Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

MicroRNAs in bone diseases

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

MicroRNAs are small, noncoding single-stranded RNAs that have emerged as important posttranscriptional regulators of gene expression, with an essential role in vertebrate development and different biological processes. This review highlights the recent advances in the function of miRNAs and their roles in bone remodeling and bone diseases. MicroRNAs (miRNAs) are a class of small (∼22 nt), noncoding single-stranded RNAs that have emerged as important posttranscriptional regulators of gene expression. They are essential for vertebrate development and play critical roles in different biological processes related to cell differentiation, activity, metabolism, and apoptosis. A rising number of experimental reports now indicate that miRNAs contribute to every step of osteogenesis and bone homeostasis, from embryonic skeletal development to maintenance of adult bone tissue, by regulating the growth, differentiation, and activity of different cell systems inside and outside the skeleton. Importantly, emerging information from animal studies suggests that targeting miRNAs might become an attractive and new therapeutic approach for osteoporosis or other skeletal diseases, even though there are still major concerns related to potential off target effects and the need of efficient delivery methods in vivo. Moreover, besides their recognized effects at the cellular level, evidence is also gathering that miRNAs are excreted and can circulate in the blood or other body fluids with potential paracrine or endocrine functions. Thus, they could represent suitable candidates for becoming sensitive disease biomarkers in different pathologic conditions, including skeletal disorders. Despite these promising perspectives more work remains to be done until miRNAs can serve as robust therapeutic targets or established diagnostic tools for precision medicine in skeletal disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roberts SB, Wootton E, De Ferrari L, Albagha OM, Salter DM (2015) Epigenetics of osteoarticular diseases: recent developments. Rheumatol Int 35:1293–1305. doi:10.1007/s00296-015-3260-y

    Article  CAS  PubMed  Google Scholar 

  2. Jacquier A (2009) The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat Rev Genet 10:833–844. doi:10.1038/nrg2683

    Article  CAS  PubMed  Google Scholar 

  3. Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505:344–352. doi:10.1038/nature12986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nagano T, Fraser P (2011) No-nonsense functions for long noncoding RNAs. Cell 145:178–181. doi:10.1016/j.cell.2011.03.014

    Article  CAS  PubMed  Google Scholar 

  5. Häsler J, Strub K (2006) Alu elements as regulators of gene expression. Nucleic Acids Res 34:5491–5497. doi:10.1093/nar/gkl706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105. doi:10.1101/gr.082701.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Macfarlane LA, Murphy PR (2010) MicroRNA: biogenesis, function and role in cancer. Curr Genomics 11:537–561. doi:10.2174/138920210793175895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li SC, Tang P, Lin WC (2007) Intronic microRNA: discovery and biological implications. DNA Cell Biol 26:195–207. doi:10.1089/dna.2006.0558

    Article  PubMed  Google Scholar 

  9. Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234. doi:10.1038/ncb0309-228

    Article  CAS  PubMed  Google Scholar 

  10. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ (2003) Dicer is essential for mouse development. Nat Genet 35:215–217. doi:10.1038/ng1253

    Article  CAS  PubMed  Google Scholar 

  11. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN (2004) The Drosha–DGCR8 complex in primary microRNA processing. Genes Dev 18:3016–3027. doi:10.1101/gad.1262504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mizoguchi F, Izu Y, Hayata T, Hemmi H, Nakashima K, Nakamura T, Kato S, Miyasaka N, Ezura Y, Noda M (2010) Osteoclast-specific Dicer gene deficiency suppresses osteoclastic bone resorption. J Cell Biochem 109:866–875. doi:10.1002/jcb.22228

    CAS  PubMed  Google Scholar 

  13. Gaur T, Hussain S, Mudhasani R, Parulkar I, Colby JL, Frederick D, Kream BE, van Wijnen AJ, Stein JL, Stein GS, Jones SN, Lian JB (2010) Dicer inactivation in osteoprogenitor cells compromises fetal survival and bone formation, while excision in differentiated osteoblasts increases bone mass in the adult mouse. Dev Biol 340:10–21. doi:10.1016/j.ydbio.2010.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sugatani T, Hruska KA (2009) Impaired micro-RNA pathways diminish osteoclast differentiation and function. J Biol Chem 284:4667–4678. doi:10.1074/jbc.M805777200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sugatani T, Vacher J, Hruska KA (2011) A microRNA expression signature of osteoclastogenesis. Blood 117:3648–3657. doi:10.1182/blood-2010-10-311415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lai EC (2002) Micro RNAs are complementary to 3 UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30:363–364. doi:10.1038/ng865

    Article  CAS  PubMed  Google Scholar 

  17. Marco A, Macpherson JI, Ronshaugen M, Griffiths-Jones S (2012) MicroRNAs from the same precursor have different targeting properties. Silence 3:8. doi:10.1186/1758-907X-3-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent co-expression with neighboring miRNAs and host genes. RNA 11:241–247. doi:10.1261/rna.7240905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5 UTR as in the 3 UTR. Proc Natl Acad Sci U S A 104:9667–9672. doi:10.1073/pnas.0703820104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934. doi:10.1126/science.1149460

    Article  CAS  PubMed  Google Scholar 

  21. Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A 105:1608–1613. doi:10.1073/pnas.0707594105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659. doi:10.1038/ncb1596

