Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Pharmacological chaperone-rescued cystic fibrosis CFTR-F508del mutant overcomes PRAF2-gated access to endoplasmic reticulum exit sites

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The endoplasmic reticulum exit of some polytopic plasma membrane proteins (PMPs) is controlled by arginin-based retention motifs. PRAF2, a gatekeeper which recognizes these motifs, was shown to retain the GABAB-receptor GB1 subunit in the ER. We report that PRAF2 can interact on a stoichiometric basis with both wild type and mutant F508del Cystic Fibrosis (CF) Transmembrane Conductance Regulator (CFTR), preventing the access of newly synthesized cargo to ER exit sites. Because of its lower abundance, compared to wild-type CFTR, CFTR-F508del recruitment into COPII vesicles is suppressed by the ER-resident PRAF2. We also demonstrate that some pharmacological chaperones that efficiently rescue CFTR-F508del loss of function in CF patients target CFTR-F508del retention by PRAF2 operating with various mechanisms. Our findings open new therapeutic perspectives for diseases caused by the impaired cell surface trafficking of mutant PMPs, which contain RXR-based retention motifs that might be recognized by PRAF2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Availability of data and material

The datasets generated during and/or analyzed during the current study are available as supplemental tables and figures.

References

  1. Bulenger S, Marullo S, Bouvier M (2005) Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol Sci 26:131–137

    Article  CAS  PubMed  Google Scholar 

  2. Achour L, Labbe-Juillie C, Scott MGH, Marullo S (2008) An escort for G Protein Coupled Receptors to find their path: implication for regulation of receptor density at the cell surface. Trends Pharmacol Sci 29:528–535

    Article  CAS  PubMed  Google Scholar 

  3. Doly S, Marullo S (2015) Gatekeepers controlling GPCR export and function. Trends Pharmacol Sci 36:636–644

    Article  CAS  PubMed  Google Scholar 

  4. Barlowe C, Helenius A (2016) Cargo capture and bulk flow in the early secretory pathway. Annu Rev Cell Dev Biol 32:197–222

    Article  CAS  PubMed  Google Scholar 

  5. Nishimura N, Balch WE (1997) A di-acidic signal required for selective export from the endoplasmic reticulum. Science 277:556–558

    Article  CAS  PubMed  Google Scholar 

  6. Miller EA, Beilharz TH, Malkus PN, Lee MC, Hamamoto S, Orci L, Schekman R (2003) Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell 114:497–509

    Article  CAS  PubMed  Google Scholar 

  7. Zerangue N, Schwappach B, Jan YN, Jan LY (1999) A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron 22:537–548

    Article  CAS  PubMed  Google Scholar 

  8. Margeta-Mitrovic M, Jan YN, Jan LY (2000) A trafficking checkpoint controls GABA(B) receptor heterodimerization. Neuron 27:97–106

    Article  CAS  PubMed  Google Scholar 

  9. Fo CS, Coleman CS, Wallick CJ, Vine AL, Bachmann AS (2006) Genomic organization, expression profile, and characterization of the new protein PRA1 domain family, member 2 (PRAF2). Gene 371:154–165

    Article  CAS  PubMed  Google Scholar 

  10. Cifuentes-Diaz C, Marullo S, Doly S (2016) Anatomical and ultrastructural study of PRAF2 expression in the mouse central nervous system. Brain Struct Funct 221:4169–4185

    Article  CAS  PubMed  Google Scholar 

  11. Doly S, Shirvani H, Gäta G, Meye FJ, Emerit MB, Enslen H, Achour L, Pardo-Lopez L, Yang SK, Armand V, Gardette R, Giros B et al (2016) GABAB receptor cell surface export is controlled by an endoplasmic reticulum gatekeeper. Mol Psychiatry 21:480–490

    Article  CAS  PubMed  Google Scholar 

  12. Callebaut I, Chong PA, Forman-Kay JD (2018) CFTR structure. J Cyst Fibros 17:S5–S8

    Article  CAS  PubMed  Google Scholar 

  13. Dalemans W, Barbry P, Champigny G, Jallat S, Dott K, Dreyer D, Crystal RG, Pavirani A, Lecocq JP, Lazdunski M (1991) Altered chloride ion channel kinetics associated with the delta F508 cystic fibrosis mutation. Nature 354:526–528

