Abstract
The exploitation of active ingredients from plant volatile organic compounds as natural gaseous fungicides shows remarkable potential for controlling fungal decay in postharvest agroproducts. Although 1-octanol is a common component of cereal volatiles, its antifungal potency against spoilage fungi in postharvest grains remains unclear. In this study, we studied the effectiveness of 1-octanol against Aspergillus flavus growth in postharvest grains and its mechanisms of action. 1-Octanol vapor and liquid contact dose-dependently inhibited A. flavus spore germination and mycelial growth at a low concentration. The simulated storage experiment demonstrated that 300 μL/L of 1-octanol vapor completely controlled A. flavus growth in wheat, corn, and paddy grains with 20% moisture content. 1-Octanol treatment irreversibly damaged the conidial and mycelial morphology of A. flavus and caused electrolyte leakage due to reduced plasma membrane integrity. It induced apoptosis along with morphological abnormalities, phosphatidylserine externalization, mitochondrial membrane potential depolarization, intracellular reactive oxygen species accumulation, and DNA fragmentation in A. flavus cells. Metabolomic analysis revealed that 1-octanol treatment disrupted the biosynthesis of unsaturated fatty acids, ATP-binding cassette transporters, amino acid metabolism, and glycerophospholipid metabolism. This study demonstrated the promising application potential of 1-octanol as a biofumigant for preventing fungal spoilage of postharvest cereal grains.
Key points
• (1) 1-Octanol inhibits Aspergillus flavus growth in the vapor phase and liquid contact;
• (2) 1-Octanol damages membrane integrity and induces apoptosis of A. flavus;
• (3) Metabolomic changes in A. flavus mycelia were analyzed after 1-octanol treatment.
Similar content being viewed by others
Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
Alhourani HM, Kumar A, George LK, Sarwar T, Wall BM (2018) Recurrent pyroglutamic acidosis related to therapeutic acetaminophen. Am J Med Sci 355(4):387–389. https://doi.org/10.1016/j.amjms.2017.08.001
Brilli F, Loreto F, Baccelli I (2019) Exploiting plant volatile organic compounds (VOCs) in agriculture to improve sustainable defense strategies and productivity of crops. Front Plant Sci 10:264. https://doi.org/10.3389/fpls.2019.00264
Bulkan G, Sitaresmi S, Yudhanti GT, Millati R, Wikandari R, Taherzadeh MJ (2021) Enhancing or inhibitory effect of fruit or vegetable bioactive compound on Aspergillus niger and A oryzae. J Fungi (Basel) 8(1):12. https://doi.org/10.3390/jof8010012
Buśko M, Jelen H, Goral T, Chmielewski J, Stuper K, Szwajkowska-Michalek L, Tyrakowska B, Perkowski J (2010) Volatile metabolites in various cereal grains. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 27(11):1574–1581. https://doi.org/10.1080/19440049.2010.506600
Castelyn HD, Appelgryn JJ, Mafa MS, Pretorius ZA, Visser B (2014) Volatiles emitted by leaf rust infected wheat induce a defence response in exposed uninfected wheat seedlings. Australas Plant Pathology 44(2):245–254. https://doi.org/10.1007/s13313-014-0336-1
De Flaviis R, Sacchetti G, Mastrocola D (2021) Wheat classification according to its origin by an implemented volatile organic compounds analysis. Food Chem 341(Pt 1):128217. https://doi.org/10.1016/j.foodchem.2020.128217
De Lira Mota KS, de Oliveira PF, de Oliveira WA, Lima IO, de Oliveira LE (2012) Antifungal activity of Thymus vulgaris L essential oil and its constituent phytochemicals against Rhizopus oryzae: interaction with ergosterol. Molecules 17(12):14418–14433. https://doi.org/10.3390/molecules171214418
Fujita K, Tatsumi M, Ogita A, Kubo I, Tanaka T (2014) Anethole induces apoptotic cell death accompanied by reactive oxygen species production and DNA fragmentation in Aspergillus fumigatus and Saccharomyces cerevisiae. FEBS J 281(4):1304–1313. https://doi.org/10.1111/febs.12706
