Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Influence of talc particle size and content on crystallization behavior, mechanical properties and morphology of poly(lactic acid)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This research aimed to employ inorganic filler such as talc to promote crystallization in poly(lactic acid) (PLA). Three different talc particle sizes, namely 1, 5 and 30 µm, were used as nucleating agents; each was compounded with PLA at various contents from 0 to 10 wt%. The crystallization temperature (T c) reduced most rapidly from 128 to 107 °C with the presence of 1 wt% talc. Beyond this concentration, the T c still decreased but only minutely. Compared to other sizes, finer talc particles were found to promote a slightly higher degree of crystallinity. X-ray diffraction peaks indicated that the α-crystal was formed in all PLA/talc compositions. The heat distortion temperature values suggested that the modified PLA could resist the thermal deformation from 58 °C to a maximum value of 139 °C when 1 µm talc was added at 10 wt%. With the presence of talc, the composites were more brittle and both tensile elongation at break and impact strength were decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Petchwattana N, Covavisaruch S, Euapanthasate N (2012) Utilization of ultrafine acrylate rubber particles as a toughening agent for poly(lactic acid). Mater Sci Eng A Struct 532:64–70

    Article  CAS  Google Scholar 

  2. Petchwattana N, Covavisaruch S, Euapanthasate N (2011) Mechanical and thermal behaviors of the acrylic based core-shell rubber modified poly(lactic acid). Adv Mater Res 306–307:340–344

    Article  Google Scholar 

  3. Buasri A, Chaiyut N, Jenjaka T, Weerasunthorn S, Juengrun S (2011) Preparation and characterization of PET–PLA copolyester from waste PET and lactic acid (LA). Chiang Mai J Sci 38:619–624

    CAS  Google Scholar 

  4. Chen CC, Chueh JY, Tseng H, Huang HM, Lee SY (2003) Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials 24:1167–1173

    Article  CAS  Google Scholar 

  5. Tsuji H, Takai H, Saha SK (2006) Isothermal and non-isothermal crystallization behavior of poly(l-lactic acid): effects of stereocomplex as nucleating agent. Polymer 47:3826–3837

    Article  CAS  Google Scholar 

  6. Lai SM, Lan YC (2013) Shape memory properties of melt-blended polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends. J Polym Res 20:140

    Article  Google Scholar 

  7. Ljungberg N, Wesslen B (2003) Tributyl citrate oligomers as plasticizers for poly (lactic acid): thermo-mechanical film properties and aging. Polymer 44:7679–7688

    Article  CAS  Google Scholar 

  8. Li H, Huneault MA (2007) Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 48:6855–6866

    Article  CAS  Google Scholar 

  9. Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356

    Article  CAS  Google Scholar 

  10. Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542

    Google Scholar 

  11. Kolstad JJ (1996) Crystallization kinetics of poly(l-lactide-co-mesolactide). J Appl Polym Sci 62:1079–1091

    Article  CAS  Google Scholar 

  12. Harris AM, Lee EC (2008) Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci 107:2246–2255

    Article  CAS  Google Scholar 

  13. He D, Wang Y, Shao C, Zheng G, Li Q, Shen C (2013) Effect of phthalimide as an efficient nucleating agent on the crystallization kinetics of poly(lactic acid). Polym Test 32:1088–1093

    Article  CAS  Google Scholar 

  14. Espino-Pérez E, Bras J, Ducruet V, Guinault A, Dufresne A, Domenek S (2013) Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur Polym J 49:3144–3154

    Article  Google Scholar 

  15. Fundador NGV, Iwata T (2013) Enhanced crystallization of poly(d-lactide) by xylan esters. Polym Degrad Stabil 98:2482–2487

    Article  CAS  Google Scholar 

  16. Han H, Wang X, Wu D (2012) Preparation, crystallization behaviors, and mechanical properties of biodegradable composites based on poly(l-lactic acid) and recycled carbon fiber. Compos Part A Appl S 43:1947–1958

    Article  CAS  Google Scholar 

  17. Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny JM (2012) Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polym Degrad Stabil 97:2027–2036

    Article  CAS  Google Scholar 

  18. Ogata N, Jimenez G, Kawai H, Ogihara T (1997) Structure and thermal/mechanical properties of poly(l-lactide)–clay blend. J Polym Sci Part B 35:389–396

    Article  CAS  Google Scholar 

  19. Nam JY, Sinha RS, Okamoto M (2003) Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite. Macromolecules 36:7126–7131

    Article  CAS  Google Scholar 

  20. Ke T, Sun X (2003) Melting behavior and crystallization kinetics of starch and poly(lactic acid) composites. J Appl Polym Sci 89:1203–1210

    Article  CAS  Google Scholar 

  21. Yeh JT, Wu CJ, Tsou CH, Chai WL, Chow JD, Huang CY, Chen KN, Wu CS (2009) Study on the crystallization, miscibility, morphology, properties of poly(lactic acid)/poly(ε-caprolactone) blends. Polym Plast Technol 48:571–578

