Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Exploring species and functional diversity of fishes in Cambodian coastal habitats using eDNA metabarcoding

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Previous studies investigating marine fish diversity in Cambodia’s coastal ecosystems focused on visual methods, concentrating on reporting ecologically and economically important indicator taxa. This study, however, presents the first comprehensive assessment of marine fish biodiversity along the coast of two regions in Cambodia using environmental DNA (eDNA) metabarcoding methods. Water samples were collected above coral reefs, seagrass meadows, estuarine sites and open water in the Northern Koh Kong region and the Koh Rong Archipelago, a marine national park. A region of the 12S rDNA was targeted for fish diversity. Additionally, for the detection of marine mammals, 16S ribosomal DNA was amplified. A total of 204 unique fish species were identified across 78 families and 17 orders, revealing significant differences in species richness and community composition across different habitat types and sampling locations. Functional diversity analyses categorized species into 18 distinct functional groups, shedding light on their ecological roles within the investigated habitats. Comparison with existing fish surveys and databases highlighted the effectiveness of eDNA metabarcoding in providing comparable or better biodiversity estimates. The study also identified two marine mammal species, including the endangered Irrawaddy dolphin, emphasizing the importance of eDNA in detecting elusive and threatened species. The study highlights the effectiveness of eDNA metabarcoding for marine biodiversity monitoring, offering valuable baseline data for conservation efforts in Cambodia and beyond, supporting the creation of marine protected areas (MPAs) to safeguard marine biodiversity. Advocating for the designation of Koh Kong as an MPA, the research points to its rich biodiversity, endangered species presence, and unique functional composition, suggesting its potential as a focal point for conservation initiatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Sequence data (demultiplexed, unfiltered reads) that support the findings of this study have been deposited on the Zenodo repository https://doi.org/10.5281/zenodo.11095946.