Garcia-Rubio R, de Oliveira HC, Rivera J, Trevijano-Contador N (2019) The fungal cell wall: Candida, Cryptococcus, and Aspergillus species. Front Microbiol 10:2993. https://doi.org/10.3389/fmicb.2019.02993
Genova ML, Pich MM, Bernacchia A, Bianchi C, Biondi A, Bovina C, Falasca AI, Formiggini G, Castelli GP, Lenaz G (2004) The mitochondrial production of reactive oxygen species in relation to aging and pathology. Ann Ny Acad Sci 1011(1):86–100. https://doi.org/10.1196/annals.1293.010
Germinara GS, Beleggia R, Fragasso M, Pistillo MO, De Vita P (2018) Kernel volatiles of some pigmented wheats do not elicit a preferential orientation in Sitophilus granarius adults. J Pest Sci 92(2):653–664. https://doi.org/10.1007/s10340-018-1035-4
Godana EA, Yang Q, Wang K, Zhang H, Zhang X, Zhao L, Abdelhai MH, Guillaume Legrand NN (2020) Bio-control activity of Pichia anomala supplemented with chitosan against Penicillium expansum in postharvest grapes and its possible inhibition mechanism. LWT-Food Sci Technol 124:109188. https://doi.org/10.1016/j.lwt.2020.109188
Hamann A, Brust D, Osiewacz HD (2008) Apoptosis pathways in fungal growth, development and ageing. Trends Microbiol 16(6):276–283. https://doi.org/10.1016/j.tim.2008.03.003
Hamow KÁ, Ambrózy Z, Puskás K, Majláth I, Cséplő M, Mátyus R, Posta K, Lukács P, Sági L (2021) Emission of novel volatile biomarkers for wheat powdery mildew. Sci Total Environ 781:146767. https://doi.org/10.1016/j.scitotenv.2021.146767
Higuchi Y (2021) Membrane traffic in Aspergillus oryzae and related filamentous fungi. J Fungi (basel) 7(7):534. https://doi.org/10.3390/jof7070534
Hinson JA, Neal RA (1975) An examination of octanol and octanal metabolism to octanoic acid by horse liver alcohol dehydrogenase. BBA - Enzymology 384(1):1–11. https://doi.org/10.1016/0005-2744(75)90090-X
Hpoo MK, Mishyna M, Prokhorov V, Arie T, Takano A, Oikawa Y, Fujii Y (2020) Potential of octanol and octanal from Heracleum sosnowskyi fruits for the control of Fusarium oxysporum f sp lycopersici. Sustainability 12(22):1–17. https://doi.org/10.3390/su12229334
Ishibashi Y, Kohyama-Koganeya A (1831) Hirabayashi Y (2013) New insights on glucosylated lipids: metabolism and functions. Biochim Biophys Acta 9:1475–1485. https://doi.org/10.1016/j.bbalip.2013.06.001
Jafarzadeh S, Abdolmaleki K, Javanmardi F, Hadidi M, Mousavi Khaneghah A (2022) Recent advances in plant-based compounds for mitigation of mycotoxin contamination in food products: current status, challenges and perspectives. Int J Food Sci Technol 57(4):2159–2170. https://doi.org/10.1111/ijfs.15555
Jones DP (2002) Redox potential of GSH/GSSG couple: assay and biological significance. Method Enzymo 348:93–112. https://doi.org/10.1016/S0076-6879(02)48630-2
Kim HM, Kwon H, Kim K, Lee SE (2018) Antifungal and antiaflatoxigenic activities of 1,8-cineole and t-cinnamaldehyde on Aspergillus flavus. Appl Sci 8(9):1655. https://doi.org/10.3390/app8091655
Lee B, Lin PC, Cha HS, Luo J, Chen F (2016) Characterization of volatile compounds in cowart muscadine grape (Vitis rotundifolia) during ripening stages using GC-MS combined with principal component analysis. Food Sci Biotechnol 25(5):1319–1326. https://doi.org/10.1007/s10068-016-0207-3
Lennen RM, Kruziki MA, Kumar K, Zinkel RA, Burnum KE, Lipton MS, Hoover SW, Ranatunga DR, Wittkopp TM, Marner WD 2nd, Pfleger BF (2011) Membrane stresses induced by overproduction of free fatty acids in Escherichia coli. Appl Environ Microbiol 77(22):8114–8128. https://doi.org/10.1128/AEM.05421-11
