Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Exposure of CD34+ precursors to cytostatic anthraquinone-derivatives induces rapid dendritic cell differentiation: implications for cancer immunotherapy

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Appropriate activation of dendritic cells (DC) is essential for successful active vaccination and induction of cell-mediated immunity. The scarcity of precursor cells, as well as long culture methods, have hampered wide-scale application of DC vaccines derived from CD34+ precursors, despite their suggested superior efficacy over the more commonly applied monocyte-derived DC (MoDC). Here, employing the CD34+/CD14+ AML-derived human DC progenitor cell line MUTZ3, we show that cytostatic anthraquinone-derivatives (i.e., the anthracenedione mitoxantrone and the related anthracyclin doxorubicin) induce rapid differentiation of CD34+ DC precursors into functional antigen-presenting cells (APC) in a three-day protocol. The drugs were found to act specifically on CD34+, and not on CD14+ DC precursors. Importantly, these observations were confirmed for primary CD34+ and CD14+ DC precursors from peripheral blood. Mitoxantrone-generated DC were fully differentiated within three days and after an additional 24 h of maturation, were as capable as standard 9-day differentiated and matured DC to migrate toward the lymph node-homing chemokines CCL19 and CCL21, to induce primary allogeneic T cell proliferation, and to prime functional MART1-specific CD8+ T lymphocytes. Our finding that anthraquinone-derivatives like mitoxantrone support rapid high-efficiency differentiation of DC precursors may have consequences for in vitro production of DC vaccines as well as for novel immunochemotherapy strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Apetoh L, Ghiringhelli F, Tesniere A et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059

    Article  PubMed  CAS  Google Scholar 

  2. Banchereau J, Briere F, Caux C et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    Article  PubMed  CAS  Google Scholar 

  3. Bettaieb A, Plo I, Mansat-de Mas V et al (1999) Daunorubicin- and mitoxantrone-triggered phosphatidylcholine hydrolysis: implication in drug-induced ceramide generation and apoptosis. Mol Pharmacol 55:118–125

    PubMed  CAS  Google Scholar 

  4. Bontkes HJ, de Gruijl TD, Schuurhuis GJ et al (2002) Expansion of dendritic cell precursors from human CD34(+) progenitor cells isolated from healthy donor blood; growth factor combination determines proliferation rate and functional outcome. J Leukoc Biol 72:321–329

    PubMed  CAS  Google Scholar 

  5. Bosch F, Ferrer A, Villamor N et al (2008) Fludarabine, cyclophosphamide, and mitoxantrone as initial therapy of chronic lymphocytic leukemia: high response rate and disease eradication. Clin Cancer Res 14:155–161

    Article  PubMed  CAS  Google Scholar 

  6. Cejas PJ, Carlson LM, Kolonias D et al (2005) Regulation of RelB expression during the initiation of dendritic cell differentiation. Mol Cell Biol 25:7900–7916

    Article  PubMed  CAS  Google Scholar 

  7. Clark GJ, Gunningham S, Troy A et al (1999) Expression of the RelB transcription factor correlates with the activation of human dendritic cells. Immunology 98:189–196

    Article  PubMed  CAS  Google Scholar 

  8. Davis TA, Saini AA, Blair PJ et al (1998) Phorbol esters induce differentiation of human CD34+ hemopoietic progenitors to dendritic cells: evidence for protein kinase C-mediated signaling. J Immunol 160:3689–3697

    PubMed  CAS  Google Scholar 

  9. Gabrilovich DI, Corak J, Ciernik IF et al (1997) Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin Cancer Res 3:483–490

    PubMed  CAS  Google Scholar 

  10. Kaneno R, Shurin GV, Tourkova IL et al (2009) Chemomodulation of human dendritic cell function by antineoplastic agents in low noncytotoxic concentrations. J Transl Med 7:58

    Article  PubMed  Google Scholar 

  11. Kusmartsev S, Gabrilovich DI (2006) Effect of tumor-derived cytokines and growth factors on differentiation and immune suppressive features of myeloid cells in cancer. Cancer Metastasis Rev 25:323–331

    Article  PubMed  CAS  Google Scholar 

  12. Limpens J, Garssen J, Germeraad WT et al (1990) Enhancing effects of locally administered cytostatic drugs on T effector cell functions in mice. Int J Immunopharmacol 12:77–88

