Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

An Integrable Discretization of the Rational \({\mathfrak su(2)}\) Gaudin Model and Related Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The first part of the present paper is devoted to a systematic construction of continuous-time finite-dimensional integrable systems arising from the rational \({\mathfrak su(2)}\) Gaudin model through certain contraction procedures. In the second part, we derive an explicit integrable Poisson map discretizing a particular Hamiltonian flow of the rational \({\mathfrak su(2)}\) Gaudin model. Then, the contraction procedures enable us to construct explicit integrable discretizations of the continuous systems derived in the first part of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams M., Harnad J., Hurtubise J.: Darboux coordinates and Liouville-Arnold integration in loop algebras. Commun. Math. Phys. 155, 385–413 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Amico L., Osterloh A.: Exact Correlation Functions of the BCS Model in the Canonical Ensemble. Phys. Rev. Lett. 88, 127003 (2002)

    Article  ADS  Google Scholar 

  3. Audin M.: Spinning tops. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  4. Ballesteros, A., Ragnisco, O.: A systematic construction of completely integrable Hamiltonians from coalgebras. J. Phys. A 31, 3791–3813 (1998); Ballesteros, A., Musso, F., Ragnisco, O.: Comodule algebras and integrable systems. J. Phys. A 39, 8197–8211 (2002)

    Google Scholar 

  5. Belavin A.A., Drinfeld V.G.: Solutions of the classical Yang-Baxter equation for simple Lie algebras. Funktsional. Anal. i Prilozhen. 16, 1–29 (1982)

    Article  MathSciNet  Google Scholar 

  6. Bobenko A.I., Suris Yu.B.: Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrange top. Commun. Math. Phys. 204, 147–188 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Brzezinzki T., Macfarlane A.J.: On integrable models related to the osp(1,2) Gaudin algebra. J. Math. Phys. 35, 3261–3275 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  8. Chernyakov Yu.B.: Integrable systems obtained by a fusion of points from rational and elliptic Gaudin systems. Theor. Math. Phys. 141, 1361–1380 (2004)

    Article  MathSciNet  Google Scholar 

  9. Enriquez B., Feigin B., Rubtsov V.: Separation of variables for Gaudin-Calogero systems. Comp. Math. 110, 1–16 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Falqui G., Musso F.: Gaudin models and bending flows: a geometrical point of view. J. Phys. A 36, 11655–11676 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Feigin F., Frenkel E., Reshetikhin N.Yu.: Gaudin model, Bethe ansatz and critical level. Commun. Math. Phys. 166, 27–62 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Frenkel, E.: Affine algebras, Langlands duality and Bethe ansatz. In: XIth International Congress of Mathematical Physics (Paris, 1994), Cambridge, MA: Int. Press, 1995, pp. 606–642

  13. Kulish P., Manojlovic N.: Creation operators and Bethe vectors of the osp(1|2) Gaudin model. J. Math. Phys. 42, 4757–4774 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Gaudin M.: Diagonalisation d’une classe d’Hamiltoniens de spin. J. Physique 37, 1089–1098 (1976)

    MathSciNet  Google Scholar 

  15. Gaudin M.: La fonction d’ onde de Bethe. Masson, Paris (1983)

    MATH  Google Scholar 

  16. Gavrilov L., Zhivkov A.: The complex geometry of the Lagrange top. Enseign. Math. 44, 133–170 (1998)

    MATH  MathSciNet  Google Scholar 

  17. Gekhtman M.I.: Separation of variables in the classical SL(N) magnetic chain. Commun. Math. Phys. 167, 593–605 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Hone A.N.W., Kuznetsov V.B., Ragnisco O.: Bäcklund transformations for the sl(2) Gaudin magnet. J. Phys. A 34, 2477–2490 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Inönü E., Wigner E.P.: On the contraction of groups and their representations. Proc. Nat. Acad. Sci. USA 39, 510–524 (1953)

    Article  MATH  ADS  Google Scholar 

  20. Jurčo B.: Classical Yang-Baxter equations and quantum integrable systems. J. Math. Phys. 30, 1289–1293 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Kalnins E.G., Kuznetsov V.B., Miller W.Jr.: Quadrics on complex Riemannian spaces of constant curvature, separation of variables, and the Gaudin magnet. J. Math. Phys. 35, 1710–1731 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Kapovich M., Millson J.: The symplectic geometry of polygons in Euclidean space. J. Differ. Geom. 44, 479–513 (1996)