Li S, Zhang S, Lv Y, Zhai H, Hu Y, Cai J (2022) Heptanal inhibits the growth of Aspergillus flavus through disturbance of plasma membrane integrity, mitochondrial function and antioxidant enzyme activity. LWT-Food Sci Technol 154:112655. https://doi.org/10.1016/j.lwt.2021.112655
Li Y, Zhang S, Lv Y, Zhai H, Cai J, Hu Y (2022) Linalool, the main volatile constituent from Zanthoxylum schinifolium pericarp, prevents growth of Aspergillus flavus in post-harvest grains. Food Control 137:108967. https://doi.org/10.1016/j.foodcont.2022.108967
Lv A, Lv Y, Tian P, Wei S, Zhang S, Hu Y (2020) The antifungal activity of puroindoline A protein and its biocontrol potential for inhibiting Aspergillus flavus infection in peanut and corn. LWT-Food Sci Technol 134:1101884. https://doi.org/10.1016/j.lwt.2020.110184
Ma W, Zhao L, Johnson ET, Xie Y, Zhang M (2022) Natural food flavour (E)-2-hexenal, a potential antifungal agent, induces mitochondria-mediated apoptosis in Aspergillus flavus conidia via a ROS-dependent pathway. Int J Food Microbiol 370:109633. https://doi.org/10.1016/j.ijfoodmicro.2022.109633
Ma W, Zhao L, Xie Y (2017) Inhibitory effect of (E)-2-hexenal as a potential natural fumigant on Aspergillus flavus in stored peanut seeds. Ind Crop Prod 107:206–210. https://doi.org/10.1016/j.indcrop.2017.05.051
Ma Y, Yu H, Liu W, Qin Y, Xing R, Li P (2020) Integrated proteomics and metabolomics analysis reveals the antifungal mechanism of the C-coordinated O-carboxymethyl chitosan Cu(II) complex. Int J Biol Macromol 155:1491–1509. https://doi.org/10.1016/j.ijbiomac.2019.11.127
Mattiolo E, Licciardello F, Lombardo GM, Muratore G, Anastasi U (2016) Volatile profiling of durum wheat kernels by HS–SPME/GC–MS. Eur Food Res Technol 243(1):147–155. https://doi.org/10.1007/s00217-016-2731-z
Nahab FB, Wittevrongel L, Ippolito D, Toro C, Grimes GJ, Starling J, Potti G, Haubenberger D, Bowen D, Buchwald P, Dong C, Kalowitz D, Hallett M (2011) An open-label, single-dose, crossover study of the pharmacokinetics and metabolism of two oral formulations of 1-octanol in patients with essential tremor. Neurotherapeutics 8(4):753–762. https://doi.org/10.1007/s13311-011-0045-1
Namiota M, Bonikowski R (2021) The current state of knowledge about essential oil fumigation for quality of crops during postharvest. Int J Mol Sci 22(24):13351. https://doi.org/10.3390/ijms222413351
Niu A, Wu H, Ma F, Tan S, Wang G, Qiu W (2022) The antifungal activity of cinnamaldehyde in vapor phase against Aspergillus niger isolated from spoiled paddy. LWT-Food Sci Technol 159:113181. https://doi.org/10.1016/j.lwt.2022.113181
Niu C, Wang C, Yang Y, Chen R, Zhang J, Chen H, Zhuge Y, Li J, Cheng J, Xu K, Chu M, Ren C, Zhang C, Jia C (2020) Carvacrol induces Candida albicans apoptosis associated with Ca2+/calcineurin pathway. Front Cell Infect Microbiol 10:192. https://doi.org/10.3389/fcimb.2020.00192
Ortega-Anaya J, Marciniak A, Jiménez-Flores R (2020) Milk lipids: milk fat globule membrane. Reference Module in Food Science, McSweeney PLH, McNamara JP (eds), Encyclopedia of Dairy Sciences (pp. 835–842). Academic Press, San Diego, USA. https://doi.org/10.1016/B978-0-12-818766-1.00007-6
OuYang Q, Okwong RO, Chen Y, Tao N (2020) Synergistic activity of cinnamaldehyde and citronellal against green mold in citrus fruit. Postharvest Biol Tec 162:111095. https://doi.org/10.1016/j.postharvbio.2019.111095
Özyazici G (2021) Influence of organic and inorganic fertilizers on coriander (Coriandrum sativum L) agronomic traits, essential oil and components under semi-arid climate. Agronomy 11(7):1427. https://doi.org/10.3390/agronomy11071427
Rodov V, Nafussi B, Ben-Yehoshua S (2011) Essential oil components as potential means to control Penicillium digitatum Pers. (Sacc.) and other postharvest pathogens of citrus fruit. Fresh Prod 5:43–50