References

  • Ahyong S, Boyko CB, Bailly N, Bernot J, Bieler R, Brandão SN, Daly M, De Grave S, Gofas S, Hernandez F, Hughes L, Neubauer TA, Paulay G, Boydens B, Decock W, Dekeyzer S, Vandepitte L, Vanhoorne B, Adlard R, Agatha S, Ahn KJ, Akkari N, Alvarez B, Alves WN, Amler MRW, Amorim V, Anderberg A, Andrés-Sánchez S, Ang Y, Antić D, Antonietto LS, Arango C, Artois T. Atkinson S, Auffenberg K, Baldwin BG, Bank R, Barber A, Barbosa JP, Bartsch I, Bellan-Santini D, Bergh N, Berta A, Bezerra TN, Blanco S, Blasco-Costa I, Blazewicz M, Błędzki LA, Bock P, Bonifacino M, Böttger-Schnack R, Bouchet P, Boury-Esnault N, Bouzan R, Boxshall G, Bray R, Brito Seixas AL, Bruce NL, Bruneau A, Budaeva N, Bueno-Villegas J, Cairns S, Calvo Casas J, Cárdenas P, Carstens E, Cartwright P, Cedhagen T, Chan BK, Chan TY, Cheng L, Choong H, Christenhusz M, Churchill M, Collins AG, Collins GE, Collins K, Consorti L, Copilaș-Ciocianu D, Corbari L, Cordeiro R, Costa VMdM, Costa Corgosinho PH, Coste M, Costello MJ, Crandall KA, Cremonte F, Cribb T, Cutmore S, Dahdouh-Guebas F, Daneliya M, Dauvin JC, Davie P, De Broyer C, de Lima Ferreira P, de Mazancourt V, de Moura Oliveira L, de Sá HAB, de Voogd NJ, Decker P, Defaye D, Dekker H, d’Hondt JL, Di Capua I, Dippenaar S, Dohrmann M, Dolan J, Domning D, Downey R, Dreyer N, Eisendle U, Eitel M, Eleaume M, Enghoff H, Epler J, Espindola BS, Esquete Garrote P, Evenhuis NL, Ewers-Saucedo C, Faber M, Figueroa D, Fišer C, Fordyce E, Foster W, Fransen C, Freire S, Fujimoto S, Furuya H, Galbany-Casals M, Gale A, Galea H, Gao T, Garic R, Garnett S, Gaviria-Melo S, Gerken S, Gibson D, Gibson R, Gil J, Gittenberger A, Glasby C, Glenner H, Glover A, Gómez-Noguera SE, Gondim AI, Gonzalez B, González-Solís D, Goodwin C, Gostel M, Grabowski M, Gravili C, Grossi M, Guerra-García JM, Guerrero JM, Guidetti R, Guiry MD, Gutierrez D, Hadfield KA, Hajdu E, Halanych K, Hallermann J, Hayward BW, Hegna TA, Heiden G, Hendrycks E, Hennen D, Herbert D, Herrera Bachiller A, Hodda M, Høeg J, Hoeksema B, Holovachov O, Hooge MD, Hooper JN, Horton T, Houart R, Huys R, Hyžný M, Iniesta LFM, Iseto T, Iwataki M, Janssen R, Jaume D, Jazdzewski K, Jersabek CD, Jiménez-Mejías P, Jóźwiak P, Kabat A, Kakui K, Kantor Y, Karanovic I, Karapunar B, Karthick B, Kathirithamby J, Katinas L, Kilian N, Kim YH, King R, Kirk PM, Klautau M, Kociolek JP, Köhler F, Konowalik K, Kotov A, Kovács Z, Kremenetskaia A, Kristensen RM, Kroh A, Kulikovskiy M, Kullander S, Kupriyanova E, Lamaro A, Lambert G, Laridon I, Lazarus D, Le Coze F, Le Roux M, LeCroy S, Leduc D, Lefkowitz EJ, Lemaitre R, Lichter-Marck IH, Lim SC, Lindsay D, Liu Y, Loeuille B, Lörz AN, Ludwig T, Lundholm N, Macpherson E, Mah C, Mamos T, Manconi R, Mapstone G, Marek PE, Markello K, Marshall B, Marshall DJ, Martin P, McFadden C, McInnes SJ, McKenzie R, Means J, Mees J, Mejía-Madrid HH, Meland K, Merrin KL, Miller J, Mills C, Moestrup Ø, Mokievsky V, Molodtsova T, Monniot F, Mooi R, Morandini AC, Moreira da Rocha R, Morrow C, Mortelmans J, Müller A, Muñoz Gallego AR, Musco L, Nascimento JB, Nesom G, Neubert E, Neuhaus B, Ng P, Nguyen AD, Nielsen C, Nielsen S, Nishikawa T, Norenburg J, O’Hara T, Opresko D, Osawa M, Osigus HJ, Ota Y, Páll-Gergely B, Panero JL, Patterson D, Pedram M, Pelser P, Peña Santiago R, Pereira JdS, Perez-Losada M, Petrescu I, Pfingstl T, Piasecki W, Pica D, Picton B, Pignatti J, Pilger JF, Pinheiro U, Pisera AB, Poatskievick Pierezan B, Polhemus D, Poore GC, Potapova M, Praxedes RA, Půža V, Read G, Reich M, Reimer JD, Reip H, Resende Bueno V, Reuscher M, Reynolds JW, Richling I, Rimet F, Ríos P, Rius M, Rodríguez E, Rogers DC, Roque N, Rosenberg G, Rützler K, Saavedra M, Sabbe K, Sabroux R, Saiz-Salinas J, Sala S, Samimi-Namin K, Santagata S, Santos S, Santos SG, Sar E, Saucède T, Schärer L, Schierwater B, Schilling E, Schmidt-Lebuhn A, Schmidt-Rhaesa A, Schneider S, Schönberg C, Schrével J, Schuchert P, Schweitzer C, Semple JC, Senna AR, Sennikov A, Serejo C, Shaik S, Shamsi S, Sharma J, Shear WA, Shenkar N, Short M, Sicinski J, Sidorov D, Sierwald P, Silva DKF, d. Silva ESS, Simmons E, Sinniger F, Sinou C, Sivell D, Sket B, Smit H, Smit N, Smol N, Sørensen MV, Souza-Filho JF, Spelda J, Sterrer W, Steyn HM, Stoev P, Stöhr S, Suárez-Morales E, Susanna A, Suttle C, Swalla BJ, Taiti S, Tanaka M, Tandberg AH, Tang D, Tasker M, Taylor J, Taylor J, Taylor K, Tchesunov A, Temereva E, ten Hove H, ter Poorten JJ, Thirouin K, Thomas JD, Thuesen EV, Thurston M, Thuy B, Timi JT, Todaro A, Todd J, Turon X, Uetz P, Urbatsch L, Uribe-Palomino J, Urtubey E, Utevsky S, Vacelet J, Vachard D, Vader W, Väinölä R, Valls Domedel G, Van de Vijver B, van der Meij SE, van Haaren T, van Soest RW, Vanreusel A, Venekey V, Verhoeff T, Vinarski M, Vonk R, Vos C, Vouilloud AA, Walker-Smith G, Walter TC, Watling L, Wayland M, Wesener T, Wetzel CE, Whipps C, White K, Wieneke U, Williams DM, Williams G, Wilson R, Witkowski J, Wyatt N, Xavier J, Xu K, Zanol J, Zeidler W, Zhao Z, and Zullini A (2024) World register of marine species (WoRMS). [Accessed 1 March 2024]. Available from: https://www.marinespecies.org.

