Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Pseudomonas syringae pv. actinidiae: Ecology, Infection Dynamics and Disease Epidemiology

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Since 2008, the kiwifruit industry has been devastated by a pandemic outbreak of Pseudomonas syringae pv. actinidiae (Psa), the causal agent of bacterial canker. This disease has become the most significant limiting factor in kiwifruit production. Psa colonizes different organs of the host plant, causing a specific symptomatology on each of them. In addition, the systemic invasion of the plant may quickly lead to plant death. Despite the massive risk that this disease poses to the kiwifruit industry, studies focusing on Psa ecology have been sporadic, and a comprehensive description of the disease epidemiology is still missing. Optimal environmental conditions for infection, dispersal and survival in the environment, or the mechanisms of penetration and colonization of host tissues have not been fully elucidated yet. The present work aims to provide a synthesis of the current knowledge, and a deeper understanding of the epidemiology of kiwifruit bacterial canker based on new experimental data. The pathogen may survive in the environment or overwinter in dormant tissues and be dispersed by wind or rain. Psa was observed in association with several plant structures (stomata, trichomes, lenticels) and wounds, which could represent entry points for apoplast infection. Environmental conditions also affect the bacterial colonization, with lower optimum values of temperature and humidity for epiphytic than for endophytic growth, and disease incidence requiring a combination of mild temperature and leaf wetness. By providing information on Psa ecology, these data sets may contribute to plan efficient control strategies for kiwifruit bacterial canker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Balestra GM, Mazzaglia A, Quattrucci A, Spinelli R, Graziani S, Rossetti A (2008) Cancro batterico su Actinidia chinensis. L’Informatore Agrario 38:75–77

    Google Scholar 

  2. Balestra GM, Mazzaglia A, Quattrucci A, Renzi M, Rossetti A (2009) Current status of bacterial canker spread on kiwifruit in Italy. Australas Plant Dis Notes 4:34–36

    Google Scholar 

  3. Ferrante P, Scortichini M (2009) Identification of Pseudomonas syringae pv. actinidiae as causal agent of bacterial canker of yellow kiwifruit (Actinidia chinensis Planchon) in Central Italy. J. Phytopathol. 157:768–770

    Google Scholar 

  4. Scortichini M, Marcelletti S, Ferrante P, Petriccione M, Firrao G (2012) Pseudomonas syringae pv. actinidiae: a re-emerging, multi-faceted, pandemic pathogen. Mol. Plant Pathol. 13:631–640

    PubMed  PubMed Central  Google Scholar 

  5. Donati I, Buriani G, Cellini A, Mauri S, Costa G, Spinelli F (2014) New insights on the bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae). J Berry Res 4:53–67

    Google Scholar 

  6. Vanneste JL (2017) The scientific, economic, and social impacts of the New Zealand outbreak of bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae). Annu. Rev. Phytopathol. 55:377–399. https://doi.org/10.1146/annurev-phyto-080516-035530

    Article  CAS  PubMed  Google Scholar 

  7. Khandan HAN, Worner SP, Jones EE, Villjanen-Rollinson SLH, Gallipoli L, Mazzaglia A, Balestra GM (2013) Predicting the potential global distribution of Pseudomonas syringae pv. actinidiae (Psa). N Z Plant Protect 66:184–193

    Google Scholar 

  8. Bartoli C, Lamichane JR, Berge O, Guilbaud C, Varvaro L, Balestra GM, Vinatzer BA, Morris CE (2015) A framework to gauge the epidemic potential of plant pathogens in environmental reservoirs: the example of kiwifruit canker. Mol. Plant Pathol. 16:137–149

    CAS  PubMed  Google Scholar 

  9. Cacioppo O (2012) Aggiornamento dell’actinidicoltura mondiale. Kiwi Informa 10(12):5–8

    Google Scholar 

  10. Spinelli F, Donati I, Vanneste JL, Costa M, Costa G (2011) Real time monitoring of the interactions between Pseudomonas syringae pv. actinidiae and Actinidia species. Acta Hortic. 913:461–465