Qin Y, Zhang S, Lv Y, Zhai H, Hu Y, Cai J (2022) Transcriptomics analyses and biochemical characterization of Aspergillus flavus spores exposed to 1-nonanol. Appl Microbiol Biotechnol 106(5–6):2091–2106. https://doi.org/10.1007/s00253-022-11830-4
Qu S, Yang K, Chen L, Liu M, Geng Q, He X, Li Y, Liu Y, Tian J (2019) Cinnamaldehyde, a promising natural preservative against Aspergillus flavus. Front Microbiol 10:2895. https://doi.org/10.3389/fmicb.2019.02895
Rocha M, Freire FDCO, Maia F, Guedes M, Rondina D (2014) Mycotoxins and their effects on human and animal health. Food Control 36(1):159–165. https://doi.org/10.1016/j.foodcont.2013.08.021
Rohit Singh T, Ezhilarasan D (2020) Ethanolic extract of Lagerstroemia speciosa (L) Pers induces apoptosis and cell cycle arrest in HepG2 cells. Nutr Cancer 72(1):146–156. https://doi.org/10.1080/01635581.2019.1616780
Sharon A, Finkelstein A, Shlezinger N, Hatam I (2009) Fungal apoptosis: function, genes and gene function. FEMS Microbiol Rev 33(5):833–854. https://doi.org/10.1111/j.1574-6976.2009.00180.x
Geiger O, López-Lara IM, Sohlenkamp C (2003) Biosynthesis of phosphatidylcholine in bacteria. Prog Lipid Res 42(2):115–162. https://doi.org/10.1016/S0163-7827(02)00050-4
Sonnino S, Chiricozzi E, Grassi S, Mauri L, Prioni S, Prinetti A (2018) Gangliosides in membrane organization. Prog Mol Biol Transl Sci 156:83–120. https://doi.org/10.1016/bs.pmbts.2017.12.007
Sung J, Suh JH, Chambers AH, Crane J, Wang Y (2019) Relationship between sensory attributes and chemical composition of different mango cultivars. J Agric Food Chem 67(18):5177–5188. https://doi.org/10.1021/acs.jafc.9b01018
Suprapta DN, Arai K, Iwai H (1997) Effects of volatile compounds on arthrospore germination and mycelial growth of Geotrichum candidum citrus race. Mycoscience 38(1):31–35. https://doi.org/10.1007/BF02464966
Szymanska E, Saccenti E, Smilde AK, Westerhuis JA (2012) Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics 8(Suppl 1):3–16. https://doi.org/10.1007/s11306-011-0330-3
Tang X, Shao YL, Tang YJ, Zhou WW (2018) Antifungal activity of essential oil compounds (geraniol and citral) and Inhibitory mechanisms on grain pathogens (Aspergillus flavus and Aspergillus ochraceus). Molecules 23(9):2108. https://doi.org/10.3390/molecules23092108
Tian J, Ban X, Zeng H, He J, Chen Y, Wang Y (2012) The mechanism of antifungal action of essential oil from dill (Anethum graveolens L) on Aspergillus flavus. PLoS One 7(1):e30147
Tian J, Gan Y, Pan C, Zhang M, Wang X, Tang X, Peng X (2018) Nerol-induced apoptosis associated with the generation of ROS and Ca2+ overload in saprotrophic fungus Aspergillus flavus. Appl Microbiol Biotechnol 102(15):6659–6672. https://doi.org/10.1007/s00253-018-9125-z
Tian J, Wang Y, Lu Z, Sun C, Zhang M, Zhu A, Peng X (2016) Perillaldehyde, a promising antifungal agent used in food preservation, triggers apoptosis through a metacaspase-dependent pathway in Aspergillus flavus. J Agric Food Chem 64(39):7404–7413. https://doi.org/10.1021/acs.jafc.6b03546
Tian P, Lv Y, Wei S, Zhang S, Li N, Hu Y (2021) Antifungal properties of recombinant puroindoline B protein against aflatoxigenic Aspergillus flavus. LWT-Food Sci Technol 144:111130. https://doi.org/10.1016/j.lwt.2021.111130
Tipping ME, Bishop CM (2010) Probabilistic principal component analysis. J Royal Stat Soc 61(3):611–622. https://doi.org/10.1111/1467-9868.00196
Walton KD, Maillet EL, Garcia J, Cardozo T, Galatzer-Levy I, Llinas RR (2017) Differential modulation of rhythmic brain activity in healthy adults by a T-type calcium channel blocker: an MEG study. Front Hum Neurosci 11:24. https://doi.org/10.3389/fnhum.2017.00024
Wang X, Huang M, Peng Y, Yang W, Shi J (2022) Antifungal activity of 1-octen-3-ol against Monilinia fructicola and its ability in enhancing disease resistance of peach fruit. Food Control 135:108804. https://doi.org/10.1016/j.foodcont.2021.108804