    Article  CAS  PubMed  Google Scholar 

  23. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105:10513–10518. doi:10.1073/pnas.0804549105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bader AG (2012) miR-34 - a microRNA replacement therapy is headed to the clinic. Front Genet 3:120. doi:10.3389/fgene.2012.00120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y, Persson R, King BD, Kauppinen S, Levin AA, Hodges MR (2013) Treatment of HCV infection by targeting microRNA. N Engl J Med 368:1685–1694. doi:10.1056/NEJMoa1209026

    Article  CAS  PubMed  Google Scholar 

  26. Lian JB, Stein GS, van Wijnen AJ, Stein JL, Hassan MQ, Gaur T, Zhang Y (2012) MicroRNA control of bone formation and homeostasis. Nat Rev Endocrinol 8:212–227. doi:10.1038/nrendo.2011.234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Franceschetti T, Dole NS, Kessler CB, Lee SK, Delany AM (2014) Pathway analysis of microRNA expression profile during murine osteoclastogenesis. PLoS One 9:e107262. doi:10.1371/journal.pone.0107262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Tang P, Xiong Q, Ge W, Zhang L (2014) The role of microRNAs in osteoclasts and osteoporosis. RNA Biol 11:1355–1363. doi:10.1080/15476286.2014.996462

    Article  PubMed  Google Scholar 

  29. Ji X, Chen X, Yu X (2016) MicroRNAs in osteoclastogenesis and function: potential therapeutic targets for osteoporosis. Int J Mol Sci1 7:349. doi:10.3390/ijms17030349

    Article  Google Scholar 

  30. Sugatani T, Hruska KA (2013) Down-regulation of miR-21 biogenesis by estrogen action contributes to osteoclastic apoptosis. J Cell Biochem 114:1217–1222. doi:10.1002/jcb.24471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Franceschetti T, Kessler CB, Lee SK, Delany AM (2013) miR-29 promotes murine osteoclastogenesis by regulating osteoclast commitment and migration. J Biol Chem 288:33347–33360. doi:10.1074/jbc.M113.484568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang FS, Chuang PC, Lin CL, Chen MW, Ke HJ, Chang YH, Chen YS, Wu SL, Ko JY (2013) MicroRNA-29a protects against glucocorticoid-induced bone loss and fragility in rats by orchestrating bone acquisition and resorption. Arthritis Rheum 65:1530–1540. doi:10.1002/art.37948

    Article  CAS  PubMed  Google Scholar 

  33. Cheng P, Chen C, He HB, Hu R, Zhou HD, Xie H, Zhu W, Dai RC, Wu XP, Liao EY, Luo XZ (2013) miR-148a regulates osteoclastogenesis by targeting v-maf musculo aponeurotic fibrosarcoma oncogenes homolog b. J Bone Miner Res 28:1180–1190. doi:10.1002/jbmr.1845

    Article  CAS  PubMed  Google Scholar 

  34. Zhao C, Sun W, Zhang P, Ling S, Li Y, Zhao D, Peng J, Wang A, Li Q, Song J, Wang C, Xu X, Xu Z, Zhong G, Han B, Chang YZ, Li Y (2015) miR-214 promotes osteoclastogenesis by targeting pten/pi3k/akt pathway. RNA Biol 12:343–353. doi:10.1080/15476286.2015.1017205

    Article  PubMed  PubMed Central  Google Scholar 

  35. Guo LJ, Liao L, Yang L, Li Y, Jiang TJ (2014) miR-125a TNF receptor-associated factor 6 to inhibit osteoclastogenesis. Exp Cell Res 321:142–152. doi:10.1016/j.yexcr.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  36. Takayanagi H, Kim S, Matsuo K, Suzuki H, Suzuki T, Sato K, Yocochi T, Oda H, Nakamura K, Ida N, Wagner EF, Taniguchi T (2002) RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature 416:744–749. doi:10.1038/416744a

    Article  CAS  PubMed  Google Scholar 

  37. Zhang J, Zhao H, Chen J, Xia B, Jin Y, Wei W, Shen J, Huang Y (2012) Interferon-β-induced miR-155 inhibits osteoclast differentiation by targeting SOCS1 and MITF. FEBS Lett 586:3255–3262. doi:10.1016/j.febslet.2012.06.047

    Article  CAS  PubMed  Google Scholar 

  38. Nakasa T, Shibuya H, Nagata Y, Niimoto T, Ochi M (2011) The inhibitory effect of microRNA-146a expression on bone destruction in collagen-induced arthritis. Arthritis Rheum 63:1582–1590. doi:10.1002/art.30321

    Article  CAS  PubMed  Google Scholar 

  39. Krzeszinski JY, Wei W, Huynh H, Jin Z, Wang X, Chang TC, Xie XJ, He L, Mangala LS, Lopez-Berestein G, Sood AK, Mendell JT, Wan Y (2014) miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and tgif2. Nature 512:431–435. doi:10.1038/nature13375

    Article  CAS  PubMed  Google Scholar 

  40. Chen C, Cheng P, Xie H, Zhou HD, Wu XP, Liao EY, Luo XH (2014) MiR-503 regulates osteoclastogenesis via targeting RANK. J Bone Miner Res 29:338–347. doi:10.1002/jbmr.2032