    Google Scholar 

  11. Vanneste JL, Yu J, Cornish DA, Max S, Clark G (2011) Presence of Pseudomonas syringae pv. actinidiae, the causal agent of bacterial canker of kiwifruit, on symptomatic and asymptomatic tissues of kiwifruit. N Z Plant Protect 64:241–245

    CAS  Google Scholar 

  12. Ferrante P, Fiorillo E, Marcelletti S, Marocchi F, Mastroleo M, Simeoeoni S, Scortichini M (2012) The importance of the main colonisation site and penetration ites of Pseudomans syringae pv. actinidiae and the prevailing weather conditions in the development of epidemics in yellow kiwifruit, recently observed in Central Italy. J. Plant Pathol. 94:455–461

    Google Scholar 

  13. Renzi M, Copini P, Taddei AT, Rosetti A, Gallipoli L, Mazzaglia A, Balestra GM (2012) Bacterial canker on kiwifruit in Italy: anatomical changes in the wood and in the primary infection sites. Bacteriology 102:827–840

    Google Scholar 

  14. Gao X, Huang Q, Zhao Z, Han Q, Ke X, Huang L (2016) Studies on the infection, colonization, and movement of Pseudomonas syringae pv. actinidiae in kiwifruit tissues using a GFPuv-labelled strain. PLoS ONE 11:e0151169

  15. Serizawa S, Ichikawa T (1993) Epidemiology of bacterial canker fruit of kiwifruit. Infection and bacterial movements in tissue of new canes. Annals of Phytopathological Society of Japan 59:452–459

    Google Scholar 

  16. Gallipoli L, Butler M, Mazzaglia A, Stockwell P, Lamont I, Zhu L, Liu P, Balestra GM, Poulter RTM (2015) Genomic diversity of Pseudomonas syringae pv. actinidiae (PSA) in China. Acta Hortic. 1095:59–64

    Google Scholar 

  17. He R, Pu L, Bing J, Xue SZ, Wang XJ, Hu JY, Al Shoffe Y, Balestra GM, Gallipoli L, Mazzaglia A, Li-Wu Z (2018) Genetic diversity of Pseudomonas syringae pv. actinidiae strains from different geographic regions in China. Phytopathology. https://doi.org/10.1094/PHYTO-06-18-0188-R

  18. Liu P, Xue S, Rong H, Hu J, Wang X, Jia B, Gallipoli L, Balestra GM, Liwu Z (2016) Pseudomonas syringae pv. actinidiae isolated from non-kiwifruit plant species in China. Eur. J. Plant Pathol. 145:743–754

    CAS  Google Scholar 

  19. Spinelli F, Ciampolini F, Cresti M, Geider K, Costa G (2005) Influence of stigmatic morphology on flower colonization by Erwinia amylovora and Pantoea agglomerans. Eur. J. Plant Pathol. 113:395–400

    Google Scholar 

  20. Chou-Fen L, Ferguson AR (1986) The botanical nomenclature of the kiwifruit and related taxa. New Zeal J Bot 86:183–184

    Google Scholar 

  21. Huang H (2016) Kiwifruit: the genus Actinidia. Academic Press, Cambridge, USA

    Google Scholar 

  22. Gui YL (1981) A comparative morphological observation of Actinidia chinensis Planch. Var. chinensis and A. chinensis Planch. Var. hispida C. F. Liang. Acta Phytotaxon Sin 19:304–307

    Google Scholar 

  23. Zhang ZY (1983) A report on the chromosome numbers of 2 varieties of Actinidia chinensis planch. Acta Phytotaxon Sin 21:161–163

    Google Scholar 

  24. Zhang J, Beuzenberg EJ (1983) Chromosome numbers in two varieties of Actinidia chinensis planch. New Zeal J Bot 21:353–355