    Article  CAS  PubMed  Google Scholar 

  14. Rabeh WM, Bossard F, Xu H, Okiyoneda T, Bagdany M, Mulvihill CM, Du K, di Bernardo S, Liu Y, Konermann L, Roldan A, Lukacs GL (2012) Correction of both NBD1 energetics and domain interface is required to restore ΔF508 CFTR folding and function. Cell 148:150–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cheng SH, Gregory RJ, Marshall J, Paul S, Souza DW, White GA, O’Riordan CR, Smith AE (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63:827–834

    Article  CAS  PubMed  Google Scholar 

  16. Wang X, Matteson J, An Y, Moyer B, Yoo JS, Bannykh S, Wilson IA, Riordan JR, Balch WE (2004) COPII-dependent export of cystic fibrosis transmembrane conductance regulator from the ER uses a di-acidic exit code. J Cell Biol 167:65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Teem JL, Carson MR, Welsh MJ (1996) Mutation of R555 in CFTR-delta F508 enhances function and partially corrects defective processing. Recept Channels 4:63–72

    CAS  PubMed  Google Scholar 

  18. Chang XB, Cui L, Hou YX, Jensen TJ, Aleksandrov AA, Mengos A, Riordan JR (1999) Removal of multiple arginine-framed trafficking signals overcomes misprocessing of delta F508 CFTR present in most patients with cystic fibrosis. Mol Cell 4:137–142

    Article  CAS  PubMed  Google Scholar 

  19. Hegedus T, Aleksandrov A, Cui L, Gentzsch M, Chang XB, Riordan JR (2006) F508del CFTR with two altered RXR motifs escapes from ER quality control but its channel activity is thermally sensitive. Biochim Biophys Acta 1758:565–572

    Article  CAS  PubMed  Google Scholar 

  20. Roy G, Chalfin EM, Saxena A, Wang X (2010) Interplay between ER exit code and domain conformation in CFTR misprocessing and rescue. Mol Biol Cell 21:597–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Van Goor F, Hadida S, Grootenhuis PD, Burton B, Stack JH, Straley KS, Decker CJ, Miller M, McCartney J, Olson ER, Wine JJ, Frizzell RA et al (2011) Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci U S A 108:18843–18848

    Article  PubMed  PubMed Central  Google Scholar 

  22. Middleton PG, Mall MA, Drevinek P, Lands LC, McKone EF, Polineni D, Ramsey BW, Taylor-Cousar JL, Tullis E, Vermeulen F, Marigowda G, McKee CM et al (2019) Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single Phe508del allele. N Engl J Med 381:1809–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Capurro V, Tomati V, Sondo E, Renda M, Borrelli A, Pastorino C, Guidone D, Venturini A, Giraudo A, Mandrup Bertozzi S, Musante I, Bertozzi F et al (2021) Partial rescue of F508del-CFTR stability and trafficking defects by double corrector treatment. Int J Mol Sci 22:5262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Baatallah N, Elbahnsi A, Mornon JP, Chevalier B, Pranke I, Servel N, Zelli R, Décout JL, Edelman A, Sermet-Gaudelus I, Callebaut I, Hinzpeter A (2021) Pharmacological chaperones improve intra-domain stability and inter-domain assembly via distinct binding sites to rescue misfolded CFTR. Cell Mol Life Sci 78:7813–7829

    Article  CAS  PubMed  Google Scholar 

  25. Fiedorczuk K, Chen J (2022) Mechanism of CFTR correction by type I folding correctors. Cell 185:158-168.e111

    Article  CAS  PubMed  Google Scholar 

  26. Kunzelmann K, Schwiebert EM, Zeitlin PL, Kuo WL, Stanton BA, Gruenert DC (1993) An immortalized cystic fibrosis tracheal epithelial cell line homozygous for the delta F508 CFTR mutation. Am J Respir Cell Mol Biol 8:522–529

    Article  CAS  PubMed  Google Scholar 

  27. Sondo E, Tomati V, Caci E, Esposito AI, Pfeffer U, Pedemonte N, Galietta LJ (2011) Rescue of the mutant CFTR chloride channel by pharmacological correctors and low temperature analyzed by gene expression profiling. Am J Physiol Cell Physiol 301:C872–C885

