J, Lu M-F, Martin JF (2003) Genetic dissection of Pitx2 in craniofacial development uncovers new functions in branchial arch morphogenesis, late aspects of tooth morphogenesis and cell migration. Development 130:6375–6385. https://doi.org/10.1242/dev.00849
Charles MA, Suh H, Hjalt TA, Drouin J, Camper SA, Gage PJ (2005) PITX genes are required for cell survival and Lhx3 activation. Mol Endocrinol 19:1893–1903. https://doi.org/10.1210/me.2005-0052
Lanctôt C, Gauthier Y, Drouin J (1999) Pituitary homeobox 1 (Ptx1) Is differentially expressed during pituitary development. Endocrinology 140:1416–1422. https://doi.org/10.1210/endo.140.3.6549
Szeto DP, Rodriguez-Esteban C, Ryan AK, O’Connell SM, Liu F, Kioussi C, Gleiberman AS, Izpisúa-Belmonte JC, Rosenfeld MG (1999) Role of the Bicoid-related homeodomain factor Pitx1 in specifying hindlimb morphogenesis and pituitary development. Genes Dev 13:484–494
Suh H, Gage PJ, Drouin J, Camper SA (2002) Pitx2 is required at multiple stages of pituitary organogenesis: pituitary primordium formation and cell specification. Development 129:329–337
Castinetti F, Brinkmeier ML, Gordon DF, Vella KR, Kerr JM, Mortensen AH, Hollenberg A, Brue T, Ridgway EC, Camper SA (2011) PITX2 AND PITX1 regulate thyrotroph function and response to hypothyroidism. Mol Endocrinol 25:1950–1960. https://doi.org/10.1210/me.2010-0388
Charles MA, Mortensen AH, Potok MA (2000) Camper SA (2008) Pitx2 deletion in pituitary gonadotropes is compatible with gonadal development, puberty and fertility. Genes 46:507–514. https://doi.org/10.1002/dvg.20398
Duboc V, Logan MPO (2011) Pitx1 is necessary for normal initiation of hindlimb outgrowth through regulation of Tbx4 expression and shapes hindlimb morphologies via targeted growth control. Development 138:5301–5309. https://doi.org/10.1242/dev.074153
Nemec S, Luxey M, Jain D, Huang Sung A, Pastinen T, Drouin J (2017) Pitx1 directly modulates the core limb development program to implement hindlimb identity. Development 144:3325–3335. https://doi.org/10.1242/dev.154864
Lanctot C, Lamolet B, Drouin J (1997) The bicoid-related homeoprotein Ptx1 defines the most anterior domain of the embryo and differentiates posterior from anterior lateral mesoderm. Development 124:2807–2817
Wang JS, Infante CR, Park S, Menke DB (2018) PITX1 promotes chondrogenesis and myogenesis in mouse hindlimbs through conserved regulatory targets. Dev Biol 434:186–195. https://doi.org/10.1016/j.ydbio.2017.12.013
Campbell AL, Shih H-P, Xu J, Gross MK, Kioussi C (2012) Regulation of motility of myogenic cells in filling limb muscle anlagen by Pitx2. PLoS ONE 7:e35822. https://doi.org/10.1371/journal.pone.0035822
Campbell AL, Eng D, Gross MK, Kioussi C (2012) Prediction of gene network models in limb muscle precursors. Gene 509:16–23. https://doi.org/10.1016/j.gene.2012.08.016
Singh AJ, Gross MK, Filtz TM, Kioussi C (2016) Mapping the chromatin state dynamics in myoblasts. Gene Rep 3:5–13. https://doi.org/10.1016/j.genrep.2016.01.003
L’Honoré A, Ouimette J-F, Lavertu-Jolin M, Drouin J (2010) Pitx2 defines alternate pathways acting through MyoD during limb and somitic myogenesis. Development 137:3847–3856. https://doi.org/10.1242/dev.053421
Shiratori H, Yashiro K, Iwai N, Oki S, Minegishi K, Ikawa Y, Kanata K, Hamada H (2014) Self-regulated left–right asymmetric expression of Pitx2c in the developing mouse limb. Dev Biol 395:331–341. https://doi.org/10.1016/j.ydbio.2014.09.002