    MATH  MathSciNet  Google Scholar 

  23. Kuznetsov V.B., Petrera M., Ragnisco O.: Separation of variables and Bäcklund transformations for the symmetric Lagrange top. J. Phys. A 37, 8495–8512 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Kuznetsov V.B., Sklyanin E.K.: On Bäcklund transformations for many-body systems. J. Phys. A 31, 2241–2251 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Moser J., Veselov A.P.: Discrete versions of some classical integrable systems and factorization of matrix polynomials. Commun. Math. Phys. 139, 217–243 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Musso, F., Petrera, M., Ragnisco, O.: Algebraic extensions of Gaudin models. J. Nonlinear Math. Phys. 12, suppl. 1, 482–498 (2005)

  27. Musso F., Petrera M., Ragnisco O., Satta G.: A rigid body dynamics derived from a class of extended Gaudin models: an integrable discretization. Regul. Chaotic Dyn. 10(4), 363–380 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Musso, F., Petrera, M., Ragnisco, O., Satta, G.: Bäcklund transformations for the rational Lagrange chain. J. Nonlinear Math. Phys. 12, suppl. 2, 240–252 (2005)

    Google Scholar 

  29. Musso F., Petrera M., Ragnisco O., Satta G.: Gaudin models with U q (osp(1|2)) symmetry. Nucl. Phys. B 716, 543–555 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Nekrasov N.: Holomorphic bundles and many-body systems. Commun. Math. Phys. 180, 587–603 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Petrera, M.: Integrable extensions and discretizations of classical Gaudin models. PhD Thesis, 2007, Physics Department, University of Roma III

  32. Petrera, M., Ragnisco, O.: From \({\mathfrak su(2)}\) Gaudin models to integrable tops. SIGMA Symmetry Integrability Geom. Methods Appl. 3, Paper 058, 14 pages (2007)

  33. Roman J.M., Sierra G., Dukelski J.: Large-N limit of the exactly solvable BCS model: analytics versus numerics. Nucl. Phys. B 634, 483–510 (2002)

    Article  MATH  ADS  Google Scholar 

  34. Reyman, A.G., Semenov-Tian-Shansky, M.A.: Group theoretical methods in the theory of finite- dimensional integrable systems. In: Dynamical systems VII, Encyclopaedia of Mathematical Sciences, 16 Berlin: Springer, 1994

  35. Reshetikhin N.Yu.: The Knizhnik-Zamolodchikov system as a deformation of the isomonodromy problem. Lett. Math. Phys. 26, 167–177 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. Seiberg N., Witten E.: Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory. Nucl. Phys. B 426, 19–52 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. Sklyanin E.K.: Quantum version of the method of inverse scattering problem. J. Sov. Math. 19, 1546–1596 (1982)

    Article  MATH  Google Scholar 

  38. Sklyanin E.K.: Separation of variables in the Gaudin model. J. Sov. Math. 47, 2473–2488 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  39. Sklyanin E.K., Takebe T.: Algebraic Bethe ansatz for the XYZ Gaudin model. Phys. Lett. A 219, 217–225 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. Suris, Yu.B.: The problem of integrable discretization: Hamiltonian approach. Progress in Mathematics 219, Basel: Birkhäuser Verlag, 2003

  41. Talalaev, D.V.: The quantum Gaudin system. Funct. Anal. Appl. 40, 73–77 (2006); Chervov, A., Talalaev, D.: Universal G-oper and Gaudin eigenproblem. http://arxiv.org/abs/hep-th/0409007, 2004; Chervov, A., Rybnikov, L., Talalaev, D.: Rational Lax operators and their quantization. http://arxiv.org/abs/hep-th/0404106, 2004

  42. Veselov, A.P.: Integrable systems with discrete time, and difference operators. Funct. Anal. Appl. 22, 83–93 (1988); Veselov, A.P.: Integrable mappings. Russ. Math. Surv. 46, 1–51 (1991); Veselov, A.P.: Growth and integrability in the dynamics of mappings. Commun. Math. Phys. 145, 181–193 (1992)

    Google Scholar 

  43. Weimar-Woods E.: Contractions of Lie algebras: generalized Inönü-Wigner contractions versus graded contractions. J. Math. Phys. 36(8), 4519–4548 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri B. Suris.

Additional information

Communicated by L. Takhtajan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrera, M., Suris, Y.B. An Integrable Discretization of the Rational \({\mathfrak su(2)}\) Gaudin Model and Related Systems. Commun. Math. Phys. 283, 227–253 (2008). https://doi.org/10.1007/s00220-008-0512-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00220-008-0512-7

Keywords