Wang Y, Feng K, Yang H, Zhang Z, Yuan Y, Yue T (2018) Effect of cinnamaldehyde and citral combination on transcriptional profile, growth, oxidative damage and patulin biosynthesis of Penicillium expansum. Front Microbiol 9:597. https://doi.org/10.3389/fmicb.2018.00597
Wang Y, Ji D, Chen T, Li B, Zhang Z, Qin G, Tian S (2019) Production, signaling, and scavenging mechanisms of reactive oxygen species in fruit-pathogen interactions. Int J Mol Sci 20(12):2994. https://doi.org/10.3390/ijms20122994
Westerhuis JA, van Velzen EJ, Hoefsloot HC, Smilde AK (2010) Multivariate paired data analysis: multilevel PLSDA versus OPLSDA. Metabolomics 6(1):119–128. https://doi.org/10.1007/s11306-009-0185-z
Williams JH, Phillips TD, Jolly PE, Stiles JK, Jolly CM, Aggarwal D (2004) Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Amjclinnutr 80(5):1106–1122. https://doi.org/10.1079/PHN2004642
Xu L, Tao N, Yang W, Jing G (2018) Cinnamaldehyde damaged the cell membrane of Alternaria alternata and induced the degradation of mycotoxins in vivo. Ind Crop Prod 112:427–433. https://doi.org/10.1016/j.indcrop.2017.12.038
Xu M, Yang Q, Serwah Boateng NA, Ahima J, Dou Y, Zhang H (2020) Ultrastructure observation and transcriptome analysis of Penicillium expansum invasion in postharvest pears. Postharvest Biol Tec 165:111198. https://doi.org/10.1016/j.postharvbio.2020.111198
Zhang B, Chu W, Wei P, Liu Y, Wei T (2015) Xanthohumol induces generation of reactive oxygen species and triggers apoptosis through inhibition of mitochondrial electron transfer chain complex I. Free Radic Biol Med 89:486–497. https://doi.org/10.1016/j.freeradbiomed.2015.09.021
Zhang S, Zheng M, Zhai H, Pa Ma, Lyu Y, Hu Y, Cai J (2021) Effects of hexanal fumigation on fungal spoilage and grain quality of stored wheat. Grain Oil Sci Technol 4(1):10–17. https://doi.org/10.1016/j.gaost.2020.12.002
Zhang S, Qin Y, Li S, Lv Y, Zhai H, Hu Y, Cai J (2021) Antifungal mechanism of 1-nonanol against Aspergillus flavus growth revealed by metabolomic analyses. Appl Microbiol Biotechnol 105(20):7871–7888. https://doi.org/10.1007/s00253-021-11581-8
Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, Babenko VA, Zorov SD, Balakireva AV, Juhaszova M, Sollott SJ, Zorov DB (2018) Mitochondrial membrane potential. Anal Biochem 552:50–59. https://doi.org/10.1016/j.ab.2017.07.009
Acknowledgements
This work was supported by the National Key Research and Development Plan of China (grant number 2019YFC1605303-04), the National Natural Science Foundation of China (grant number 31772023), the Scientifc and Technological Research Project of Henan Province (grant number 212102110193), the Natural Scientifc Research Innovation Foundation of Henan University of Technology (grant number 2020ZKCJ01), the Cultivation Programme for Young Backbone Teachers in Henan University of Technology, and the Scientifc Research Foundation of Henan University of Technology (grant number 2018RCJH14).
Author information
Authors and Affiliations
Contributions
YLQ: Experimentation, writing—original draft, Investigation. SBZ: supervision, data curation, writing—review & editing, Resources. YYL: software, visualization. HCZ: software, validation. YSH: visualization, conceptualization, validation. JPC: methodology, conceptualization.
Corresponding authors
Ethics declarations
Ethics approval
This article does not contain studies conducted on human participants or animals by any of the authors.
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Qin, YL., Zhang, SB., Lv, YY. et al. The antifungal mechanisms of plant volatile compound 1-octanol against Aspergillus flavus growth. Appl Microbiol Biotechnol 106, 5179–5196 (2022). https://doi.org/10.1007/s00253-022-12049-z
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s00253-022-12049-z