    Article  PubMed  CAS  Google Scholar 

  13. Limpens J, Van Meijer M, Van Santen HM et al (1991) Alterations in dendritic cell phenotype and function associated with immunoenhancing effects of a subcutaneously administered cyclophosphamide derivative. Immunology 73:255–263

    PubMed  CAS  Google Scholar 

  14. Long HJ III, Nelimark RA, Podratz KC et al (2006) Phase III comparison of methotrexate, vinblastine, doxorubicin, and cisplatin (MVAC) versus doxorubicin and cisplatin (AC) in women with advanced primary or recurrent metastatic carcinoma of the uterine endometrium. Gynecol Oncol 100:501–505

    Article  PubMed  CAS  Google Scholar 

  15. Masterson AJ, Sombroek CC, de Gruijl TD et al (2002) MUTZ-3, a human cell line model for the cytokine-induced differentiation of dendritic cells from CD34+ precursors. Blood 100:701–703

    Article  PubMed  CAS  Google Scholar 

  16. Messmer D, Yang H, Telusma G et al (2004) High mobility group box protein 1: an endogenous signal for dendritic cell maturation and Th1 polarization. J Immunol 173:307–313

    PubMed  CAS  Google Scholar 

  17. Michallet AS, Coiffier B (2008) Recent developments in the treatment of aggressive non-Hodgkin lymphoma. Blood Rev 23:11–23

    Article  PubMed  Google Scholar 

  18. Mike S, Harrison C, Coles B et al (2006) Chemotherapy for hormone-refractory prostate cancer. Cochrane Database Syst Rev CD005247

  19. Onyenadum A, Gogas H, Kosmidis P et al (2006) Mitoxantrone plus gemcitabine in pretreated patients with metastatic breast cancer. J Chemother 18:192–198

    PubMed  CAS  Google Scholar 

  20. Ouaaz F, Arron J, Zheng Y et al (2002) Dendritic cell development and survival require distinct NF-kappaB subunits. Immunity 16:257–270

    Article  PubMed  CAS  Google Scholar 

  21. Oyan B, Koc Y, Ozdemir E et al (2006) High dose sequential chemotherapy and autologous stem cell transplantation in patients with relapsed/refractory lymphoma. Leuk Lymphoma 47:1545–1552

    Article  PubMed  CAS  Google Scholar 

  22. Palucka AK, Ueno H, Fay JW et al (2007) Taming cancer by inducing immunity via dendritic cells. Immunol Rev 220:129–150

    Article  PubMed  CAS  Google Scholar 

  23. Pendse SS, Behjati S, Schatton T et al (2006) P-glycoprotein functions as a differentiation switch in antigen presenting cell maturation. Am J Transplant 6:2884–2893

    Article  PubMed  CAS  Google Scholar 

  24. Posada J, Vichi P, Tritton TR (1989) Protein kinase C in adriamycin action and resistance in mouse sarcoma 180 cells. Cancer Res 49:6634–6639

    PubMed  CAS  Google Scholar 

  25. Rubin E, Kharbanda S, Gunji H et al (1992) cis-Diamminedichloroplatinum(II) induces c-jun expression in human myeloid leukemia cells: potential involvement of a protein kinase C-dependent signaling pathway. Cancer Res 52:878–882

    PubMed  CAS  Google Scholar 

  26. Santegoets SJ, Bontkes HJ, Stam AG et al (2008) Inducing antitumor T cell immunity: comparative functional analysis of interstitial versus Langerhans dendritic cells in a human cell line model. J Immunol 180:4540–4549

    PubMed  CAS  Google Scholar 

  27. Santegoets SJ, Masterson AJ, van der Sluis PC et al (2006) A CD34+ human cell line model of myeloid dendritic cell differentiation: evidence for a CD14+ CD11b+ Langerhans cell precursor. J Leukoc Biol 80:1337–1344

    Article  PubMed  CAS  Google Scholar 

  28. Santegoets SJ, Schreurs MW, Masterson AJ et al (2006) In vitro priming of tumor-specific cytotoxic T lymphocytes using allogeneic dendritic cells derived from the human MUTZ-3 cell line. Cancer Immunol Immunother 55:1480–1490

