Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Antibacterial and Biopriming Effects of Nostocales Cyanobacteria on Tomato Plants Infected with Bacterial Spot Disease

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A new generation of farming inputs is being developed, designed to be more environmentally friendly and have fewer negative impacts on consumer health. Bio-based antimicrobial compounds are one such example. These compounds are used against pathogens and stimulate plant immune systems, reducing disease severity. This study evaluated suspensions and hydro-alcoholic extracts of 55 cyanobacteria from the Nostocales order for their antimicrobial effects and growth-promoting activity on tomato plants. Suspensions and extracts of 0.5 and 1 mg mL−1 of two cyanobacteria, Nostoc sp. G-4D and Calothrix sp. G-403 were selected for their disease control capabilities and growth enhancement effects on plants. The GC–MS technique was used to investigate the chemical compounds in the hydroalcoholic extracts of two cyanobacteria species. The analysis shows that the Nostoc sp. G-4D extract contained 28 compounds, accounting for 96.04% of the total composition, while the Calothrix sp. G-403 extract contained 27 compounds, making up 93.62% of the total composition. These findings highlight the rich chemical diversity in the extracts, which might be responsible for the observed bioactivities. The predominant components of the hydroalcoholic extracts of Nostoc sp G-4D and Calothrix sp. G-403 were Hexadecanoic acid, methyl ester (28.29%) and Octadecanoic acid, methyl ester (15.89%) for the former, and Hexadecanoic acid, methyl ester (27.95%) and phytol (10.82%) for the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data and material will be available on request.

Code Availability

Not applicable.

Abbreviations

ANOVA:

Analysis of variance

Biocontrol:

Biological control

CAS:

Chrom azurol S

CFU:

Colony forming unit

cm:

Centimeter

D50:

Days to 50% germination

DTPA:

Diethylenetriamine pentaacetate

GC–MS:

Gas chromatography-mass spectrometry

Gmax:

Germination percentage

GR:

Germination rate

GU:

Uniformity of germination

h:

Hour

hpi:

Hours post inoculation

HCN:

Hydrogen cyanide

IAA:

Indole-3-acetic acid

LSD:

Least significant difference

lx:

Lux

MBC:

Minimum bactericidal concentration

μL:

Microliter

μm:

Micrometer

μg:

Microgram

mL:

Milliliter

mg:

Milligram

mM:

Millimolar

mm:

Millimeter

min:

Minute

nm:

Nano meter

OD:

Optical density

PBS:

Phosphate-buffered saline

R2 :

Correlation coefficient

RT:

Room temperature

s:

Second

SNP:

Sodium nitroprusside

References

  1. Zhang Y, Yang C, Liu S, Xie Z, Chang H, Wu T (2024) Phytohormones-mediated strategies for mitigation of heavy metals toxicity in plants focused on sustainable production. Plant Cell Rep 43(4):99. https://doi.org/10.1007/s00299-024-03189-9

    Article  CAS  PubMed  Google Scholar 

  2. Muhammad M, Waheed A, Wahab A, Majeed M, Nazim M, Liu Y-H, Li L, Li W-J (2024) Soil salinity and drought tolerance: an evaluation of plant growth, productivity, microbial diversity, and amelioration strategies. Plant Stress 11:100319. https://doi.org/10.1016/j.stress.2023.100319

    Article  CAS  Google Scholar 

  3. Suman Lata D, Hussain Z, Yadav R, Jat GS, Kumar P, Tomar B (2023) Insights into the genetic improvement of tomato. Genet Eng Crop Plants Food Health Secur 2:165. https://doi.org/10.1007/978-981-97-3119-0_7

    Article  Google Scholar 

  4. Abbas F, Al-Otoom A, Al-Naemi S, Ashraf A, Mahasneh H (2024) Experimental and life cycle assessments of tomato (Solanum lycopersicum) cultivation under controlled environment agriculture. J Agric Food Res 18:101266. https://doi.org/10.1016/j.jafr.2024.101266