    Article  CAS  PubMed  Google Scholar 

  41. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foà R, Schliwka J, Fuchs U, Novosel A, Müller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414. doi:10.1016/j.cell.2007.04.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fazi F, Rosa A, Fatica A, Gelmetti V, de Marchis ML, Nervi C, Bozzoni I (2005) A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and c/EBPα regulates human granulopoiesis. Cell 123:819–831. doi:10.1016/j.cell.2005.09.023

    Article  CAS  PubMed  Google Scholar 

  43. Dou C, Cao Z, Yang B, Ding N, Hou T, Luo F, Kang F, Li J, Yang X, Jiang H, Xiang J, Quan H, Xu J, Dong S (2016) Changing expression profiles of lncRNAs, mRNAs, circRNAs and miRNAs during osteoclastogenesis. Sci Rep 6:21499. doi:10.1038/srep21499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kobayashi T, Lu J, Cobb BS, Rodda SJ, McMahon AP, Schipani E, Merkenschlager M, Kronenberg HM (2008) Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc Natl Acad Sci U S A 105:1949–1954. doi:10.1073/pnas.0707900105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Raaijmakers MH, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA, Ebert BL, Al-Shahrour F, Hasserjian RP, Scadden EO, Aung Z, Matza M, Merkenschlager M, Lin C, Rommens JM, Scadden DT (2010) Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464:852–857. doi:10.1038/nature08851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tomé M, López-Romero P, Albo C, Sepúlveda JC, Fernández Gutiérrez B, Dopazo A, Bernad A, González MA (2011) miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death Differ 18:985–995. doi:10.1038/cdd.2010.167

    Article  PubMed  CAS  Google Scholar 

  47. Zhang J, Tu Q, Bonewald LF, He X, Stein G, Lian J, Chen J (2011) Effects of miR-335-5p in modulating osteogenic differentiation by specifically down regulating Wnt antagonist DKK1. J Bone Miner Res 26:1953–1963. doi:10.1002/jbmr.377

    Article  CAS  PubMed  Google Scholar 

  48. Suomi S, Taipaleenmäki H, Seppänen A, Ripatti T, Väänänen K, Hentunen T, Säämänen AM, Laitala-Leinonen T (2008) MicroRNAs regulate osteogenesis and chondrogenesis of mouse bone marrow stromal cells. Gene Regul Syst Bio 2:177–191

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Laine SK, Alm JJ, Virtanen SP, Aro HT, Laitala-Leinonen TK (2012) MicroRNAs miR-96, miR-124, and miR-199a regulate gene expression in human bone marrow-derived mesenchymal stem cells. J Cell Biochem 113:2687–2695. doi:10.1002/jcb.24144

    Article  CAS  PubMed  Google Scholar 

  50. Qin L, Chen Y, Niu Y, Chen W, Wang Q, Xiao S, Li A, Xie Y, Li J, Zhao X, He Z, Mo D (2010) A deep investigation into the adipogenesis mechanism: profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/beta-catenin signaling pathway. BMC Genomics 11:320. doi:10.1186/1471-2164-11-320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Li CJ, Cheng P, Liang MK, Chen YS, Lu Q, Wang JY, Xia ZY, Zhou HD, Cao X, Xie H, Liao EY, Luo XH (2015) MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J Clin Invest 125:1509–1522. doi:10.172/JCI77716

    Article  PubMed  PubMed Central  Google Scholar 

  52. Inose H, Ochi H, Kimura A, Fujita K, Xu R, Sato S, Iwasaki M, Sunamura S, Takeuchi Y, Fukumoto S, Saito K, Nakamura T, Siomi H, Ito H, Arai Y, Shinomiya K, Takeda S (2009) A microRNA regulatory mechanism of osteoblast differentiation. Proc Natl Acad Sci U S A 106:20794–20799. doi:10.1073/pnas.0909311106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li Z, Hassan MQ, Volinia S, van Wijnen AJ, Stein JL, Croce CM, Lian JB, Stein GS (2008) A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci U S A 105:13906–13911. doi:10.1073/pnas.0804438105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhao X, Xu D, Li Y, Zhang J, Liu T, Ji Y, Wang J, Zhou G, Xie X (2014) MicroRNAs regulate bone metabolism. J Bone Miner Metab 32:221–231. doi:10.1007/s00774-013-0537-7

    Article  CAS  PubMed  Google Scholar 

  55. Gong Y, Xu F, Zhang L, Qian Y, Chen J, Huang H, Yu Y (2014) MicroRNA expression signature for Satb2-induced osteogenic differentiation in bone marrow stromal cells. Mol Cell Biochem 387:227–239. doi:10.1007/s11010-013-1888-z

    Article  CAS  PubMed  Google Scholar 

  56. Zeng Y, Qu X, Li H, Huang S, Wang S, Xu Q, Lin R, Han Q, Li J, Zhao RC (2012) MicroRNA-100 regulates osteogenic differentiation of human adipose-derived mesenchymal stem cells by targeting BMPR2. FEBS Lett 586:2375–2381. doi:10.1016/j.febslet.2012.05.049

    Article  CAS  PubMed  Google Scholar 

  57. Grünhagen J, Bhushan R, Degenkolbe E, Jäger M, Knaus P, Mundlos S, Robinson PN, Ott CE (2015) MiR-497-195 cluster microRNAs regulate osteoblast differentiation by targeting BMP signaling. J Bone Miner Res 30:796–808. doi:10.1002/jbmr.2412