    Google Scholar 

  25. Young JM (2012) Pseudomonas syringae pv. actinidae in New Zealand. J. Plant Pathol. 94(S1):5–10

    Google Scholar 

  26. Li M, Tan G, Li Y, Xue L (2005) Resistance mechanism of kiwifruit cultivars to Pseudomonas syringae pv. actinidae. Acta Phytophylactica Sinica 32:37–42

    Google Scholar 

  27. Balestra GM, Varvaro L (1997) Pseudomonas syringae pv. syringae causal agent of disease on floral buds of Actinidia deliciosa (a. Chev) Liang et Ferguson in Italy. J. Phytopathol. 145:375–378

    Google Scholar 

  28. Balestra GM, Varvaro L (1997) Epiphytic survival and control of Pseudomonas viridiflava on Actinidia deliciosa. Acta Hortic. 444:745–749

    Google Scholar 

  29. Mauchline NA, Hill MG (2005) Settlement of armoured scale insects on fruit of commercial Actinidiae spp. N Z Plant Protect 58:294–298

    Google Scholar 

  30. Salinero MC, Vela P, Sainz MJ (2009) Phenological growth stages of kiwifruit (Actinidia deliciosa ‘Hayward’). Sci Hortic-Amsterdam 121:27–31

    Google Scholar 

  31. Rees-George J, Vanneste JL, Cornish DA, Pushparajah IPS, Yu J, Templeton MD, Everett KR (2010) Detection of Pseudomonas syringae pv. actinidiae using polymerase chain reaction (PCR) primers based on the 16S–23S rDNA intertranscribed spacer region and comparison with PCR primers based on other gene regions. Plant Pathol. 59:453–464

    CAS  Google Scholar 

  32. Petriccione M, Zampella L, Mastrobuoni F, Scortichini M (2017) Occurrence of copper-resistant Pseudomonas syringae pv. syringae strains isolated from rain and kiwifruit orchards also infected by P. s. pv. actinidiae. Eur. J. Plant Pathol. 149:953–968

    CAS  Google Scholar 

  33. Ferrante P, Scortichini M (2010) Molecular and phenotypic features of Pseudomonas syringae pv. actinidae isolated during epidemics of bacterial canker of yellow kiwifruit (Actinidia chinensis) in Central Italy. Plant Pathol. 59:954–962

    CAS  Google Scholar 

  34. Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69:1875–1883

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jacobs JL, Carroll TL, Sundin GW (2005) The role of pigmentation, ultraviolet radiation tolerance, and leaf colonization strategies in epiphytic survival phyllosphere bacteria. Microb. Ecol. 49:104–113

    CAS  PubMed  Google Scholar 

  36. Danhor T, Fuqua C (2007) Biofilm formation by plant associated bacteria. Annu. Rev. Microbiol. 61:401–422

    Google Scholar 

  37. He Z, Zhang X, Zhong Y, Ye L (2000) Phylogenetic relationships of Actinidia and related genera based on micromorphological characters of foliar trichomes. Genet Resour Crop Ev 47:627–639

    Google Scholar 

  38. Monier JM, Lindow SE (2004) Frequency, size, and localization of bacterial aggregates on bean leaf surfaces. Appl. Environ. Microbiol. 70:346–355

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Melotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu. Rev. Phytopathol. 46:101–122

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Brewer CA, Smith WK, Volgemann TC (1991) Functional interaction between leaf trichomes, leaf wettability, and the optical properties of water droplets. Plant Cell Environ. 14:955–962

    Google Scholar 

  41. Ascensao L, Pais MS (1998) The leaf capitate trichomes of Leunotis leonurus: histochemistry, ultrastructure and secretion. Ann. Bot. 81:648–656