    Article  Google Scholar 

  5. Karačić V, Miljaković D, Marinković J, Ignjatov M, Milošević D, Tamindžić G, Ivanović M (2024) Bacillus species: excellent biocontrol agents against tomato diseases. Microorganisms 12(3):457. https://doi.org/10.3390/microorganisms12030457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jibrin MO, Sharma A, Mavian CN, Timilsina S, Kaur A, Iruegas-Bocardo F, Potnis N, Minsavage GV, Coutinho TA, Creswell TC (2024) Phylodynamic insights into global emergence and diversification of the tomato pathogen Xanthomonas hortorum pv. gardneri. Mol Plant-Microbe Interactions 37(10):712–720. https://doi.org/10.1094/MPMI-04-24-0035-R

    Article  CAS  Google Scholar 

  7. Miljaković D, Marinković J, Balešević-Tubić S (2020) The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms 8(7):1037. https://doi.org/10.3390/microorganisms8071037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Su Y, Liu C, Fang H, Zhang D (2020) Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb Cell Fact 19:1–12. https://doi.org/10.1186/s12934-020-01436-8

    Article  Google Scholar 

  9. Lors V, Kyndt T, Mauch-Mani B, Pozo MJ, Ryu C-M, Ton J (2024) Enabling sustainable crop protection with induced resistance in plants. Front Sci 2:1407410. https://doi.org/10.3389/fsci.2024.1407410

    Article  Google Scholar 

  10. Wang Z, Wu Y, Liu H (2024) Priming of plant defences. The concept of ecostacking: techniques and applications, CABI GB https://doi.org/10.1079/9781789248715.0003

  11. Hernández-Urcera J, Romero A, Cruz P, Vasconcelos V, Figueras A, Novoa B, Rodríguez F (2024) Screening of microalgae for bioactivity with antiviral, antibacterial. Anti-Inflamm Anti-Cancer Assays Biol 13(4):255. https://doi.org/10.3390/biology13040255

    Article  Google Scholar 

  12. Khan F, Akhlaq A, Rasool MH, Srinuanpan S (2024) Cyanobacterial bioactive compounds: synthesis, extraction, and applications. pharmaceutical and nutraceutical potential of cyanobacteria, Springer, pp 215–243. https://doi.org/10.1007/978-3-031-45523-0_9

  13. Bouyahya A, Bakrim S, Chamkhi I, Taha D, El Omari N, El Mneyiy N, El Hachlafi N, El-Shazly M, Khalid A, Abdalla AN (2024) Bioactive substances of cyanobacteria and microalgae: sources, metabolism, and anticancer mechanism insights. Biomed Pharmacother 170:115989. https://doi.org/10.1016/j.biopha.2023.115989

    Article  CAS  PubMed  Google Scholar 

  14. Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7:529. https://doi.org/10.3389/fmicb.2016.00529

    Article  PubMed  PubMed Central  Google Scholar 

  15. Larrahondo-Rodríguez E, Liao Y-Y, Huerta AI (2022) Diagnostic guide for bacterial spot of tomato and pepper. Plant Health Progress 23(3):355–361. https://doi.org/10.1094/PHP-11-21-0140-DG

    Article  Google Scholar 

  16. Pandey A, Amin N, Kannaujiya VK, Sinha RP (2024) Extraction, characterization and antioxidative potentials of UV-screening compound, mycosporine-like amino acids from epilithic cyanobacterium Lyngbya sp. HKAR− 15. World J Microbiol Biotechnol 40(12):378. https://doi.org/10.1007/s11274-024-04184-8

    Article  CAS  PubMed  Google Scholar 

  17. El-Sheekh MM, Osman ME, Dyab MA, Amer MS (2006) Production and characterization of antimicrobial active substance from the cyanobacterium Nostoc muscorum. Environ Toxicol Pharmacol 21(1):42–50. https://doi.org/10.1016/j.etap.2005.06.006