    Article  PubMed  CAS  Google Scholar 

  58. Wu T, Zhou H, Hong Y, Li J, Jiang X, Huang H (2012) miR-30 family members negatively regulate osteoblast differentiation. J Biol Chem 287:7503–7511. doi:10.1074/jbc.M111.292722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang Y, Xie RL, Croce CM, Stein JL, Lian JB, van Wijnen AJ, Stein GS (2011) A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc Natl Acad Sci U S A 108:9863–9868. doi:10.1073/pnas.1018493108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hassan MQ, Gordon JA, Beloti MM, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2010) A network connecting Runx2, SATB2, and the miR-23a*27a*24-2 cluster regulates the osteoblast differentiation program. Proc Natl Acad Sci U S A 107:19879–19884. doi:10.1073/pnas.1007698107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yu S, Geng Q, Ma J, Sun F, Yu Y, Pan Q, Hong A (2013) Heparin-binding EGF-like growth factor and miR-1192 exert opposite effect on Runx2-induced osteogenic differentiation. Cell Death Dis 4:e868. doi:10.1038/cddis.2013.363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang M, Pan Y, Zhou Y (2014) miR-96 promotes osteogenic differentiation by suppressing HBEGF-EGFR signaling in osteoblastic cells. FEBS Lett 588:4761–4768. doi:10.1016/j.febslet.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  63. Chen Q, Liu W, Sinha KM, Yasuda H, de Crombrugghe B (2013) Identification and characterization of microRNAs controlled by the osteoblast-specific transcription factor Osterix. PLoS One8:e58104. doi:10.1371/journal.pone.0058104

  64. Zuo B, Zhu J, Li J, Wang C, Zhao X, Cai G, Li Z, Peng J, Wang P, Shen C, Huang Y, Xu J, Zhang X, Chen X (2015) microRNA-103a functions as a mechanosensitive microRNA to inhibit bone formation through targeting Runx2. J Bone Miner Res 30:330–345. doi:10.1002/jbmr.2352

    Article  CAS  PubMed  Google Scholar 

  65. Kim KM, Park SJ, Jung SH, Kim EJ, Jogeswar G, Ajita J, Rhee Y, Kim CH, Lim SK (2012) miR-182 is a negative regulator of osteoblast proliferation, differentiation, and skeletogenesis through targeting FoxO1. J Bone Miner Res 27:1669–1679. doi:10.1002/jbmr.1604

    Article  PubMed  CAS  Google Scholar 

  66. Liao L, Su X, Yang X, Hu C, Li B, Lv Y, Shuai Y, Jing H, Deng Z, Jin Y (2016) TNF-α inhibits FoxO1 by up-regulating miR-705 to aggravate oxidative damage in bone marrow-derived mesenchymal stem cells during osteoporosis. Stem Cells 34:1054–1067. doi:10.1002/stem.2274

    Article  CAS  PubMed  Google Scholar 

  67. Eskildsen T, Taipaleenmäki H, Stenvang J, Abdallah BM, Ditzel N, Nossent AY, Bak M, Kauppinen S, Kassem M (2011) MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci U S A 108:6139–6144. doi:10.1073/pnas.1016758108

    Article  PubMed  PubMed Central  Google Scholar 

  68. Chen L, Holmstrøm K, Qiu W, Ditzel N, Shi K, Hokland L, Kassem M (2014) MicroRNA-34a inhibits osteoblast differentiation and in vivo bone formation of human stromal stem cells. Stem Cells 32:902–912. doi:10.1002/stem.1615

    Article  CAS  PubMed  Google Scholar 

  69. Xie Q, Wang Z, Bi X, Zhou H, Wang Y, Gu P, Fan X (2014) Effects of miR-31 on the osteogenesis of human mesenchymal stem cells. Biochem Biophys Res Commun 446:98–104. doi:10.1016/j.bbrc.2014.02.058

    Article  CAS  PubMed  Google Scholar 

  70. Baglìo SR, Devescovi V, Granchi D, Baldini N (2013) MicroRNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation reveals Osterix regulation by miR-31. Gene 527:321–331. doi:10.1016/j.gene.2013.06.021

    Article  PubMed  CAS  Google Scholar 

  71. Weilner S, Schraml E, Wieser M, Messner P, Schneider K, Wassermann K, Micutkova L, Fortschegger K, Maier AB, Westendorp R, Resch H, Wolbank S, Redl H, Jansen-Dürr P, Pietschmann P, Grillari-Voglauer R, Grillari J (2016) Secreted microvesicular miR-31 inhibits osteogenic differentiation of mesenchymal stem cells. Aging Cell 15:744–754. doi:10.1111/acel.12484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Martin PJ, Haren N, Ghali O, Clabaut A, Chauveau C, Hardouin P, Broux O (2015) Adipogenic RNAs are transferred in osteoblasts via bone marrow adipocytes-derived extracellular vesicles (EVs). BMC Cell Biol 16:10. doi:10.1186/s12860-015-0057-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Sun M, Zhou X, Chen L, Huang S, Leung V, Wu N, Pan H, Zhen W, Lu W, Peng S (2016) The regulatory roles of microRNAs in bone remodeling and perspectives as biomarkers in osteoporosis. Biomed Res Int 2016:1652417. doi:10.1155/2016/1652417