    Google Scholar 

  42. Olsen DL, Nechols JR (1995) Effects of squash leaf trichomes exudates and honey on adult feeding, survival, and fecundity of the squash bug (heteroptera: Coreidar) egg parasitoid Gyron pennsylvanicum (hymenoptera:Scelionidae). Environ. Entomol. 24:454–458

    Google Scholar 

  43. Kim KW (2019) Plant trichomes as microbial habitats and infection sites. Eur J Plant Pathol. https://doi.org/10.1007/s10658-018-01656-0

  44. Getz S, Fulbright DW, Stephens CT (1983) Scanning electron microscopy of infection sites and lesion development on tomato fruit infected with Pseudomonas syringae pv. tomato. Phytopathology 73:39–43

    Google Scholar 

  45. Haefele DM, Lindow SE (1987) Flagellar motility confers epiphytic fitness advantages to Pseudomonas syringae. Appl. Environ. Microbiol. 53:2528–2533

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Melotto M, Zhang L, Oblessuc PR, He SY (2017) Stomatal defense a decade later. Plant Physiol. 174:561–571

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Han HS, Koh YJ, Hur JS, Jung JS (2003) Identification and characterization of coronatine-producing Pseudomonas syringae pv. actinidiae. J. Microbiol. Biotechnol. 13:110–118

    CAS  Google Scholar 

  48. Vanneste JL, Oldham JM, Clark G, Felman CM (2013) Survival of Pseudomonas syringae pv. actinidiae in non-kiwifruit green compost. N Z Plant Protect 66:178–183

    Google Scholar 

  49. Serizawa S, Ichikawa T, Takikawa Y, Tsuyumu S, Goto M (1989) Occurrence of bacterial canker of kiwifruit in Japan: description of symptoms, isolation of the pathogen and screening of bactericides. Ann. Phytopathol. Soc. Jpn. 55:427–436

    Google Scholar 

  50. Donati I, Cellini A, Buriani G, Mauri S, Kay C, Tacconi G, Spinelli F (2018) Pathways of flower infection and pollen-mediated dispersion of Pseudomonas syringae pv. actinidiae, the causal agent of kiwifruit bacterial canker. Hortic Res 5:56. https://doi.org/10.1038/s41438-018-0058-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vanneste JL, Giovanardi D, Yu J, Cornish DA, Kay C, Spinelli F, Stefani E (2011) Detection of Pseudomonas syringae pv. actinidiae in kiwifruit pollen samples. N Z Plant Protect 64:246–251

    CAS  Google Scholar 

  52. Stefani E, Giovanardi D (2011) Dissemination of Pseudomonas syringae pv. actinidiae through pollen and its epiphytic life on leaves and fruits. PhytopatholMediterr 50:489–496

    Google Scholar 

  53. Gallelli A, Talocci S, L'Aurora A, Loreti S (2011) Detection of Pseudomonas syringae pv. actinidiae, causal agent of bacterial canker of kiwifruit, from symptomless fruits and twigs, and from pollen. Phytopathol. Mediterr. 50:462–472

    CAS  Google Scholar 

  54. Biondi E, Galeone A, Kuzmanović N, Ardizzi S, Lucchese C, Bertaccini A (2013) Pseudomonas syringae pv. actinidiae detection in kiwifruit plant tissue and bleeding sap. Ann Appl Biol 162:60–70

    CAS  Google Scholar 

  55. Balestra GM, Buriani G, Cellini C, Donati I, Mazzaglia A, Spinelli F (2018) First report of Pseudomonas syringae pv. actinidiae on kiwifruit pollen from Argentina. Plant Dis. 102:237. https://doi.org/10.1094/PDIS-04-17-0510-PDN

    Article  Google Scholar 

  56. Nardozza S, Martinez-Sanchez M, Curtis C, Datson PM, Montefiori M (2014) Screening the Actinidia germoplasm for different degrees of tolerance, or resistance, to Psa (Pseudomonas syringae pv. actinidiae). Acta Hortic. 1096:351–355