    Article  CAS  PubMed  Google Scholar 

  28. Baatallah N, Bitam S, Martin N, Servel N, Costes B, Mekki C, Chevalier B, Pranke I, Simonin J, Girodon E, Hoffmann B, Mornon JP et al (2018) Cis variants identified in F508del complex alleles modulate CFTR channel rescue by small molecules. Hum Mutat 39:506–514

    Article  CAS  PubMed  Google Scholar 

  29. Lahaie N, Kralikova M, Prézeau L, Blahos J, Bouvier M (2016) Post-endocytotic deubiquitination and degradation of the metabotropic γ-aminobutyric acid receptor by the ubiquitin-specific protease 14. J Biol Chem 291:7156–7170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lewis HA, Buchanan SG, Burley SK, Dickey M, Dorwart M, Fowler R, Gao X, Guggino WB, Hendrickson WA, Hunt JF, Kearins MC et al (2004) Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J 23:282–293

    Article  CAS  PubMed  Google Scholar 

  31. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  32. Luber CA, Cox J, Lauterbach H, Fancke B, Selbach M, Tschopp J, Akira S, Wiegand M, Hochrein H, O’Keeffe M, Mann M (2010) Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. Immunity 32:279–289

    Article  CAS  PubMed  Google Scholar 

  33. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731–740

    Article  CAS  PubMed  Google Scholar 

  34. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, Jensen LJ, von Mering C (2021) The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49:D605-612

    Article  CAS  PubMed  Google Scholar 

  35. Achour L, Kamal M, Jockers R, Marullo S (2011) Using quantitative BRET to assess G protein-coupled receptor homo- and heterodimerization. Methods Mol Biol 756:183–200

    Article  CAS  PubMed  Google Scholar 

  36. Angers S, Salahpour A, Joly E, Hilairet S, Chelsky D, Dennis M, Bouvier M (2000) Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci U S A 97:3684–3689

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Marullo S, Bouvier M (2007) Resonance energy transfer approaches in molecular pharmacology and beyond. Trends Pharmacol Sci 28:362–365

    Article  CAS  PubMed  Google Scholar 

  38. Branon TC, Bosch JA, Sanchez AD, Udeshi ND, Svinkina T, Carr SA, Feldman JL, Perrimon N, Ting AY (2018) Efficient proximity labeling in living cells and organisms with TurboID. Nat Biotechnol 36:880–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sivars U, Aivazian D, Pfeffer SR (2003) Yip3 catalyses the dissociation of endosomal Rab-GDI complexes. Nature 425:856–859

    Article  CAS  PubMed  Google Scholar 

  40. Doly S, Marullo S (2015) PRAF2, an endoplasmic reticulum gatekeeper, controls the cell-surface export of the GABA(B) receptor in neurons. Med Sci (Paris) 31:834–836

    Article  Google Scholar 

  41. Ren HY, Grove D, De La Rosa O, Houck S, Sopha P, Van Goor F, Hoffman BJ, Cyr DM (2013) VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1. Mol Biol Cell 24:3016–3024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hudson RP, Dawson JE, Chong PA, Yang Z, Millen L, Thomas PJ, Brouillette CG, Forman-Kay JD (2017) Direct binding of the corrector VX-809 to human CFTR NBD1: evidence of an allosteric coupling between the binding site and the NBD1:CL4 interface. Mol Pharmacol 92:124–135

    Article  CAS  PubMed  Google Scholar 

  43. Okiyoneda T, Veit G, Dekkers J, Bagdany M, Soya N, Xu H, Roldan A, Verkman AS, Kurth M, Simon A, Hegedus T, Beekman JM et al (2013) Mechanism-based corrector combination restores ΔF508-CFTR folding and function. Nat Chem Biol 9:444–454

    Article  CAS  PubMed  Google Scholar 

  44. Galietta LV, Jayaraman S, Verkman AS (2001) Cell-based assay for high-throughput quantitative screening of CFTR chloride transport agonists. Am J Physiol Cell Physiol 281:C1734-1742