    PubMed  PubMed Central  Google Scholar 

  74. Kapinas K, Kessler C, Ricks T, Gronowicz G, Delany AM (2010) miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. J Biol Chem 285:25221–25231. doi:10.1074/jbc.M110.116137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kapinas K, Kessler CB, Delany AM (2009) MiR-29 suppression of osteonectin in osteoblasts: regulation during differentiation and by canonical Wnt signaling. J Cell Biochem 108:216–224. doi:10.1002/jcb.22243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li Z, Hassan MQ, Jafferji M, Aqeilan RI, Garzon R, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2009) Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem 284:15676–15684. doi:10.1074/jbc.M809787200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Trompeter HI, Dreesen J, Hermann E, Iwaniuk KM, Hafner M, Renwick N, Tuschl T, Wernet P (2013) MicroRNAs miR-26a, miR-26b, and miR-29b accelerate osteogenic differentiation of unrestricted somatic stem cells from human cord blood. BMC Genomics 14:111. doi:10.1186/1471-2164-14-111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li H, Xie H, Liu W, Hu R, Huang B, Tan YF, Xu K, Sheng ZF, Zhou HD, Wu XP, Luo XH (2009) A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest 119:3666–3677. doi:10.1172/JCI39832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hassan MQ, Maeda Y, Taipaleenmaki H, Zhang W, Jafferji M, Gordon JA, Li Z, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2012) miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J Biol Chem 287:42084–42092. doi:10.1074/jbc.M112.377515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tamura M, Uyama M, Sugiyama Y, Sato M (2013) Canonical Wnt signaling activates miR-34 expression during osteoblastic differentiation. Mol Med Rep 8:1807–1811. doi:10.3892/mmr.2013.1713

    CAS  PubMed  Google Scholar 

  81. Bae Y, Yang T, Zeng HC, Campeau PM, Chen Y, Bertin T, Dawson BC, Munivez E, Tao J, Lee BH (2012) miRNA-34c regulates Notch signaling during bone development. Hum Mol Genet 21:2991–3000. doi:10.1093/hmg/dds129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Engin F, Yao Z, Yang T, Zhou G, Bertin T, Jiang MM, Chen Y, Wang L, Zheng H, Sutton RE, Boyce BF, Lee B (2008) Dimorphic effects of Notch signaling in bone homeostasis. Nat Med 14:299–305. doi:10.1038/nm1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Guo L, Xu J, Qi J, Zhang L, Wang J, Liang J, Qian N, Zhou H, Wei L, Deng L (2013) MicroRNA-17-92a up-regulation by estrogen leads to Bim targeting and inhibition of osteoblast apoptosis. J Cell Sci 126:978–988. doi:10.1242/jcs.117515

    Article  CAS  PubMed  Google Scholar 

  84. Zhou M, Ma J, Chen S, Chen X, Yu X (2014) MicroRNA-17-92 cluster regulates osteoblast proliferation and differentiation. Endocrine 45:302–310. doi:10.1007/s12020-013-9986-y

    Article  CAS  PubMed  Google Scholar 

  85. Mohan S, Wergedal JE, Das S, Kesavan C (2015) Conditional disruption of miR17-92 cluster in collagen type I-producing osteoblasts results in reduced periosteal bone formation and bone anabolic response to exercise. Physiol Genomics 47:33–43. doi:10.1152/physiolgenomics.00107.2014

    Article  CAS  PubMed  Google Scholar 

  86. Vimalraj S, Partridge NC, Selvamurugan N (2014) A positive role of microRNA-15b on regulation of osteoblast differentiation. J Cell Physiol 229:1236–1244. doi:10.1002/jcp.24557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bhushan R, Grünhagen J, Becker J, Robinson PN, Ott CE, Knaus P (2013) miR-181a promotes osteoblastic differentiation through repression of TGF-β signaling molecules. Int J Biochem Cell Biol 45:696–705. doi:10.1016/j.biocel.2012.12.008

    Article  CAS  PubMed  Google Scholar 

  88. Li J, He X, Wei W, Zhou X (2015) MicroRNA-194 promotes osteoblast differentiation via down regulating STAT1. Biochem Biophys Res Commun 460:482–488. doi:10.1016/j.bbrc.2015.03.059

    Article  CAS  PubMed  Google Scholar 

  89. Mizuno Y, Tokuzawa Y, Ninomiya Y, Yagi K, Yatsuka-Kanesaki Y, Suda T, Fukuda T, Katagiri T, Kondoh Y, Amemiya T, Tashiro H, Okazaki Y (2009) miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b. FEBS Lett 583:2263–2268. doi:10.1016/j.febslet.2009.06.006

    Article  CAS  PubMed  Google Scholar 

  90. Dong J, Cui X, Jiang Z, Sun J (2013) MicroRNA-23a modulates tumor necrosis factor-alpha-induced osteoblasts apoptosis by directly targeting Fas. J Cell Biochem 114:2738–2745. doi:10.1002/jcb.24622

    Article  CAS  PubMed  Google Scholar 

  91. Schmidt Y, Simunovic F, Strassburg S, Pfeifer D, Stark GB, Finkenzeller G (2015) miR-126 regulates platelet-derived growth factor receptor-α expression and migration of primary human osteoblasts. Biol Chem 396:61–70. doi:10.1515/hsz-2014-0168