    Google Scholar 

  57. Coplin DL, Majerczak DR (1990) Extracellular polysaccharide genes in Erwinia stewartii: directed mutagenesis and complementation analysis. Mol Plant Microbe In 3:286–292

    CAS  Google Scholar 

  58. Von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 41:455–482

    Google Scholar 

  59. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA, Toth I, Salmond G, Foster GD (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 6:614–629

    Google Scholar 

  60. Ichinose Y, Taguchi F, Mukaihara T (2013) Pathogenicity and virulence factors of Pseudomonas syringae. J. Gen. Plant Pathol. 79:285–296

    CAS  Google Scholar 

  61. Vanneste JL, Yu J, Cornish DA, Oldham JM, Spinelli F, Pattemore DE, Moffat B, d'Accolti A (2015) Survival of Pseudomonas syringae pv. actinidiae in the environment. Acta Hortic. 109:105–110

    Google Scholar 

  62. Mauri S, Cellini A, Buriani G, Donati I, Costa G, Spinelli F (2016) Optimization of cultural practices to reduce the development of Pseudomonas syringae pv. actinidiae, causal agent of the bacterial canker of kiwifruit. J Berry Res 6:355–371

    CAS  Google Scholar 

  63. Cotrut R, Renzi M, Taratufolo MC, Mazzaglia A, Balestra GM, Stanica F (2013) Actinidia arguta ploidy level variation in relation to Pseudomonas syringae pv. actinidiae susceptibility. Lucrări Ştiinţifice 56:29–38

    Google Scholar 

  64. Vanneste JL, Cornish DA, Yu J, Stokes CA (2014) First report of Pseudomonas syringae pv. actinidiae the causal agent of bacterial canker of kiwifruit on Actinidia arguta vines in New Zealand. Plant Dis. 98:418. https://doi.org/10.1094/PDIS-06-13-0667-PDN

    Article  CAS  PubMed  Google Scholar 

  65. Cellini A, Fiorentini L, Buriani G, Yu J, Donati I, Cornish DA, Novak B, Costa G, Vanneste JL, Spinelli F (2014) Elicitors of the salicylic acid pathway reduce incidence of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidae. Ann Appl Biol 165:441–453

    CAS  Google Scholar 

  66. Ferrante P, Scortichini M (2014) Frost promotes the pathogenicity of Pseudomonas syringae pv. actinidiae in Actinidia chinensis and A. deliciosa plants. Plant Pathol. 63:12–19

    Google Scholar 

  67. Everett KR, Pushparajah IPS, Vergara MJ (2012) Pseudomonas syringae pv. actinidiae on surfaces in the orchard. N Z Plant Protect 65:19–24

    Google Scholar 

  68. Froud KJ, Everett KR, Tyson JL, Beresford RM, Cogger N (2015) Review of the risk factors associated with kiwifruit bacterial canker caused by Pseudomonas syringae pv. actinidiae. N Z Plant Protect 68:313–327

    CAS  Google Scholar 

  69. Pattemore DE, Goodwin RM, McBrydie HM, Hoyte SM, Vanneste JL (2014) Evidence of the role of honey bees (Apis mellifera) as vectors of the bacterial plant pathogen Pseudomonas syringae. Australas. Plant Pathol. 43:571–575

    Google Scholar 

  70. Donati I, Mauri S, Buriani G, Cellini A, Spinelli F (2017) Role of Metcalfa pruinosa as a vector for Pseudomonas syringae pv. actinidiae. Plant Pathology J 33:554–560

    CAS  Google Scholar 

  71. Cellini A, Giacomuzzi V, Donati I, Farneti B, Rodriguez-Estrada MT, Savioli S, Angeli S, Spinelli F (2018) Pathogen-induced changes in floral scent may increase honeybee mediated dispersal of Erwinia amylovora. ISME J. 13:847–859. https://doi.org/10.1038/s41396-018-0319-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Black MZ, Casonato S, Bent S (2014) Opportunities for environmental modification to control Pseudomonas syringae pv. actinidiae in kiwifruit. Acta Hortic. 1105:353–360