  • Alexander JB, Marnane MJ, Elsdon TS, Bunce M, Songploy S, Sitaworawet P, Harvey ES (2022) Complementary molecular and visual sampling of fish on oil and gas platforms provides superior biodiversity characterisation. Mar Environ Res 179:105692

    Article  CAS  PubMed  Google Scholar 

  • Alfaro-Cordova E, Ortiz-Alvarez C, Alfaro-Shigueto J, Mangel JC, García O, Velez-Zuazo X (2022) What lies beneath? Revealing biodiversity through eDNA analysis in Lobos de Afuera Islands, Peru. Lat Am J Aquat Res 50(4):642–659

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Alzate A, Zapata FA, Giraldo A (2014) A comparison of visual and collection-based methods for assessing community structure of coral reef fishes in the Tropical Eastern Pacific. Rev Biol Trop 62(S1):359–371

    Article  Google Scholar 

  • Andruszkiewicz EA, Starks HA, Chavez FP, Sassoubre LM, Block BA, Boehm AB (2017) Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PLoS ONE 12(4):e0176343

    Article  PubMed  PubMed Central  Google Scholar 

  • Asher J, Williams ID, Harvey ES (2019) Is seeing believing? Diver and video-based censuses reveal inconsistencies in roving predator estimates between regions. Mar Ecol Prog Ser 630:115–136

    Article  Google Scholar 

  • Avila IC, Kaschner K, Dormann CF (2018) Current global risks to marine mammals: taking stock of the threats. Biol Cons 221:44–58

    Article  Google Scholar 

  • Baird DJ, Hajibabaei M (2012) Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. Mol Ecol 21(8):2039–2044

    Article  PubMed  Google Scholar 

  • Bellwood DR, Streit RP, Brandl SJ, Tebbett SB (2019) The meaning of the term ‘function’ in ecology: a coral reef perspective. Funct Ecol 33(6):948–961

    Article  Google Scholar 

  • Bernard ATF, Götz A, Kerwath SE, Wilke CG (2013) Observer bias and detection probability in underwater visual census of fish assemblages measured with independent double-observers. J Exp Mar Biol Ecol 443:75–84