    CAS  PubMed  Google Scholar 

  92. Yang N, Wang G, Hu C, Shi Y, Liao L, Shi S, Cai Y, Cheng S, Wang X, Liu Y, Tang L, Ding Y, Jin Y (2013) Tumor necrosis factor α suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis. J Bone Miner Res 28:559–573. doi:10.1002/jbmr.1798

    Article  CAS  PubMed  Google Scholar 

  93. Lisse TS, Chun RF, Rieger S, Adams JS, Hewison M (2013) Vitamin D activation of functionally distinct regulatory miRNAs in primary human osteoblasts. J Bone Miner Res 28:1478–1488. doi:10.1002/jbmr.1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhou Q, Zhao ZN, Cheng JT, Zhang B, Xu J, Huang F, Zhao RN, Chen YJ (2011) Ibandronate promotes osteogenic differentiation of periodontal ligament stem cells by regulating the expression of microRNAs. Biochem Biophys Res Commun 404:127–132. doi:10.1016/j.bbrc.2010.11.079

    Article  CAS  PubMed  Google Scholar 

  95. Wang Y, Li L, Moore BT, Peng XH, Fang X, Lappe JM, Recker RR, Xiao P (2012) MiR-133a in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis. PLoS One 7:e34641. doi:10.1371/journal.pone.0034641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang X, Guo B, Li Q, Peng J, Yang Z, Wang A, Li D, Hou Z, Lv K, Kan G, Cao H, Wu H, Song J, Pan X, Sun Q, Ling S, Li Y, Zhu M, Zhang P, Peng S, Xie X, Tang T, Hong A, Bian Z, Bai Y, Lu A, Li Y, He F, Zhang G, Li Y (2013) miR-214 targets ATF4 to inhibit bone formation. Nat Med 19:93–100. doi:10.1038/nm.3026

    Article  PubMed  CAS  Google Scholar 

  97. Cao Z, Moore BT, Wang Y, Peng XH, Lappe JM, Recker RR, Xiao P (2014) MiR-422a as a potential cellular microRNA biomarker for postmenopausal osteoporosis. PLoS One 9:e97098. doi:10.1371/journal.pone.0097098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Chen S, Yang L, Jie Q, Lin YS, Meng GL, Fan JZ, Zhang JK, Fan J, Luo ZJ, Liu J (2014) MicroRNA-125b suppresses the proliferation and osteogenic differentiation of human bone marrow derived mesenchymal stem cells. Mol Med Rep 9:1820–1826. doi:10.3892/mmr.2014.2024

    CAS  PubMed  Google Scholar 

  99. Seeliger C, Karpinski K, Haug AT, Vester H, Schmitt A, Bauer JS, van Griensven M (2014) Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. J Bone Miner Res 29:1718–1728. doi:10.1002/jbmr.2175

    Article  CAS  PubMed  Google Scholar 

  100. Li H, Wang Z, Fu Q, Zhang J (2014) Plasma miRNA levels correlate with sensitivity to bone mineral density in postmenopausal osteoporosis patients. Biomarkers 19:553–556. doi:10.3109/1354750X.2014.935957

    Article  CAS  PubMed  Google Scholar 

  101. Garmilla-Ezquerra P, Sañudo C, Delgado-Calle J, Pérez-Nuñez MI, Sumillera M, Riancho JA (2015) Analysis of the bone microRNome in osteoporotic fractures. Calcif Tissue Int 96:30–37. doi:10.1007/s00223-014-9935-7

    Article  CAS  PubMed  Google Scholar 

  102. Panach L, Mifsut D, Tarín JJ, Cano A, García-Pérez MÁ (2015) Serum circulating microRNAs as biomarkers of osteoporotic fracture. Calcif Tissue Int 97:495–505. doi:10.1007/s00223-015-0036-z

    Article  CAS  PubMed  Google Scholar 

  103. Weilner S, Skalicky S, Salzer B, Keider V, Wagner M, Hildner F, Gabriel C, Dovjak P, Pietschmann P, Grillari-Voglauer R, Grillari J, Hackl M (2015) Differentially circulating miRNAs after recent osteoporotic fractures can influence osteogenic differentiation. Bone 79:43–51. doi:10.1016/j.bone.2015.05.027

    Article  CAS  PubMed  Google Scholar 

  104. De-Ugarte L, Yoskovitz G, Balcells S, Güerri-Fernández R, Martinez-Diaz S, Mellibovsky L, Urreizti R, Nogués X, Grinberg D, García-Giralt N, Díez-Pérez A (2015) MiRNA profiling of whole trabecular bone: identification of osteoporosis-related changes in MiRNAs in human hip bones. BMC Med Genet 8:75. doi:10.1186/s12920-015-0149-2

    Google Scholar 

  105. You L, Pan L, Chen L, Gu W, Chen J (2016) MiR-27a is essential for the shift from osteogenic differentiation to adipogenic differentiation of mesenchymal stem cells in postmenopausal osteoporosis. Cell Physiol Biochem 39:253–265. doi:10.1159/000445621

    Article  CAS  PubMed  Google Scholar 

  106. Heilmeier U, Hackl M, Skalicky S, Weilner S, Schroeder F, Vierlinger K, Patsch J, Baum T, Oberbauer E, Lobach I, Burghardt A, Schwartz A, Grillari J, Link T (2016) Serum microRNAs are indicative of skeletal fractures in postmenopausal women with and without type 2 diabetes and influence osteogenic and adipogenic differentiation of adipose-tissue derived mesenchymal stem cells in vitro. J Bone Miner Res. doi:10.1002/jbmr.2897