Chang C-N, Singh AJ, Gross MK, Kioussi C (2019) Requirement of Pitx2 for skeletal muscle homeostasis. Dev Biol 445:90–102. https://doi.org/10.1016/j.ydbio.2018.11.001
Hogan BLM (1999) Morphogenesis. Cell 96:225–233. https://doi.org/10.1016/S0092-8674(00)80562-0
Nichol PF, Saijoh Y (2011) Pitx2 is a critical early regulatory gene in normal cecal development. J Surg Res 170:107–111. https://doi.org/10.1016/j.jss.2011.03.036
Kurpios NA, Ibañes M, Davis NM, Lui W, Katz T, Martin JF, Izpisúa Belmonte JC, Tabin CJ (2008) The direction of gut looping is established by changes in the extracellular matrix and in cell:cell adhesion. Proc Natl Acad Sci USA 105:8499–8506. https://doi.org/10.1073/pnas.0803578105
Mahadevan A, Welsh IC, Sivakumar A, Gludish DW, Shilvock AR, Noden DM, Kurpios NA (2014) The left-right Pitx2 pathway drives organ-specific arterial and lymphatic development in the intestine. Dev Cell 31:690–706. https://doi.org/10.1016/j.devcel.2014.11.002
Kioussi C, Briata P, Baek SH, Rose DW, Hamblet NS, Herman T, Ohgi KA, Lin C, Gleiberman A, Wang J, Brault V, Ruiz-Lozano P, Nguyen HD, Kemler R, Glass CK, Wynshaw-Boris A, Rosenfeld MG (2002) Identification of a Wnt/Dvl/β-catenin→Pitx2 pathway mediating cell-type-specific proliferation during development. Cell 111:673–685. https://doi.org/10.1016/S0092-8674(02)01084-X
Baek SH, Kioussi C, Briata P, Wang D, Nguyen HD, Ohgi KA, Glass CK, Wynshaw-Boris A, Rose DW, Rosenfeld MG (2003) Regulated subset of G1 growth-control genes in response to derepression by the Wnt pathway. Proc Natl Acad Sci 100:3245–3250. https://doi.org/10.1073/pnas.0330217100
Briata P, Ilengo C, Corte G, Moroni C, Rosenfeld MG, Chen C-Y, Gherzi R (2003) The Wnt/β-catenin→Pitx2 Pathway controls the turnover of Pitx2 and other unstable mRNAs. Mol Cell 12:1201–1211. https://doi.org/10.1016/S1097-2765(03)00407-6
Liu C, Liu W, Palie J, Lu MF, Brown NA, Martin JF (2002) Pitx2c patterns anterior myocardium and aortic arch vessels and is required for local cell movement into atrioventricular cushions. Development 129:5081–5091
Zhang M, Hill MC, Kadow ZA, Suh JH, Tucker NR, Hall AW, Tran TT, Swinton PS, Leach JP, Margulies KB, Ellinor PT, Li N, Martin JF (2019) Long-range Pitx2c enhancer–promoter interactions prevent predisposition to atrial fibrillation. Proc Natl Acad Sci USA 116:22692–22698. https://doi.org/10.1073/pnas.1907418116
Ai D, Liu W, Ma L, Dong F, Lu M-F, Wang D, Verzi MP, Cai C, Gage PJ, Evans S, Black BL, Brown NA, Martin JF (2006) Pitx2 regulates cardiac left–right asymmetry by patterning second cardiac lineage-derived myocardium. Dev Biol 296:437–449. https://doi.org/10.1016/j.ydbio.2006.06.009
Ammirabile G, Tessari A, Pignataro V, Szumska D, Sutera Sardo F, Benes J, Balistreri M, Bhattacharya S, Sedmera D, Campione M (2012) Pitx2 confers left morphological, molecular, and functional identity to the sinus venosus myocardium. Cardiovasc Res 93:291–301. https://doi.org/10.1093/cvr/cvr314
Mommersteeg MTM, Brown NA, Prall OWJ, de Gier-de VC, Harvey RP, Moorman AFM, Christoffels VM (2007) Pitx2c and Nkx2-5 are required for the formation and identity of the pulmonary myocardium. Circ Res 101:902–909. https://doi.org/10.1161/CIRCRESAHA.107.161182