    Article  CAS  PubMed  Google Scholar 

  18. Najdenski HM, Gigova LG, Iliev II, Pilarski PS, Lukavský J, Tsvetkova IV, Ninova MS, Kussovski VK (2013) Antibacterial and antifungal activities of selected microalgae and cyanobacteria. Int J Food Sci Technol 48(7):1533–1540. https://doi.org/10.1111/ijfs.12122

    Article  CAS  Google Scholar 

  19. Gouthami B, Ramalakshmi A, Balakrishnan M, Karthikeyan S, Muniraj I, Packialakshmi JS (2024) Functional and molecular characterization of millet associated probiotic bacteria. BMC Microbiol 24:485. https://doi.org/10.1186/s12866-024-03606-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weli AM, Al-Salmi S, Al Hoqani H, Hossain MA (2018) Biological and phytochemical studies of different leaves extracts of Pteropyrum scoparium. Beni-Suef Univ J Basic Appl Sci 7(4):481–486. https://doi.org/10.1016/j.bjbas.2018.05.001

    Article  Google Scholar 

  21. Kebede B, Shibeshi W (2022) In vitro antibacterial and antifungal activities of extracts and fractions of leaves of Ricinus communis Linn against selected pathogens. Vet Med Sci 8(4):1802–1815. https://doi.org/10.1002/vms3.772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Muñoz-Rojas M, Chilton A, Liyanage G, Erickson T, Merritt D, Neilan B, Ooi M (2018) Effects of indigenous soil cyanobacteria on seed germination and seedling growth of arid species used in restoration. Plant Soil 429:91–100. https://doi.org/10.1007/s11104-018-3607-8

    Article  CAS  Google Scholar 

  23. Ferioun M, Srhiouar N, Tirry N, Belahcen D, Siang TC, Louahlia S, El Ghachtouli N (2023) Optimized drought tolerance in barley (Hordeum vulgare L.) using plant growth-promoting rhizobacteria (PGPR). Biocatal Agric Biotechnol 50:102691. https://doi.org/10.1016/j.bcab.2023.102691

    Article  CAS  Google Scholar 

  24. Gupta S, Pandey S (2019) ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Front Microbiol 10:1506. https://doi.org/10.3389/fmicb.2019.01506

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dubey A, Saiyam D, Kumar A, Hashem A, Abd Allah EF, Khan ML (2021) Bacterial root endophytes: characterization of their competence and plant growth promotion in soybean (Glycine max (L.) Merr.) under drought stress. Int J Environ Res Public Health 18(3):931. https://doi.org/10.3390/ijerph18030931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Álvarez-González A, de Morais EG, Planas-Carbonell A, Uggetti E (2023) Enhancing sustainability through microalgae cultivation in urban wastewater for biostimulant production and nutrient recovery. Sci Total Environ 904:166878. https://doi.org/10.1016/j.scitotenv.2023.166878

    Article  CAS  PubMed  Google Scholar 

  27. Fotoohiyan Z, Samiei F, Sardoei AS, Kashi F, Ghorbanpour M, Kariman K (2024) Improved salinity tolerance in cucumber seedlings inoculated with halotolerant bacterial isolates with plant growth-promoting properties. BMC Plant Biol 24(1):821. https://doi.org/10.1186/s12870-024-05538-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bhuyar P, Rahim MHA, Maniam GP, Ramaraj R, Govindan N (2020) Exploration of bioactive compounds and antibacterial activity of marine blue-green microalgae (Oscillatoria sp.) isolated from coastal region of west Malaysia. SN Appl Sci 2:1–10. https://doi.org/10.1007/s42452-020-03698-8

    Article  CAS  Google Scholar 

  29. Ghahari S, Alinezhad H, Nematzadeh GA, Tajbakhsh M, Baharfar R (2017) Chemical composition, antioxidant and biological activities of the essential oil and extract of the seeds of Glycine max (soybean) from North Iran. Curr Microbiol 74:522–531. https://doi.org/10.1007/s00284-016-1188-4