    PubMed  Google Scholar 

  107. Kocijan R, Muschitz C, Geiger E, Skalicky S, Baierl A, Dormann R, Plachel F, Feichtinger X, Heimel P, Fahrleitner-Pammer A, Grillari J, Redl H, Resch H, Hackl M (2016) Circulating microRNA signatures in patients with idiopathic and postmenopausal osteoporosis and fragility fractures. J Clin Endocrinol Metab 101:4125–4134. doi:10.1210/jc.2016-2365

    Article  CAS  PubMed  Google Scholar 

  108. Zampetaki A, Mayr M (2012) Analytical challenges and technical limitations in assessing circulating miRNAs. Thromb Haemost 108:592–598. doi:10.1160/TH12-02-0097

    Article  CAS  PubMed  Google Scholar 

  109. Hackl M, Heilmeier U, Weilner S, Grillari J (2016) Circulating microRNAs as novel biomarkers for bone diseases—complex signatures for multifactorial diseases? Mol Cell Endocrinol 432:83–95. doi:10.1016/j.mce.2015.10.015

    Article  CAS  PubMed  Google Scholar 

  110. Brown DM, Goljanek-Whysall K (2015) microRNAs: modulators of the underlying pathophysiology of sarcopenia? Ageing Res Rev 24:263–273. doi:10.1016/j.arr.2015.08.007

    Article  CAS  PubMed  Google Scholar 

  111. Hsu YH, Zillikens MC, Wilson SG, Farber CR, Demissie S, Soranzo N, Bianchi EN, Grundberg E, Liang L, Richards JB, Estrada K, Zhou Y, van Nas A, Moffatt MF, Zhai G, Hofman A, van Meurs JB, Pols HA, Price RI, Nilsson O, Pastinen T, Cupples LA, Lusis AJ, Schadt EE, Ferrari S, Uitterlinden AG, Rivadeneira F, Spector TD, Karakis D, Kiel DP (2010) An integration of genome-wide association study and gene expression profiling toprioritize the discovery of novel susceptibility loci for osteoporosis-related traits. PLoS Genet 6:e1000977. doi:10.137/journal.pgen.1000977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Ralston SH, Galwey N, MacKay I, Albagha OM, Cardon L, Compston JE, Cooper C, Duncan E, Keen R, LAngdahl B, McLellan A, O’Riordan J, Pols HA, Reid DM, Uitterlinden AG, Wass J, Bennett ST (2005) Loci for regulation of bone mineral density in men and women identified by genomewide linkage scan: the FAMOS study. Hum Mol Genet 14:943–951. doi:10.1093/hmg/ddi088

    Article  CAS  PubMed  Google Scholar 

  113. Ishimoto T, Sugihara H, Watanabe M, Sawayama H, Iwatsuki M, Baba Y, Okabe H, Hidaka K, Yokoyama N, Miyake K, Yoshikawa M, Nagano O, Komohara Y, Takeya M, Saya H, Baba H (2014) Macrophage-derived reactive oxygen species suppress miR-328 targeting CD44 in cancer cells and promote redox adaptation. Carcinogenesis 35:1003–1011. doi:10.1093/carcin/bgt402

    Article  CAS  PubMed  Google Scholar 

  114. Wang T, Xu Z (2010) miR-27 promotes osteoblast differentiation by modulating Wnt signaling. Biochem Biophys Res Commun 402:186–189. doi:10.1016/j.bbrc.2010.08.031

    Article  CAS  PubMed  Google Scholar 

  115. Merlotti D, Gennari L, Dotta F, Lauro D, Nuti R (2010) Mechanisms of impaired bone strength in type 1 and 2 diabetes. Nutr Metab Cardiovasc Dis 20:683–690. doi:10.1016/j.numecd.2010.07.008

    Article  CAS  PubMed  Google Scholar 

  116. Sun JY, Huang Y, Li JP, Zhang X, Wang L, Meng YL, Yan B, Bian YQ, Zhao J, Wang WZ, Yang AG, Zhang R (2012) MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting beta-catenin. Biochem Biophys Res Commun 420:787–792. doi:10.1016/j.bbrc.2012.03.075

    Article  CAS  PubMed  Google Scholar 

  117. Afonso-Grunz F, Müller S (2015) Principles of miRNA-mRNA interactions: beyond sequence complementarity. Cell Mol Life Sci 72:3127–3141. doi:10.1007/s00018-015-1922-2

    Article  CAS  PubMed  Google Scholar 

  118. Dole NS, Delany AM (2016) MicroRNA variants as genetic determinants of bone mass. Bone 84:57–68. doi:10.1016/j.bone.2015.12.016

    Article  CAS  PubMed  Google Scholar 

  119. Jia F, Sun R, Li J, Li Q, Chen G, Fu W (2016) Interactions of pri-miRNA-34b/c and TP53 polymorphisms on the risk of osteoporosis. Genet Test Mol Biomarkers 20:398–401. doi:10.1089/gtmb.2015.0282