Wang J, Klysik E, Sood S, Johnson RL, Wehrens XHT, Martin JF (2010) Pitx2 prevents susceptibility to atrial arrhythmias by inhibiting left-sided pacemaker specification. Proc Natl Acad Sci 107:9753–9758. https://doi.org/10.1073/pnas.0912585107
Ye T, Min Z, Lele Li, Yan B, Yuefang Z, Moon AM, Kaminski HJ, Martin JF (2014) Pitx2, an atrial fibrillation predisposition gene, directly regulates ion transport and intercalated disc genes. Circ Cardiovasc Genet 7:23–32. https://doi.org/10.1161/CIRCGENETICS.113.000259
Ma H-Y, Xu J, Eng D, Gross MK, Kioussi C (2013) Pitx2-mediated cardiac outflow tract remodeling. Dev Dyn Off Publ Am Assoc Anat 242:456–468. https://doi.org/10.1002/dvdy.23934
Tao G, Kahr PC, Morikawa Y, Zhang M, Rahmani M, Heallen TR, Li L, Sun Z, Olson EN, Amendt BA, Martin JF (2016) Pitx2 promotes heart repair by activating the antioxidant response after cardiac injury. Nature 534:119–123. https://doi.org/10.1038/nature17959
Li L, Tao G, Hill MC, Zhang M, Morikawa Y, Martin JF (2018) Pitx2 maintains mitochondrial function during regeneration to prevent myocardial fat deposition. Development. https://doi.org/10.1242/dev.168609
Gurnett CA, Alaee F, Kruse LM, Desruisseau DM, Hecht JT, Wise CA, Bowcock AM, Dobbs MB (2008) Asymmetric lower–limb malformations in individuals with homeobox PITX1 gene mutation. Am J Hum Genet 83:616–622. https://doi.org/10.1016/j.ajhg.2008.10.004
Alvarado DM, McCall K, Aferol H, Silva MJ, Garbow JR, Spees WM, Patel T, Siegel M, Dobbs MB, Gurnett CA (2011) Pitx1 haploinsufficiency causes clubfoot in humans and a clubfoot-like phenotype in mice. Hum Mol Genet 20:3943–3952. https://doi.org/10.1093/hmg/ddr313
Liebenberg F (1973) A pedigree with unusual anomalies of the elbows, wrists and hands in five generations. South Afr Med J 47:745–748
Al-Qattan MM, Al-Thunayan A, AlAbdulkareem I, Al Balwi M (2013) Liebenberg syndrome is caused by a deletion upstream to the PITX1 gene resulting in transformation of the upper limbs to reflect lower limb characteristics. Gene 524:65–71. https://doi.org/10.1016/j.gene.2013.03.120
Semina EV, Reiter R, Leysens NJ, Alward WL, Small KW, Datson NA, Siegel-Bartelt J, Bierke-Nelson D, Bitoun P, Zabel BU, Carey JC, Murray JC (1996) Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet 14:392–399. https://doi.org/10.1038/ng1296-392
Reis LM, Semina EV (2011) Genetics of anterior segment dysgenesis disorders. Curr Opin Ophthalmol 22:314–324. https://doi.org/10.1097/ICU.0b013e328349412b
Reis LM, Tyler RC, Volkmann Kloss BA, Schilter KF, Levin AV, Lowry RB, Zwijnenburg PJG, Stroh E, Broeckel U, Murray JC, Semina EV (2012) PITX2 and FOXC1 spectrum of mutations in ocular syndromes. Eur J Hum Genet 20:1224–1233. https://doi.org/10.1038/ejhg.2012.80
Xia K, Wu L, Liu X, Xi X, Liang D, Zheng D, Cai F, Pan Q, Long Z, Dai H, Hu Z, Tang B, Zhang Z, Xia J (2004) Mutation in PITX2 is associated with ring dermoid of the cornea. J Med Genet 41:e129–e129. https://doi.org/10.1136/jmg.2004.022434
Arikawa A, Yoshida S, Yoshikawa H, Ishikawa K, Yamaji Y, Arita R-I, Ueno A, Ishibashi T (2010) Case of novel PITX2 gene mutation associated with Peters’ anomaly and persistent hyperplastic primary vitreous. Eye 24:391–393. https://doi.org/10.1038/eye.2009.114
Kimura M, Tokita Y, Machida J, Shibata A, Tatematsu T, Tsurusaki Y, Miyake N, Saitsu H, Miyachi H, Shimozato K, Matsumoto N, Nakashima M (2014) A novel PITX2 mutation causing iris hypoplasia. Hum Genome Var 1:1–3. https://doi.org/10.1038/hgv.2014.5
