Abstract
The first part of the present paper is devoted to a systematic construction of continuous-time finite-dimensional integrable systems arising from the rational \({\mathfrak su(2)}\) Gaudin model through certain contraction procedures. In the second part, we derive an explicit integrable Poisson map discretizing a particular Hamiltonian flow of the rational \({\mathfrak su(2)}\) Gaudin model. Then, the contraction procedures enable us to construct explicit integrable discretizations of the continuous systems derived in the first part of the paper.
Similar content being viewed by others
References
Adams M., Harnad J., Hurtubise J.: Darboux coordinates and Liouville-Arnold integration in loop algebras. Commun. Math. Phys. 155, 385–413 (1993)
Amico L., Osterloh A.: Exact Correlation Functions of the BCS Model in the Canonical Ensemble. Phys. Rev. Lett. 88, 127003 (2002)
Audin M.: Spinning tops. Cambridge University Press, Cambridge (1996)
Ballesteros, A., Ragnisco, O.: A systematic construction of completely integrable Hamiltonians from coalgebras. J. Phys. A 31, 3791–3813 (1998); Ballesteros, A., Musso, F., Ragnisco, O.: Comodule algebras and integrable systems. J. Phys. A 39, 8197–8211 (2002)
Belavin A.A., Drinfeld V.G.: Solutions of the classical Yang-Baxter equation for simple Lie algebras. Funktsional. Anal. i Prilozhen. 16, 1–29 (1982)
Bobenko A.I., Suris Yu.B.: Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrange top. Commun. Math. Phys. 204, 147–188 (1999)
Brzezinzki T., Macfarlane A.J.: On integrable models related to the osp(1,2) Gaudin algebra. J. Math. Phys. 35, 3261–3275 (1994)
Chernyakov Yu.B.: Integrable systems obtained by a fusion of points from rational and elliptic Gaudin systems. Theor. Math. Phys. 141, 1361–1380 (2004)
Enriquez B., Feigin B., Rubtsov V.: Separation of variables for Gaudin-Calogero systems. Comp. Math. 110, 1–16 (1998)
Falqui G., Musso F.: Gaudin models and bending flows: a geometrical point of view. J. Phys. A 36, 11655–11676 (2003)
Feigin F., Frenkel E., Reshetikhin N.Yu.: Gaudin model, Bethe ansatz and critical level. Commun. Math. Phys. 166, 27–62 (1994)
Frenkel, E.: Affine algebras, Langlands duality and Bethe ansatz. In: XIth International Congress of Mathematical Physics (Paris, 1994), Cambridge, MA: Int. Press, 1995, pp. 606–642
Kulish P., Manojlovic N.: Creation operators and Bethe vectors of the osp(1|2) Gaudin model. J. Math. Phys. 42, 4757–4774 (2001)
Gaudin M.: Diagonalisation d’une classe d’Hamiltoniens de spin. J. Physique 37, 1089–1098 (1976)
Gaudin M.: La fonction d’ onde de Bethe. Masson, Paris (1983)
Gavrilov L., Zhivkov A.: The complex geometry of the Lagrange top. Enseign. Math. 44, 133–170 (1998)
Gekhtman M.I.: Separation of variables in the classical SL(N) magnetic chain. Commun. Math. Phys. 167, 593–605 (1995)
Hone A.N.W., Kuznetsov V.B., Ragnisco O.: Bäcklund transformations for the sl(2) Gaudin magnet. J. Phys. A 34, 2477–2490 (2001)
Inönü E., Wigner E.P.: On the contraction of groups and their representations. Proc. Nat. Acad. Sci. USA 39, 510–524 (1953)
Jurčo B.: Classical Yang-Baxter equations and quantum integrable systems. J. Math. Phys. 30, 1289–1293 (1989)
Kalnins E.G., Kuznetsov V.B., Miller W.Jr.: Quadrics on complex Riemannian spaces of constant curvature, separation of variables, and the Gaudin magnet. J. Math. Phys. 35, 1710–1731 (1994)
Kapovich M., Millson J.: The symplectic geometry of polygons in Euclidean space. J. Differ. Geom. 44, 479–513 (1996)
Kuznetsov V.B., Petrera M., Ragnisco O.: Separation of variables and Bäcklund transformations for the symmetric Lagrange top. J. Phys. A 37, 8495–8512 (2004)