    Article  CAS  PubMed  Google Scholar 

  45. Veit G, Roldan A, Hancock MA, Da Fonte DF, Xu H, Hussein M, Frenkiel S, Matouk E, Velkov T, Lukacs GL (2020) Allosteric folding correction of F508del and rare CFTR mutants by elexacaftor-tezacaftor-ivacaftor (Trikafta) combination. JCI Insight 5:139983

    Article  PubMed  Google Scholar 

  46. Ward CL, Kopito RR (1994) Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. J Biol Chem 269:25710–25718

    Article  CAS  PubMed  Google Scholar 

  47. Ward CL, Omura S, Kopito RR (1995) Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83:121–127

    Article  CAS  PubMed  Google Scholar 

  48. Farinha CM, Canato S (2017) From the endoplasmic reticulum to the plasma membrane: mechanisms of CFTR folding and trafficking. Cell Mol Life Sci 74:39–55

    Article  CAS  PubMed  Google Scholar 

  49. Pind S, Riordan JR, Williams DB (1994) Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 269:12784–12788

    Article  CAS  PubMed  Google Scholar 

  50. Keating D, Marigowda G, Burr L, Daines C, Mall MA, McKone EF, Ramsey BW, Rowe SM, Sass L, Tullis E, McKee CM, Moskowitz SM et al (2018) VX-445-tezacaftor-ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N Engl J Med 379:1612–1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Laselva O, Bartlett C, Gunawardena TNA, Ouyang H, Eckford PDW, Moraes TJ, Bear CE, Gonska T (2021) Rescue of multiple class II CFTR mutations by elexacaftor+ tezacaftor+ivacaftor mediated in part by the dual activities of Elexacaftor as both corrector and potentiator. Eur Respir J 57:2002774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Farinha CM, King-Underwood J, Sousa M, Correia AR, Henriques BJ, Roxo-Rosa M, Da Paula AC, Williams J, Hirst S, Gomes CM, Amaral MD (2013) Revertants, low temperature, and correctors reveal the mechanism of F508del-CFTR rescue by VX-809 and suggest multiple agents for full correction. Chem Biol 20:943–955

    Article  CAS  PubMed  Google Scholar 

  53. Veit G, Xu H, Dreano E, Avramescu R, Bagdany M, Beitel LK, Roldan A, Hancock MA, Lay C, Li W, Morin K, Gao S et al (2018) Structure-guided combination therapy to potently improve the function of mutant CFTRs. Nat Med 24:1732–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kerem B, Kerem E (1996) The molecular basis for disease variability in cystic fibrosis. Eur J Hum Genet 4:65–73

    Article  CAS  PubMed  Google Scholar 

  55. Van Goor F, Hadida S, Grootenhuis PD, Burton B, Cao D, Neuberger T, Turnbull A, Singh A, Joubran J, Hazlewood A, Zhou J, McCartney J et al (2009) Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci U S A 106:18825–18830

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the IMAG’IC microscopy facility of the Institut Cochin, supported by the National Infrastructure France Bio-Imaging (grant ANR-10-INBS-04) and IBISA consortium, for its assistance in imaging experiments.

Funding

This work was supported by institutional grants from the Institut National de Santé et de la Recherché Médicale (INSERM), the Centre National de la Recherche Scientifique (CNRS) the Université Paris Cité, by the Agence Nationale pour la Recherche (ANR): ANR-18-CE14-0004-02 grant to SM and AH, the “Vaincre la Mucoviscidose” RF20180502279 grant to SM and AE and the “Association pour l’Aide à la Recherche contre la Mucoviscidose (AARM)” to IS-G.

Author information

Authors and Affiliations

Authors

Contributions

SM, KS and AH contributed to the study conception and design. Material preparation, data collection and/or analysis were performed by KS, BC, SD, NB, TG, IP, MGHS, HE, CG, CC, AE, IS-G, AH and SM. The first draft of the manuscript was written by SM, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Stefano Marullo.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 8483 KB)

Supplementary file2 (XLSX 271 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, K., Chevalier, B., Doly, S. et al. Pharmacological chaperone-rescued cystic fibrosis CFTR-F508del mutant overcomes PRAF2-gated access to endoplasmic reticulum exit sites. Cell. Mol. Life Sci. 79, 530 (2022). https://doi.org/10.1007/s00018-022-04554-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04554-1

Keywords

Profiles

  1. Thomas Guilbert