Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Type II Opsins: Evolutionary Origin by Internal Domain Duplication?

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Opsins are a large group of proteins with seven transmembrane segments (TMSs) that are found in all domains of life. There are two types of opsins that are sometimes considered nonhomologous: type I is known from prokaryotes and some eukaryotes, while type II is known only from Eumetazoan animals. Type II opsins are members of the family of G-protein coupled receptors (GPCRs), which facilitate signal transduction across cell membranes. While previous studies have concluded that multiple transmembrane-containing protein families—including type I opsins—originated by internal domain duplication, the origin of type II opsins has been speculated on but never tested. Here we show that type II opsins do not appear to have originated through a similar internal domain duplication event. This provides further evidence that the two types of opsins are nonhomologous, indicating a convergent evolutionary origin, in which both groups of opsins evolved a seven-TM structure and light sensitivity independently. This convergence may indicate an important role for seven-TM protein structure for retinal-based light sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arai M, Mitsuke H, Ikeda M, Xia JX, Kikuchi T, Satake M, Shimizu T (2004) ConPred II: aconsensus prediction method for obtaining transmembrane topology models with highreliability. Nucleic Acids Res 32:W390–W393

    Article  PubMed  CAS  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2005) GenBank. Nucleic Acids Res 33:D34–D38

    Google Scholar 

  • Bieszke JA, Braun EL, Bean LE, Kang S, Natvig DO, Borkovich KA (1999) The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. Natl Acad Sci 14:8034–8039

    Article  Google Scholar 

  • Claros MG, von Heijne G (1994) TopPred II: an improved software for membrane protein structure predictions. Comput Appl Biosci 10:685–686

    PubMed  CAS  Google Scholar 

  • Cserzo M, Wallin E, Simon I, von Heijne G, Elofsson A (1997) Prediction of transmembrane alpha-helices in procaryotic membrane proteins: the Dense Alignment Surface method. Protein Eng Design Select 10:673–676

    Article  CAS  Google Scholar 

  • Deininger W, Fuhrmann M, Hegemann P (2000) Opsin evolution: out of wild green yonder? Trends Genet 16:158–159

    Article  PubMed  CAS  Google Scholar 

  • Ebnet E, Fischer M, Deininger W, Hegemann P (1999) Volvoxrhodopsin, a light-regulated sensory photoreceptor of the spheroidal green alga Volvox carteri. Plant Cell Online 11:1473–1484

    Article  CAS  Google Scholar 

  • Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379

    Article  PubMed  CAS  Google Scholar 

  • Hofmann K, Stoffel W (1993) TMbase—a database of membrane spanning proteins segments. Biol Chem Hoppe-Seyler 347:166

    Google Scholar 

  • Ihara K, Umemura T, Katagiri I, Kitajima-Ihara T, Sugiyama Y, Kimura Y, Mukohata Y (1999) Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation. J Mol Biol 285:163–174

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1994) A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry 33:3038–3049

    Article  PubMed  CAS  Google Scholar 

  • Kimura Y, Vassylyev DG, Miyazawa A, Kidera A, Matsushima M, Mitsuoka K, Murata K, Hirai T, Fujiyoshi Y (1997) Surface of bacteriorhodopsin revealed by high-resolution electron crystallography. Nature 389:206–211

    Article  PubMed  CAS  Google Scholar 

  • Klein P, Kanehisa M, DeLisi C (1985) The detection and classification of membrane-spanning proteins. Biochim Biophys Acta 815:468–476

    Article  PubMed  CAS  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  PubMed  CAS  Google Scholar 

  • Kuan G, Saier Jr MH (1994) Phylogenetic relationships among bacteriorhodopsins. Res Microbiol 145:273–285

    Article  PubMed  CAS  Google Scholar 

  • Lao DM, Shimizu T (2001) A method for discriminating a signal peptide and a putative 1st transmembrane segment. Proceedings of the 2001 international conference on mathematics and engineering techniques in medicine and biological sciences (METMBS) 01:119–125

  • Lao DM, Arai M, Ikeda M, Shimizu T (2002) The presence of signal peptide significantly affects transmembrane topology prediction. Bioinformatics 18:1562–1566

    Article  PubMed  CAS  Google Scholar 

  • Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    Article  PubMed  CAS  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Trong IL, Teller DC, Okada T, Stenkamp RE (2000) Crystal structure of rhodopsin: AG protein-coupled receptor. Science 289:739–745

    Article  PubMed  CAS  Google Scholar 

  • Persson B, Argos P (1997) Prediction of membrane protein topology utilizing multiple sequence alignments. J Protein Chem 16:453–457

    Article  PubMed  CAS  Google Scholar 

  • Plachetzki DC, Degnan BM, Oakley TH (2007) The origins of novel protein interactions during animal opsin evolution. PLoS ONE 2:e1054

    Article  PubMed  Google Scholar 

  • Shimizu T, Mitsuke H, Noto K, Arai M (2004) Internal gene duplication in the evolution of prokaryotic transmembrane proteins. J Mol Biol 339:1–15

    Article  PubMed  CAS  Google Scholar 

  • Soppa J (1994) Two hypotheses—one answer. Sequence comparison does not support an evolutionary link between halobacterial retinal proteins including bacteriorhodopsin and eukaryotic G-protein-coupled receptors. FEBS Lett 342:7–11

    Article  PubMed  CAS  Google Scholar 

  • Spudich JL, Yang CS, Jung KH, Spudich EN (2000) Retinylidene proteins: structures and functions from Archaea to humans. Ann Rev Cell Dev Biol 16:365–392

    Article  CAS  Google Scholar 

  • Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C, Fuellen G, Gilbert JGR, Korf I, Lapp H, Lehväslaiho H, Matsalla C, Mungall CJ, Osborne BI, Pocock MR, Schattner P, Senger M, Stein LD, Stupka E, Wilkinson MD, Birney E (2002) The Bioperl Toolkit: Perl modules for the life sciences. Genome Res 12:1611–1618

    Article  PubMed  CAS  Google Scholar 

  • Taylor EW, Agarwal A (1993) Sequence homology between bacteriorhodopsin and G-protein coupled receptors: exon shuffling or evolution by duplication? FEBS Lett 325:161–166

    Article  PubMed  CAS  Google Scholar 

  • Tusnady GE, Simon I (1998) Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol 283:489–506

    Article  PubMed  CAS  Google Scholar 

  • Zhai Y, Heijne WH, Smith DW, Saier Jr MH (2001) Homologues of archaeal rhodopsins in plants, animals and fungi: structural and functional predications for a putative fungal chaperone protein. Biochim Biophys Acta 1511:206–223

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd H. Oakley.

Additional information

N. D. Larusso and B. E. Ruttenberg contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larusso, N.D., Ruttenberg, B.E., Singh, A.K. et al. Type II Opsins: Evolutionary Origin by Internal Domain Duplication?. J Mol Evol 66, 417–423 (2008). https://doi.org/10.1007/s00239-008-9076-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00239-008-9076-6

Keywords