    Article  PubMed  Google Scholar 

  29. Santegoets SJ, van den Eertwegh AJ, van de Loosdrecht AA et al (2008) Human dendritic cell line models for DC differentiation and clinical DC vaccination studies. J Leukoc Biol 84:1364–1373

    Article  PubMed  CAS  Google Scholar 

  30. Scheper RJ, Limpens J, Tan BT et al (1987) Immunotherapeutic effects of local chemotherapy with an active metabolite of cyclophosphamide. Methods Find Exp Clin Pharmacol 9:611–615

    PubMed  CAS  Google Scholar 

  31. Scott LJ, Figgitt DP (2004) Mitoxantrone: a review of its use in multiple sclerosis. CNS Drugs 18:379–396

    Article  PubMed  CAS  Google Scholar 

  32. Shurin GV, Tourkova IL, Kaneno R et al (2009) Chemotherapeutic agents in noncytotoxic concentrations increase antigen presentation by dendritic cells via an IL-12-dependent mechanism. J Immunol 183:137–144

    Article  PubMed  CAS  Google Scholar 

  33. St Louis DC, Woodcock JB, Franzoso G et al (1999) Evidence for distinct intracellular signaling pathways in CD34+ progenitor to dendritic cell differentiation from a human cell line model. J Immunol 162:3237–3248

    PubMed  CAS  Google Scholar 

  34. Stockman GD, Heim LR, South MA et al (1973) Differential effects of cyclophosphamide on the B and T cell compartments of adult mice. J Immunol 110:277–282

    PubMed  CAS  Google Scholar 

  35. van de Ven R, de Jong MC, Reurs AW et al (2006) Dendritic cells require multidrug resistance protein 1 (ABCC1) transporter activity for differentiation. J Immunol 176:5191–5198

    PubMed  Google Scholar 

  36. van Helden SF, van Leeuwen FN, Figdor CG (2008) Human and murine model cell lines for dendritic cell biology evaluated. Immunol Lett 117:191–197

    Article  PubMed  Google Scholar 

  37. van Loevezijn A, Allen JD, Schinkel AH et al (2001) Inhibition of BCRP-mediated drug efflux by fumitremorgin-type indolyl diketopiperazines. Bioorg Med Chem Lett 11:29–32

    Article  PubMed  Google Scholar 

  38. van de Ven R, Lindenberg JJ, Reurs AW et al (2011) Preferential Langerhans cell differentiation from CD34(+) precursors upon introduction of ABCG2 (BCRP). Immunol Cell Biol (in press)

  39. Yardley DA, Burris HA III, Farley CP et al (2008) A phase II feasibility trial of dose-dense docetaxel followed by doxorubicin/cyclophosphamide as adjuvant or neoadjuvant treatment for women with node-positive or high-risk node-negative breast cancer. Clin Breast Cancer 8:242–248

    Article  PubMed  CAS  Google Scholar 

  40. Yssel H, De Vries JE, Koken M et al (1984) Serum-free medium for generation and propagation of functional human cytotoxic and helper T cell clones. J Immunol Methods 72:219–227

    Article  PubMed  CAS  Google Scholar 

  41. Yu B, Kusmartsev S, Cheng F et al (2003) Effective combination of chemotherapy and dendritic cell administration for the treatment of advanced-stage experimental breast cancer. Clin Cancer Res 9:285–294

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Dutch Cancer Society: KWF2003-2830 to GLS, TDG and RJS.

Conflict of interest

DCPrime B.V. is a spin-off company from the Pathology Department at the VU University medical center, Amsterdam developing allogeneic DC vaccines for clinical use. AW Reurs, PGJTB Wijnands, S van Wetering, and AM Kruisbeek are employees, and the latter CEO of DCPrime B.V. RJ Scheper and AM Kruisbeek are co-founders of DCPrime B.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanja D. de Gruijl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van de Ven, R., Reurs, A.W., Wijnands, P.G.J.T.B. et al. Exposure of CD34+ precursors to cytostatic anthraquinone-derivatives induces rapid dendritic cell differentiation: implications for cancer immunotherapy. Cancer Immunol Immunother 61, 181–191 (2012). https://doi.org/10.1007/s00262-011-1039-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00262-011-1039-x

Keywords