    Article  Google Scholar 

  • Biggs CR, Yeager LA, Bolser DG, Bonsell C, Dichiera AM, Hou Z, Keyser SR, Khursigara AJ, Lu K, Muth AF, Negrete B Jr, Erisman BE (2020) Does functional redundancy affect ecological stability and resilience? A review and meta-analysis. Ecosphere 11(7):e03184

    Article  Google Scholar 

  • Blaum N, Mosner E, Schwager M, Jeltsch F (2011) How functional is functional? Ecological groupings in terrestrial animal ecology: towards an animal functional type approach. Biodivers Conserv 20(11):2333–2345

    Article  Google Scholar 

  • Bochove JV, Ioannou N, Mcvee M, Raines P (2011) Evaluating the status of Cambodia’s coral reefs through baseline surveys and scientific monitoring [Accessed 1 March 2024]. Available from: https://www.semanticscholar.org/paper/Evaluating-the-status-of-Cambodia%27s-coral-reefs-and-Bochove-Ioannou/b5a39659600b1998cc714c843fc5a1816be16d2a

  • Boessenkool S, Epp LS, Haile J, Bellemain E, Edwards M, Coissac E, Willerslev E, Brochmann C (2012) Blocking human contaminant DNA during PCR allows amplification of rare mammal species from sedimentary ancient DNA. Mol Ecol 21(8):1806–1815

    Article  CAS  PubMed  Google Scholar 

  • Boon PY, Mulligan B, Benbow S, Thorne B, Phalla L, Longhurst K (2014) Zoning Cambodia’s first marine fisheries management area. Cambodian J Nat Hist 2014:55–65

    Google Scholar 

  • Borcard D, Gillet F, Legendre P (2018) Numerical ecology with R. Springer

    Book  Google Scholar 

  • Boulinier T, Nichols JD, Sauer JR, Hines JE, Pollock KH (1998) Estimating species richness: the importance of heterogeneity in species detectability. Ecology 79(3):1018–1028

    Article  Google Scholar 

  • Brandl SJ, Goatley CHR, Bellwood DR, Tornabene L (2018) The hidden half: ecology and evolution of cryptobenthic fishes on coral reefs. Biol Rev Camb Philos Soc 93(4):1846–1873

    Article  PubMed  Google Scholar 

  • Brandl SJ, Rasher DB, Côté IM, Casey JM, Darling ES, Lefcheck JS, Duffy JE (2019) Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front Ecol Environ 17(8):445–454

    Article  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10:421

    Article  Google Scholar 

  • Carvalho S, Aylagas E, Villalobos R, Kattan Y, Berumen M, Pearman JK (2019) Beyond the visual: using metabarcoding to characterize the hidden reef cryptobiome. Proc R Soc B Biol Sci 286(1896):20182697

    Article  CAS  Google Scholar 

  • Chamberlain S, Barve V (2023) rgbif: interface to the global biodiversity information facility API. Available from: https://CRAN.R-project.org/package=rgbif

  • Chamberlain S, Vanhoorne B (2023) WORRMS: World register of marine species (WoRMS) client. Available from: https://CRAN.R-project.org/package=worrms

  • Clay CG, Reimer JD, Sommer B, Cook KM, Mizuyama M, Obuchi M, Kawamura I, Kise H, Beger M (2024) Variation in functional composition of reef fishes along a tropical-to-temperate gradient. J Biogeogr 51(3):454–466

    Article  Google Scholar 

  • Collins RA, Bakker J, Wangensteen OS, Soto AZ, Corrigan L, Sims DW, Genner MJ, Mariani S (2019) Non-specific amplification compromises environmental DNA metabarcoding with COI. Methods Ecol Evol 10(11):1985–2001

    Article  Google Scholar 

  • Creer S, Deiner K, Frey S, Porazinska D, Taberlet P, Thomas WK, Potter C, Bik HM (2016) The ecologist’s field guide to sequence-based identification of biodiversity. Methods Ecol Evol 7(9):1008–1018