Kuznetsov V.B., Sklyanin E.K.: On Bäcklund transformations for many-body systems. J. Phys. A 31, 2241–2251 (1998)
Moser J., Veselov A.P.: Discrete versions of some classical integrable systems and factorization of matrix polynomials. Commun. Math. Phys. 139, 217–243 (1991)
Musso, F., Petrera, M., Ragnisco, O.: Algebraic extensions of Gaudin models. J. Nonlinear Math. Phys. 12, suppl. 1, 482–498 (2005)
Musso F., Petrera M., Ragnisco O., Satta G.: A rigid body dynamics derived from a class of extended Gaudin models: an integrable discretization. Regul. Chaotic Dyn. 10(4), 363–380 (2005)
Musso, F., Petrera, M., Ragnisco, O., Satta, G.: Bäcklund transformations for the rational Lagrange chain. J. Nonlinear Math. Phys. 12, suppl. 2, 240–252 (2005)
Musso F., Petrera M., Ragnisco O., Satta G.: Gaudin models with U q (osp(1|2)) symmetry. Nucl. Phys. B 716, 543–555 (2005)
Nekrasov N.: Holomorphic bundles and many-body systems. Commun. Math. Phys. 180, 587–603 (1996)
Petrera, M.: Integrable extensions and discretizations of classical Gaudin models. PhD Thesis, 2007, Physics Department, University of Roma III
Petrera, M., Ragnisco, O.: From \({\mathfrak su(2)}\) Gaudin models to integrable tops. SIGMA Symmetry Integrability Geom. Methods Appl. 3, Paper 058, 14 pages (2007)
Roman J.M., Sierra G., Dukelski J.: Large-N limit of the exactly solvable BCS model: analytics versus numerics. Nucl. Phys. B 634, 483–510 (2002)
Reyman, A.G., Semenov-Tian-Shansky, M.A.: Group theoretical methods in the theory of finite- dimensional integrable systems. In: Dynamical systems VII, Encyclopaedia of Mathematical Sciences, 16 Berlin: Springer, 1994
Reshetikhin N.Yu.: The Knizhnik-Zamolodchikov system as a deformation of the isomonodromy problem. Lett. Math. Phys. 26, 167–177 (1992)
Seiberg N., Witten E.: Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory. Nucl. Phys. B 426, 19–52 (1994)
Sklyanin E.K.: Quantum version of the method of inverse scattering problem. J. Sov. Math. 19, 1546–1596 (1982)
Sklyanin E.K.: Separation of variables in the Gaudin model. J. Sov. Math. 47, 2473–2488 (1989)
Sklyanin E.K., Takebe T.: Algebraic Bethe ansatz for the XYZ Gaudin model. Phys. Lett. A 219, 217–225 (1996)
Suris, Yu.B.: The problem of integrable discretization: Hamiltonian approach. Progress in Mathematics 219, Basel: Birkhäuser Verlag, 2003
Talalaev, D.V.: The quantum Gaudin system. Funct. Anal. Appl. 40, 73–77 (2006); Chervov, A., Talalaev, D.: Universal G-oper and Gaudin eigenproblem. http://arxiv.org/abs/hep-th/0409007, 2004; Chervov, A., Rybnikov, L., Talalaev, D.: Rational Lax operators and their quantization. http://arxiv.org/abs/hep-th/0404106, 2004
Veselov, A.P.: Integrable systems with discrete time, and difference operators. Funct. Anal. Appl. 22, 83–93 (1988); Veselov, A.P.: Integrable mappings. Russ. Math. Surv. 46, 1–51 (1991); Veselov, A.P.: Growth and integrability in the dynamics of mappings. Commun. Math. Phys. 145, 181–193 (1992)
Weimar-Woods E.: Contractions of Lie algebras: generalized Inönü-Wigner contractions versus graded contractions. J. Math. Phys. 36(8), 4519–4548 (1995)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by L. Takhtajan
Rights and permissions
About this article
Cite this article
Petrera, M., Suris, Y.B. An Integrable Discretization of the Rational \({\mathfrak su(2)}\) Gaudin Model and Related Systems. Commun. Math. Phys. 283, 227–253 (2008). https://doi.org/10.1007/s00220-008-0512-7
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s00220-008-0512-7