    Article  CAS  PubMed  Google Scholar 

  30. Ghahari S, Alinezhad H, Nematzadeh GA, Ghahari S (2015) Phytochemical screening and antimicrobial activities of the constituents isolated from Koelreuteria paniculata leaves. Nat Prod Res 29(19):1865–1869. https://doi.org/10.1080/14786419.2015.1005617

    Article  CAS  PubMed  Google Scholar 

  31. Dash S, Pradhan S, Sahoo B, Parida S, Rath B (2024) In vitro study of antioxidant, antimicrobial, and anticancer activities of two selected cyanobacteria found across Odisha coast. India Syst Microbiol Biomanuf 4(1):348–363. https://doi.org/10.1007/s43393-023-00186-z

    Article  CAS  Google Scholar 

  32. Marthandan V, Geetha R, Kumutha K, Renganathan VG, Karthikeyan A, Ramalingam J (2020) Seed priming: a feasible strategy to enhance drought tolerance in crop plants. Int J Mol Sci 21(21):8258. https://doi.org/10.3390/ijms21218258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mazhar S, Cohen JD, Hasnain S (2013) Auxin producing non-heterocystous Cyanobacteria and their impact on the growth and endogenous auxin homeostasis of wheat. J Basic Microbiol 53(12):996–1003. https://doi.org/10.1002/jobm.201100563

    Article  CAS  PubMed  Google Scholar 

  34. Lorenzi AS, Chia MA (2024) Cyanobacteria’s power trio: auxin, siderophores, and nitrogen fixation to foster thriving agriculture. World J Microbiol Biotechnol 40(12):1–18. https://doi.org/10.1007/s11274-024-04191-9

    Article  Google Scholar 

  35. Roskova Z, Skarohlid R, McGachy L (2022) Siderophores: an alternative bioremediation strategy? Sci Total Environ 819:153144. https://doi.org/10.1016/j.scitotenv.2022.153144

    Article  CAS  PubMed  Google Scholar 

  36. Swarnalatha GV, Goudar V, Reddy ECRGS, Al Tawaha ARM, Sayyed R (2022) Siderophores and their applications in sustainable management of plant diseases. Secondary metabolites and volatiles of PGPR in plant-growth promotion. pp 289–302. https://doi.org/10.1007/978-3-031-07559-9_14

  37. Singh A, Bhattacharjee S, Bhardwaj A, Singh SS, Mishra AK (2024) Elucidating the structure of novel cyanobacterial siderophore produced by Anabaena oryzae and its implication in removal of cadmium. J Appl Phycol. https://doi.org/10.1007/s10811-024-03335-6

    Article  Google Scholar 

  38. Giannelli G, Del Vecchio L, Cirlini M, Gozzi M, Gazza L, Galaverna G, Potestio S, Visioli G (2024) Exploring the rhizosphere of perennial wheat: potential for plant growth promotion and biocontrol applications. Sci Rep 14(1):22792. https://doi.org/10.1038/s41598-024-73818-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Elakbawy WM, Shanab SM, Shalaby EA (2023) Biological activities and plant growth regulators producing from some microalgae biomass cultivated in different wastewater concentrations. Biomass Convers Biorefinery 13(9):8075–8088. https://doi.org/10.1007/s13399-021-01610-x

    Article  CAS  Google Scholar 

  40. Hussain A, Krischke M, Roitsch T, Hasnain S (2010) Rapid determination of cytokinins and auxin in cyanobacteria. Curr Microbiol 61:361–369. https://doi.org/10.1007/s00284-010-9620-7

    Article  CAS  PubMed  Google Scholar 

  41. Cruz CG, da Rosa APC, Costa JAV (2024) Chlorella and Spirulina cultivated in dairy effluent supplemented with L-tryptophan: production of indoleacetic acid and agricultural bioproducts. Clean Technol Environ Policy. https://doi.org/10.1007/s10098-023-02723-9

    Article  Google Scholar 

  42. Bakku RK, Rakwal R (2022) Applications of cyanobacterial compounds in the energy, health, value-added product, and agricultural sectors: a perspective. Cyanobacterial physiology, Elsevier, pp 149–164. https://doi.org/10.1016/B978-0-323-96106-6.00009-5.