    Article  Google Scholar 

  • Department of Fisheries Conservation/Cambodia (2021) Establishment and Operation of a Regional System of Fisheries Refugia in the South China Sea and Gulf of Thailand, Fisheries Refugia Profile and Landing Site in Koh Kong Province. Southeast Asian Fisheries Development Center, Training Department, Samut Prakan, Thailand; FR/CAM-SP01, 27 p. [Online]. Available from: http://hdl.handle.net/20.500.12067/1722

  • DiBattista JD, Berumen ML, Priest MA, de Brauwer M, Coker DJ, Sinclair-Taylor TH, Hay A, Bruss G, Mansour S, Bunce M, Goatley CHR, Power M, Marshell A (2022) Environmental DNA reveals a multi–taxa biogeographic break across the Arabian Sea and Sea of Oman. Environmental DNA 4(1):206–221

    Article  CAS  Google Scholar 

  • Dorenbosch M, Grol M, Nagelkerken I, Van der Velde G (2005) Distribution of coral reef fishes along a coral reef-seagrass gradient: edge effects and habitat segregation. Mar Ecol Prog Ser 299:277–288

    Article  Google Scholar 

  • Durand J-D, Simier M, Tran NT, Grudpan C, Chan B, Nguyen BNL, Hoang HD, Panfili J (2022) Fish diversity along the Mekong River and delta inferred by environmental-DNA in a period of dam building and downstream salinization. Diversity 14(8):634

    Article  CAS  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics (Oxford, England) 26(19):2460–2461

    CAS  PubMed  Google Scholar 

  • Edgar RC (2016) UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing [Online]. Bioinformatics. [Accessed 1 March 2024]. Available from: https://doi.org/10.1101/081257

  • Eschenroeder J, Pilger T, Sothearoth C, Hogan Z (2024) What’s in the water: using environmental DNA metabarcoding to detect fish biodiversity in the Cambodian Mekong. Cambodian J Nat His 2024:2–11

  • Eva B, Harmony P, Thomas G, Francois G, Alice V, Claude M, Tony D (2016) Trails of river monsters: Detecting critically endangered Mekong giant catfish Pangasianodon gigas using environmental DNA. Glob Ecol Conserv 7:148–156

    Google Scholar 

  • Evans NT, Li Y, Renshaw MA, Olds BP, Deiner K, Turner CR, Jerde CL, Lodge DM, Lamberti GA, Pfrender ME (2017) Fish community assessment with eDNA metabarcoding: effects of sampling design and bioinformatic filtering. Can J Fish Aquat Sci 74(9):1362–1374

    Article  CAS  Google Scholar 

  • Floyd M, Mizuyama M, Obuchi M, Sommer B, Miller MGR, Kawamura I, Kise H, Reimer JD, Beger M (2020) Functional diversity of reef molluscs along a tropical-to-temperate gradient. Coral Reefs 39(5):1361–1376

    Article  Google Scholar 

  • Fonseca CR, Ganade G (2001) Species functional redundancy random extinctions and the stability of ecosystems. J Ecol 89(1):118–125. https://doi.org/10.1046/j.1365-2745.2001.00528.x

  • Froese R, Pauly D (eds) (2024) FishBase. [Online]. [Accessed 1 February 2024]. Available from: www.fishbase.org

  • Galili T (2015) Dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 31(22):3718–3720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gearty W, Chamberlain S (2023) rredlist: ‘IUCN’ Red List Client. Available from: https://github.com/ropensci/rredlist

  • Glue M, Teoh M, Duffy H (2020) Community-led management lays the foundation for coral reef recovery in Cambodian marine protected areas. Oryx 54(5):599–599

    Article  Google Scholar 

  • Goldstein ED, D’Alessandro EK, Sponaugle S (2017) Fitness consequences of habitat variability, trophic position, and energy allocation across the depth distribution of a coral-reef fish. Coral Reefs 36(3):957–968