    Article  CAS  Google Scholar 

  22. Mathew AP, Oksman K, Sain M (2006) The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J Appl Polym Sci 101:300–310

    Article  CAS  Google Scholar 

  23. Tábi T, Sajó IE, Szabó F, Luyt AS, Kovács JG (2010) Crystalline structure of annealed polylactic acid and its relation to processing. Expr Polym Lett 4:659–668

    Article  Google Scholar 

  24. Qin L, Qiua J, Liu M, Ding S, Shao L, Lü S, Zhang G, Zhao Y, Fu X (2011) Mechanical and thermal properties of poly(lactic acid) composites with rice straw fiber modified by poly(butyl acrylate). Chem Eng J 166:772–778

    Article  CAS  Google Scholar 

  25. Huneault MA, Li H (2007) Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer 48:270–281

    Article  CAS  Google Scholar 

  26. Hong Z, Zhang P, He C, Qiu X, Liu A, Chen L, Chen X, Jing X (2005) Nano-composite of poly(l-lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility. Biomaterials 26:6296–6304

    Article  CAS  Google Scholar 

  27. Kang KS, Lee SI, Lee TJ, Narayan R, Shin BY (2008) Effect of biobased and biodegradable nucleating agent on the isothermal crystallization of poly(lactic acid). Korean J Chem Eng 25:599–608

    Article  CAS  Google Scholar 

  28. Gao X, Liu R, Jin M, Bu H (2002) Crystallization and morphology of poly(ethylene-2,6-naphthalene dicarboxylate) in the presence of nucleating agents. J Polym Sci Part B 40:2387–2394

    Article  CAS  Google Scholar 

  29. Jiang L, Zhang J, Wolcott MP (2007) Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms. Polymer 48:7632–7644

    Article  CAS  Google Scholar 

  30. Huang JW, Hung YC, Wen YL, Kang CC, Yeh MY (2009) Polylactide/nano- and micro-scale silica composite films. II. Melting behavior and cold crystallization. J Appl Polym Sci 112:3149–3156

    Article  CAS  Google Scholar 

  31. Li M, Hu D, Wang Y, Shen C (2010) Nonisothermal crystallization kinetics of poly(lactic acid) formulations comprising talc with poly(ethylene glycol). Polym Eng Sci 50:2298–2305

    Article  CAS  Google Scholar 

  32. Kaczmarek H, Nowicki M, Kwiatkowska IV, Nowakowska S (2013) Crosslinked blends of poly(lactic acid) and polyacrylates: AFM, DSC and XRD studies. J Polym Res 20:91

    Article  Google Scholar 

  33. Zhang J, Duan Y, Sato H, Tsuji H, Noda I, Yan S, Ozaki Y (2005) Crystal modifications and thermal behavior of poly(l-lactic acid) revealed by infrared spectroscopy. Macromolecules 38:8012–8021

    Article  CAS  Google Scholar 

  34. Kawai T, Rahman N, Matsuba G, Nishida K, Kanaya T, Nakano M, Okamoto H, Kawada J, Usuki A, Honma N, Nakajima K, Matsuda M (2007) Crystallization and melting behavior of poly(l-lactic Acid). Macromolecules 40:9463–9469

    Article  CAS  Google Scholar 

  35. Brizollara D, Cantow HJ, Diederichs K, Keller E, Domb AJ (1996) Mechanism of the stereocomplex formation between enantiomeric poly(lactide)s. Macromolecules 29:191–197

    Article  Google Scholar 

  36. Miyata T, Masuko T (1997) Morphology of poly(l-lactide) solution-grown crystals. Polymer 38:4003–4009

    Article  CAS  Google Scholar 

  37. Piorkowska E, Kulinski Z, Galeski A, Masirek R (2006) Plasticization of semicrystalline poly(l-lactide) with poly(propylene glycol). Polymer 47:7178–7188

    Article  CAS  Google Scholar 

  38. Battegazzore D, Bocchini S, Frache A (2011) Crystallization kinetics of poly(lactic acid)–talc composites. Expr Polym Lett 5:849–858

    Article  CAS  Google Scholar 

  39. Huda MS, Drzal LT, Mohanty AK, Misra M (2006) Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: a comparative study. Compos Sci Technol 66:1813–1824

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge a partial research grant from Thailand Research Fund (TRF) (MRG545E004). Thanks are extended to the IRPC Public Company Limited, Thailand for the use of IRPC’s facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirijutaratana Covavisaruch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petchwattana, N., Covavisaruch, S. & Petthai, S. Influence of talc particle size and content on crystallization behavior, mechanical properties and morphology of poly(lactic acid). Polym. Bull. 71, 1947–1959 (2014). https://doi.org/10.1007/s00289-014-1165-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00289-014-1165-7

Keywords