Protas ME, Weh E, Footz T, Kasberger J, Baraban SC, Levin AV, Katz LJ, Ritch R, Walter MA, Semina EV, Gould DB (2017) Mutations of conserved non-coding elements of PITX2 in patients with ocular dysgenesis and developmental glaucoma. Hum Mol Genet 26:3630–3638. https://doi.org/10.1093/hmg/ddx251
Karadeniz NN, Kocak-Midillioglu I, Erdogan D, Bökesoy I (2004) Is SHORT syndrome another phenotypic variation of PITX2? Am J Med Genet A 130A:406–409. https://doi.org/10.1002/ajmg.a.30206
Qiu X-B, Xu Y-J, Li R-G, Xu L, Liu X, Fang W-Y, Yang Y-Q, Qu X-K (2014) PITX2C loss-of-function mutations responsible for idiopathic atrial fibrillation. Clinics 69:15–22. https://doi.org/10.6061/clinics/2014(01)03
Wang J, Xin Y-F, Xu W-J, Liu Z-M, Qiu X-B, Qu X-K, Xu L, Li X, Yang Y-Q (2013) Prevalence and spectrum of PITX2c mutations associated with congenital heart disease. DNA Cell Biol 32:708–716. https://doi.org/10.1089/dna.2013.2185
Yuan F, Zhao L, Wang J, Zhang W, Li X, Qiu X-B, Li R-G, Xu Y-J, Xu L, Qu X-K, Fang W-Y, Yang Y-Q (2013) PITX2c loss-of-function mutations responsible for congenital atrial septal defects. Int J Med Sci 10:1422–1429. https://doi.org/10.7150/ijms.6809
Wei D, Gong X-H, Qiu G, Wang J, Yang Y-Q (2014) Novel PITX2c loss-of-function mutations associated with complex congenital heart disease. Int J Mol Med 33:1201–1208. https://doi.org/10.3892/ijmm.2014.1689
Zhao C-M, Peng L-Y, Li L, Liu X-Y, Wang J, Zhang X-L, Yuan F, Li R-G, Qiu X-B, Yang Y-Q (2015) PITX2 loss-of-function mutation contributes to congenital endocardial cushion defect and Axenfeld-Rieger syndrome. PLoS ONE 10:e0124409. https://doi.org/10.1371/journal.pone.0124409
Sun Y-M, Wang J, Qiu X-B, Yuan F, Xu Y-J, Li R-G, Qu X-K, Huang R-T, Xue S, Yang Y-Q (2016) PITX2 loss-of-function mutation contributes to tetralogy of Fallot. Gene 577:258–264. https://doi.org/10.1016/j.gene.2015.12.001
Semina EV, Ferrell RE, Mintz-Hittner HA, Bitoun P, Alward WLM, Reiter RS, Funkhauser C, Daack-Hirsch S, Murray JC (1998) A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Nat Genet 19:167–170. https://doi.org/10.1038/527
Verdin H, Sorokina EA, Meire F, Casteels I, de Ravel T, Semina EV, De Baere E (2014) Novel and recurrent PITX3 mutations in Belgian families with autosomal dominant congenital cataract and anterior segment dysgenesis have similar phenotypic and functional characteristics. Orphanet J Rare Dis 9:26. https://doi.org/10.1186/1750-1172-9-26
Liu H, Liu H, Tang J, Lin Q, Sun Y, Wang C, Yang H, Khan MR, Peerbux MW, Ahmad S, Bukhari I, Zhu J (2017) Whole exome sequencing identifies a novel mutation in the PITX3 Gene, causing autosomal dominant congenital cataracts in a Chinese family. Ann Clin Lab Sci 47:92–95
Wu Z, Meng D, Fang C, Li J, Zheng X, Lin J, Zeng H, Lv S, Zhang Z, Luan B, Zhong Z, Chen J (2019) PITX3 mutations associated with autosomal dominant congenital cataract in the Chinese population. Mol Med Rep 19:3123–3131. https://doi.org/10.3892/mmr.2019.9989
Dietrich D, Hasinger O, Liebenberg V, Field JK, Kristiansen G, Soltermann A (2012) DNA methylation of the homeobox genes PITX2 and SHOX2 predicts outcome in non-small-cell lung cancer patients. Diagn Mol Pathol Am J Surg Pathol Part B 21:93–104. https://doi.org/10.1097/PDM.0b013e318240503b