    Article  CAS  PubMed  Google Scholar 

  120. Zhang S, Qian J, Cao Q, Li P, Wang M, Wang J, Ju X, Meng X, Lu Q, Shao P, Zhang Z, Qin C, Yin C (2014) A potentially functional polymorphism in the promoter region of miR-34b/c is associated with renal cell cancer risk in a Chinese population. Mutagenesis 29:149–154. doi:10.1093/mutage/geu001

    Article  CAS  PubMed  Google Scholar 

  121. Lei SF, Papasian CJ, Deng HW (2011) Polymorphisms in predicted miRNA binding sites and osteoporosis. J Bone Miner Res 26:72–78. doi:10.1002/jbmr.186

    Article  CAS  PubMed  Google Scholar 

  122. Dole NS, Kapinas K, Kessler CB, Yee S, Adams DJ, Pereira RC, Delany AM (2015) A single nucleotide polymorphism in osteonectin 3 untranslated region regulates bone volume and is targeted by miR-433. J Bone Miner Res 30:723–732. doi:10.1002/jbmr.2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang Z, Lu Y, Zhang X, Ren X, Wang Y, Li Z, Xu C, Han J (2012) Serum microRNA is a promising biomarker for osteogenesis imperfecta. Intractable Rare Dis Res 1:81–85. doi:10.5582/irdr.2012.v1.2.81

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Kaneto CM, Lima PS, Zanette DL, Prata KL, Pina Neto JM, de Paula FJ, Silva WA Jr (2014) COL1A1 and miR-29b show lower expression levels during osteoblast differentiation of bone marrow stromal cells from Osteogenesis Imperfecta patients. BMC Med Genet 15:45. doi:10.1186/1471-2350-15-45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Ou M, Zhang X, Dai Y, Gao J, Zhu M, Yang X, Li Y, Yang T, Ding M (2014) Identification of potential microRNA-target pairs associated with osteopetrosis by deep sequencing, iTRAQ proteomics and bioinformatics. Eur J Hum Genet 22:625–632. doi:10.1038/ejhg.2013.221

    Article  CAS  PubMed  Google Scholar 

  126. Taipaleenmäki H, Bjerre Hokland L, Chen L, Kauppinen S, Kassem M (2012) Mechanisms in endocrinology: micro-RNAs: targets for enhancing osteoblast differentiation and bone formation. Eur J Endocrinol 166:359–371. doi:10.1530/EJE-11-0646

    Article  PubMed  CAS  Google Scholar 

  127. Heckel T, Czupalla C, Expirto Santo AI, Anitei M, Arantzazu Sanchez-Fernadez M, Mosch K, Krause E, Hoflack B (2009) Src-dependent repression of ARF6 is required to maintain podosome-rich sealing zones in bone-digesting osteoclasts. Proc Natl Acad Sci 106:1451–1456. doi:10.1073/pnas.0804464106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Corbetta S, Vaira V, Guarnieri V, Scillitani A, Eller-Vainicher C, Ferrero S, Vicentini L, Chiodini I, Bisceglia M, Beck-Peccoz P, Bosari S, Spada A (2010) Differential expression of microRNAs in human parathyroid carcinomas compared with normal parathyroid tissue. Endocr Relat Cancer 17:135–146. doi:10.1677/ERC-09-0134

    Article  CAS  PubMed  Google Scholar 

  129. Rahbari R, Holloway AK, He M, Khanafshar E, Clark OH, Kebebew E (2011) Identification of differentially expressed microRNA in parathyroid tumors. Ann Surg Oncol 18:1158–1165. doi:10.1245/s10434-010-1359-7

    Article  PubMed  Google Scholar 

  130. Vaira V, Elli F, Forno I, Guarnieri V, Verdelli C, Ferrero S, Scillitani A, Vicentini L, Cetani F, Mantovani G, Spada A, Bosari S, Corbetta S (2012) The microRNA cluster C19MC is deregulated in parathyroid tumours. J Mol Endocrinol 49:115–124. doi:10.1530/JME-11-0189

    Article  CAS  PubMed  Google Scholar 

  131. Shilo V, Ben-Dov IZ, Nechama M, Silver J, Naveh-Many T (2015) Parathyroid-specific deletion of dicer-dependent microRNAs abrogates the response of the parathyroid to acute and chronic hypocalcemia and uremia. FASEB J 29:3964–3976. doi:10.1096/fj.15-274191

    Article  CAS  PubMed  Google Scholar 

  132. Bianciardi S, Merlotti D, Sebastiani G, Valentini M, Gonnelli S, Caffarelli C, Evangelista IA, Cenci S, Nuti R, Dotta F, Gennari L (2016) Micro-RNA expression profiling in Paget’s disease of bone. Bone Abstracts 5:P452. doi:10.1530/boneabs.5.P452

  133. Croset M, Kan C, Clézardin P (2015) Tumour-derived miRNAs and bone metastasis. Bonekey Rep 4:688. doi:10.1038/bonekey.2015.56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Nugent M (2015) microRNA and bone cancer. Adv Exp Med Biol 889:201–230. doi:10.1007/978-3-319-23730-5_11

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gennari.

Ethics declarations

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gennari, L., Bianciardi, S. & Merlotti, D. MicroRNAs in bone diseases. Osteoporos Int 28, 1191–1213 (2017). https://doi.org/10.1007/s00198-016-3847-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00198-016-3847-5

Keywords