    Article  Google Scholar 

  • Gösser F, Schweinsberg M, Mittelbach P, Schoenig E, Tollrian R (2023) An environmental DNA metabarcoding approach versus a visual survey for reefs of Koh Pha-ngan in Thailand. Environ DNA 5(2):297–311

    Article  Google Scholar 

  • Gower JC (1983) Distance matrices and their Euclidean approximation. In: Diday E (ed) Versailles: INRA, Paris, pp.1–19. [Accessed 8 February 2024]. Available from: https://repository.rothamsted.ac.uk/item/8wv8w/distance-matrices-and-their-euclidean-approximation

  • Graham NAJ, Wilson SK, Jennings S, Polunin NVC, Robinson J, Bijoux JP, Daw TM (2007) Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv Biol 21(5):1291–1300

    Article  PubMed  Google Scholar 

  • Harvey E, Fletcher D, Shortis M, Kendrick G (2004) A comparison of underwater visual distance estimates made by SCUBA divers and a stereo-video system: implications for underwater visual census of reef fish abundance. Mar Freshw Res 55:573–580

    Article  Google Scholar 

  • Hodgson G, Hill J, Kiene W, Maun L, Mihaly J, Liebeler J, Shuman C, Torres R (2006) Reef check instruction manual: a guide to reef check coral reef monitoring. Reef Check Foundation, Pacific Palisades, California, USA. 93

  • Holmlund CM, Hammer M (1999) Ecosystem services generated by fish populations. Ecol Econ 29(2):253–268

    Article  Google Scholar 

  • Hooper DU, Chapin Iii FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35

    Article  Google Scholar 

  • Horinouchi M (2005) Priorities in seagrass bed selection for the conservation of resident fishes. Sekisei Lagoon, a case study. Laguna 12:63–67

    Google Scholar 

  • Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC, Butler IR, Byrne M, Cantin NE, Comeau S, Connolly SR, Cumming GS, Dalton SJ, Diaz-Pulido G, Eakin CM, Figueira WF, Gilmour JP, Harrison HB, Heron SF, Hoey AS, Hobbs J-PA, Hoogenboom MO, Kennedy EV, Kuo C, Lough JM, Lowe RJ, Liu G, McCulloch MT, Malcolm HA, McWilliam MJ, Pandolfi JM, Pears RJ, Pratchett MS, Schoepf V, Simpson T, Skirving WJ, Sommer B, Torda G, Wachenfeld DR, Willis BL, Wilson SK (2017) Global warming and recurrent mass bleaching of corals. Nature 543(7645):373–377

    Article  CAS  PubMed  Google Scholar 

  • Jeunen G-J, Lamare MD, Knapp M, Spencer HG, Taylor HR, Stat M, Bunce M, Gemmell NJ (2020) Water stratification in the marine biome restricts vertical environmental DNA (eDNA) signal dispersal. Environ DNA 2(1):99–111

    Article  Google Scholar 

  • Jo T, Murakami H, Yamamoto S, Masuda R, Minamoto T (2019) Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution. Ecol Evol 9(3):1135–1146

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelly RP, Port JA, Yamahara KM, Martone RG, Lowell N, Thomsen PF, Mach ME, Bennett M, Prahler E, Caldwell MR (2014) Harnessing DNA to improve environmental management. Science 344(6191):1455–1456

    Article  CAS  PubMed  Google Scholar 

  • Kiszka JJ, Woodstock MS, Heithaus MR (2022) Functional roles and ecological importance of small cetaceans in aquatic ecosystems. Front Mar Sci. https://doi.org/10.3389/fmars.2022.803173

    Article  Google Scholar 

  • Krützen M, Beasley I, Ackermann CY, Lieckfeldt D, Ludwig A, Ryan GE, Bejder L, Parra GJ, Wolfensberger R, Spencer PB (2018) Demographic collapse and low genetic diversity of the Irrawaddy dolphin population inhabiting the Mekong River. PLoS ONE 13(1):e0189200