Luo J, Yao Y, Ji S, Sun Q, Xu Y, Liu K, Diao Q, Qiang Y, Shen Y (2019) PITX2 enhances progression of lung adenocarcinoma by transcriptionally regulating WNT3A and activating Wnt/β-catenin signaling pathway. Cancer Cell Int 19:96. https://doi.org/10.1186/s12935-019-0800-7
Hirose H, Ishii H, Mimori K, Tanaka F, Takemasa I, Mizushima T, Ikeda M, Yamamoto H, Sekimoto M, Doki Y, Mori M (2011) The significance of PITX2 overexpression in human colorectal cancer. Ann Surg Oncol 18:3005–3012. https://doi.org/10.1245/s10434-011-1653-z
Semaan A, Uhl B, Branchi V, Lingohr P, Bootz F, Kristiansen G, Kalff JC, Matthaei H, Pantelis D, Dietrich D (2018) Significance of PITX2 promoter methylation in colorectal carcinoma prognosis. Clin Colorectal Cancer 17:e385–e393. https://doi.org/10.1016/j.clcc.2018.02.008
Basu M, Bhattacharya R, Ray U, Mukhopadhyay S, Chatterjee U, Roy SS (2015) Invasion of ovarian cancer cells is induced byPITX2-mediated activation of TGF-β and Activin-A. Mol Cancer 14:162. https://doi.org/10.1186/s12943-015-0433-y
Basu M, Roy SS (2013) Wnt/β-catenin pathway is regulated by PITX2 homeodomain protein and thus contributes to the proliferation of human ovarian adenocarcinoma cell, SKOV-3. J Biol Chem 288:4355–4367. https://doi.org/10.1074/jbc.M112.409102
Fung FKC, Chan DW, Liu VWS, Leung THY, Cheung ANY, Ngan HYS (2012) Increased expression of PITX2 transcription factor contributes to ovarian cancer progression. PLoS ONE 7:e37076. https://doi.org/10.1371/journal.pone.0037076
Zhang J-X, Tong Z-T, Yang L, Wang F, Chai H-P, Zhang F, Xie M-R, Zhang A-L, Wu L-M, Hong H, Yin L, Wang H, Wang H-Y, Zhao Y (2013) PITX2: A promising predictive biomarker of patients’ prognosis and chemoradioresistance in esophageal squamous cell carcinoma. Int J Cancer 132:2567–2577. https://doi.org/10.1002/ijc.27930
Liu Y, Huang Y, Zhu G-Z (2013) Cyclin A1 is a transcriptional target of PITX2 and overexpressed in papillary thyroid carcinoma. Mol Cell Biochem 384:221–227. https://doi.org/10.1007/s11010-013-1801-9
Huang Y, Guigon CJ, Fan J, Cheng S, Zhu G-Z (2010) Pituitary homeobox 2 (PITX2) promotes thyroid carcinogenesis by activation of cyclin D2. Cell Cycle 9:1333–1341. https://doi.org/10.4161/cc.9.7.11126
Vinarskaja A, Schulz WA, Ingenwerth M, Hader C, Arsov C (2013) Association of PITX2 mRNA down-regulation in prostate cancer with promoter hypermethylation and poor prognosis. Urol Oncol Semin Orig Investig 31:622–627. https://doi.org/10.1016/j.urolonc.2011.04.010
Jiang Q, Xie M, He M, Yan F, Chen M, Xu S, Zhang X, Shen P (2019) PITX2 methylation: a novel and effective biomarker for monitoring biochemical recurrence risk of prostate cancer. Medicine. https://doi.org/10.1097/MD.0000000000013820
Uhl B, Gevensleben H, Tolkach Y, Sailer V, Majores M, Jung M, Meller S, Stein J, Ellinger J, Dietrich D, Kristiansen G (2017) PITX2 DNA methylation as biomarker for individualized risk assessment of prostate cancer in core biopsies. J Mol Diagn JMD 19:107–114. https://doi.org/10.1016/j.jmoldx.2016.08.008
Knopp P, Figeac N, Fortier M, Moyle L, Zammit PS (2013) Pitx genes are redeployed in adult myogenesis where they can act to promote myogenic differentiation in muscle satellite cells. Dev Biol 377:293–304. https://doi.org/10.1016/j.ydbio.2013.02.011