  43. Panou M, Gkelis S (2022) Unravelling unknown cyanobacteria diversity linked with HCN production. Mol Phylogenet Evol 166:107322. https://doi.org/10.1016/j.ympev.2021.107322

    Article  CAS  PubMed  Google Scholar 

  44. Fatehi M, Mohebbi A (2024) Ammonia and hydrogen production by immobilized cyanobacteria in membranes. Progresses in ammonia: science, technology and membranes, Elsevier, pp 179–204. https://doi.org/10.1016/B978-0-323-88502-7.00013-1

  45. Priya H, Dhar DW, Singh R, Kumar S, Dhandapani R, Pandey R, Govindasamy V, Kumar A (2022) Co-cultivation approach to decipher the influence of nitrogen-fixing cyanobacterium on growth and N uptake in rice crop. Curr Microbiol 79(2):53. https://doi.org/10.1007/s00284-021-02732-1

    Article  CAS  PubMed  Google Scholar 

  46. Tirry N, Kouchou A, Laghmari G, Lemjereb M, Hnadi H, Amrani K, Bahafid W, El Ghachtouli N (2021) Improved salinity tolerance of Medicago sativa and soil enzyme activities by PGPR. Biocatal Agric Biotechnol 31:101914. https://doi.org/10.1016/j.bcab.2021.101914

    Article  CAS  Google Scholar 

  47. Liu W, Wang Q, Hou J, Tu C, Luo Y, Christie P (2016) Whole genome analysis of halotolerant and alkalotolerant plant growth-promoting rhizobacterium Klebsiella sp. D5A. Scientific reports 6(1):26710. https://doi.org/10.1038/srep26710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang Y-B, Yang C, Zheng J-R, Xu L-Z, Yao N (2024) Chloride salt enhances plant resistance to biotic stresses. Front Plant Sci 15:1385164. https://doi.org/10.3389/fpls.2024.1385164

    Article  PubMed  PubMed Central  Google Scholar 

  49. Arellano H, Nardello-Rataj V, Szunerits S, Boukherroub R, Fameau A-L (2023) Saturated long chain fatty acids as possible natural alternative antibacterial agents: opportunities and challenges. Adv Coll Interface Sci 318:102952. https://doi.org/10.1016/j.cis.2023.102952

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support of this work from the Research Council of Shahid Chamran University of Ahvaz and GABIT is gratefully acknowledged.

Funding

We appreciate the financial support from the Research Council of Shahid Chamran University of Ahvaz and GABIT.

Author information

Authors and Affiliations

Authors

Contributions

S Ghahari: Data curation, Formal analysis, Investigation, Methodology, Software, Validation, writing-original draft, writing-review, and editing. GA Nematzadeh: conceptualization, Formal analysis, Methodology, Project administration, Supervision, Validation, writing-review, and editing. A Pakdin: conceptualization, Formal analysis, Methodology, Software, writing-review, and editing. M Roayaei Ardakani: Formal analysis, Methodology, Supervision, writing-review and editing, and formal analysis.

Corresponding authors

Correspondence to Sajjad Ghahari or Ghorban Ali Nematzadeh.

Ethics declarations

Conflict of interest

None of The authors of this study have any financial interests or conflict, competing with industries or parties.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 234 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghahari, S., Nematzadeh, G.A., Pakdin, A. et al. Antibacterial and Biopriming Effects of Nostocales Cyanobacteria on Tomato Plants Infected with Bacterial Spot Disease. Curr Microbiol 82, 220 (2025). https://doi.org/10.1007/s00284-025-04208-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-025-04208-y