    Google Scholar 

  73. Purahong W, Orrù L, Donati I, Perpetuini G, Cellini A, Lamontanara A, Michelotti V, Tacconi G, Spinelli F (2018) Plant microbiome and its link to plant health: host species, organs and Pseudomonas syringae pv. actinidiae infection shaping bacterial phyllosphere communities of kiwifruit plants. Front Plant Sci. 9:1563. https://doi.org/10.3389/fpls.2018.01563

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lindow SE, Arny DC, Upper CD (1978) Distribution of ice nucleation-active bacteria on plants in nature. Appl. Environ. Microbiol. 36:831–838

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Vanneste JL, Yu J, Cornish DA, Tanner DJ, Windner R, Chapman JR, Taylor RK, Mackay J, Dowlut S (2013) Identification, virulence and distribution of two biovars of Pseudomonas syringae pv. actinidiae in New Zealand. Plant Dis 97:708–719

    CAS  PubMed  Google Scholar 

  76. Vanneste JL, Moffat BJ, Oldham JM (2012) Survival of Pseudomonas syringae pv. actinidiae on Cryptomeria japonica, a non-host plant used as shelter belts in kiwifruit orchards. N Z Plant Protect 65:1–7

    Google Scholar 

  77. Clearwater MJ, Blattmann P, Luo Z, Lowe RG (2007) Control of scion vigour by kiwifruit rootstocks is correlated with spring root pressure phenology. J. Exp. Bot. 58:1741–1751

    CAS  PubMed  Google Scholar 

  78. Kim GH, Kim KH, Son KI, Choi ED, Lee YS, Jung JS, Koh YJ (2016) Outbreak and spread of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae biovar 3 in Korea. Plant Pathology J 32:545–551

    CAS  Google Scholar 

  79. Balestra GM (2004) Use of copper formulations to limit bacterial diseases in kiwifruit. (Speciale Actinidia). Rivista di Frutticoltura e di Ortofloricoltura 66:35–41

    Google Scholar 

  80. Michelotti V, Lamontanara A, Buriani G, Orrù L, Cellini A, Donati I, Vanneste JL, Cattivelli L, Tacconi G, Spinelli F (2018) Comparative transcriptome analysis of the interaction between Actinidia chinensis var. chinensis and Pseudomonas syringae pv. actinidiae in absence and presence of acibenzolar-S-methyl. BMC Genomics 19:585. https://doi.org/10.1186/s12864-018-4967-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xin XF, Kvitko B, Yang He SY (2018) Pseudomonas syringae: what it takes to be a pathogen. Nat Rev Microbiol 16:316–328

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    CAS  PubMed  Google Scholar 

  83. Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S (2005) Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol. 138:2337–2343

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Wilkinson S, Davies WJ (2009) Ozone suppresses soil drying-and abscisic acid (ABA)-induced stomatal closure via an ethylene-dependent mechanism. Plant Cell Environ. 32:949–959

    CAS  PubMed  Google Scholar 

  85. Cameron A, Sarojini V (2014) Pseudomonas syringae pv. actinidiae: chemical control, resistance mechanisms and possible alternatives. Plant Pathol. 63:1–11

    CAS  Google Scholar 

Download references

Funding

The work was funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 613678 (DROPSA—Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Spinelli.

Electronic supplementary material

ESM 1

(PDF 1108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donati, I., Cellini, A., Sangiorgio, D. et al. Pseudomonas syringae pv. actinidiae: Ecology, Infection Dynamics and Disease Epidemiology. Microb Ecol 80, 81–102 (2020). https://doi.org/10.1007/s00248-019-01459-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00248-019-01459-8

Keywords

Profiles

  1. Francesco Spinelli