Lozano-Velasco E, Vallejo D, Esteban FJ, Doherty C, Hernández-Torres F, Franco D, Aránega AE (2015) A Pitx2-microrna pathway modulates cell proliferation in myoblasts and skeletal-muscle satellite cells and promotes their commitment to a myogenic cell fate. Mol Cell Biol 35:2892–2909. https://doi.org/10.1128/MCB.00536-15
L’honoré A, Commère P-H, Negroni E, Pallafacchina G, Friguet B, Drouin J, Buckingham M, Montarras D (2018) The role of Pitx2 and Pitx3 in muscle stem cells gives new insights into P38α MAP kinase and redox regulation of muscle regeneration. eLife. https://doi.org/10.7554/eLife.32991
Rodriguez-Esteban C, Tsukui T, Yonei S, Magallon J, Tamura K, Izpisua Belmonte JC (1999) The T-box genes Tbx4 and Tbx5 regulate limb outgrowth and identity. Nature 398:814–818. https://doi.org/10.1038/19769
Naiche LA, Papaioannou VE (2003) Loss of Tbx4 blocks hindlimb development and affects vascularization and fusion of the allantois. Development 130:2681–2693. https://doi.org/10.1242/dev.00504
DeLaurier A, Schweitzer R, Logan M (2006) Pitx1 determines the morphology of muscle, tendon, and bones of the hindlimb. Dev Biol 299:22–34. https://doi.org/10.1016/j.ydbio.2006.06.055
Zhu J, Palliyil S, Ran C, Kumar JP (2017) Drosophila Pax6 promotes development of the entire eye–antennal disc, thereby ensuring proper adult head formation. Proc Natl Acad Sci 114:5846–5853. https://doi.org/10.1073/pnas.1610614114
Shaham O, Menuchin Y, Farhy C, Ashery-Padan R (2012) Pax6: a multi-level regulator of ocular development. Prog Retin Eye Res 31:351–376. https://doi.org/10.1016/j.preteyeres.2012.04.002
Kieusseian A, Chagraoui J, Kerdudo C, Mangeot P-E, Gage PJ, Navarro N, Izac B, Uzan G, Forget BG, Dubart-Kupperschmitt A (2006) Expression of Pitx2 in stromal cells is required for normal hematopoiesis. Blood 107:492–500. https://doi.org/10.1182/blood-2005-02-0529
Chinchilla A, Daimi H, Lozano-Velasco E, Dominguez JN, Caballero R, Delpón E, Tamargo J, Cinca J, Hove-Madsen L, Aranega AE, Franco D (2011) PITX2 insufficiency leads to atrial electrical and structural remodeling linked to arrhythmogenesis. Circ Cardiovasc Genet 4:269–279. https://doi.org/10.1161/CIRCGENETICS.110.958116
Welsh IC, Kwak H, Chen FL, Werner M, Shopland LS, Danko CG, Lis JT, Zhang M, Martin JF, Kurpios NA (2015) Chromatin architecture of the Pitx2 locus requires CTCF- and Pitx2-dependent asymmetry that mirrors embryonic gut laterality. Cell Rep 13:337–349. https://doi.org/10.1016/j.celrep.2015.08.075
L’honoré A, Commère PH, Ouimette JF, Montarras D, Drouin J, Buckingham M (2014) Redox regulation by Pitx2 and Pitx3 is critical for fetal myogenesis. Dev Cell 29:392–405. https://doi.org/10.1016/j.devcel.2014.04.006
Acknowledgements
We apologize to our colleagues whose work could not be cited due to space limitations and our focused perspective. We thank Yen Diep for her continuous support. This work was supported by the College of Pharmacy, Oregon State University.
Funding
This work was supported by the College of Pharmacy at the Oregon State University.
Author information
Authors and Affiliations
Contributions
TQT wrote the manuscript; CK reviewed, wrote and edited the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Tran, T., Kioussi, C. Pitx genes in development and disease. Cell. Mol. Life Sci. 78, 4921–4938 (2021). https://doi.org/10.1007/s00018-021-03833-7
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s00018-021-03833-7