    Article  PubMed  PubMed Central  Google Scholar 

  • Ladds MA, Sibanda N, Arnold R, Dunn MR (2018) Creating functional groups of marine fish from categorical traits. PeerJ 6:e5795

    Article  PubMed  PubMed Central  Google Scholar 

  • Laliberté E, Legendre P, Shipley B, Laliberté ME (2014) Package ‘FD’. Measuring functional diversity from multiple traits, and other tools for functional ecology

  • Laureto LMO, Cianciaruso MV, Samia DSM (2015) Functional diversity: an overview of its history and applicability. Natureza & Conservação 13(2):112–116

    Article  Google Scholar 

  • Le-Nguyen B-N, Tran NT, Panfili J, Hoang HD, Durand J-D (xxxx) In Prep. First Mekong fishes DNA barcodes reference library for an eDNA biomonitoring

  • Lepetz V, Massot M, Schmeller DS, Clobert J (2009) Biodiversity monitoring: some proposals to adequately study species’ responses to climate change. Biodivers Conserv 18(12):3185–3203

    Article  Google Scholar 

  • Lindegren M, Checkley DM, Ohman MD, Koslow JA, Goericke R (2016) Resilience and stability of a pelagic marine ecosystem. Proc R Soc B Biol Sci 283(1822):20151931

    Article  Google Scholar 

  • Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405(6783):243–253

    Article  CAS  PubMed  Google Scholar 

  • Marques AT, Santos CD, Hanssen F, Muñoz A-R, Onrubia A, Wikelski M, Moreira F, Palmeirim JM, Silva JP (2020) Wind turbines cause functional habitat loss for migratory soaring birds. J Anim Ecol 89(1):93–103

    Article  PubMed  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17(1):10

    Article  Google Scholar 

  • Maruyama A, Nakamura K, Yamanaka H, Kondoh M, Minamoto T (2014) The release rate of environmental DNA from juvenile and adult fish. PLoS ONE 9(12):e114639

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathon L, Marques V, Mouillot D, Albouy C, Andrello M, Baletaud F, Borrero-Pérez GH, Dejean T, Edgar GJ, Grondin J, Guerin PE, Hocdé R, Juhel JB, Kadarusman ME, Mariani G, McLean M, Polanco FA, Pouyaud L, Manel S (2022) Cross-ocean patterns and processes in fish biodiversity on coral reefs through the lens of eDNA metabarcoding. Proc R Soc B Biol Sci 289(1973):20220162

    Article  CAS  Google Scholar 

  • Mattos F, Yeemin T, Sutthacheep M, Feitosa J (2023) Biogeographic and environmental drivers of reef fish diversity in coastal islands of the Gulf of Thailand. Mar Ecol Prog Ser 724:33–46

    Article  Google Scholar 

  • McDevitt AD, Sales NG, Browett SS, Sparnenn AO, Mariani S, Wangensteen OS, Coscia I, Benvenuto C (2019) Environmental DNA metabarcoding as an effective and rapid tool for fish monitoring in canals. J Fish Biol 95(2):679–682

    Article  CAS  PubMed  Google Scholar 

  • McLean M, Auber A, Graham NAJ, Houk P, Villéger S, Violle C, Thuiller W, Wilson SK, Mouillot D (2019) Trait structure and redundancy determine sensitivity to disturbance in marine fish communities. Glob Change Biol 25(10):3424–3437

    Article  Google Scholar 

  • Mihalitsis M, Bellwood DR (2019) Morphological and functional diversity of piscivorous fishes on coral reefs. Coral Reefs 38(5):945–954

    Article  Google Scholar 

  • Ministry of Agriculture Forestry and Fisheries Cambodia 2007. Law on Fisheries [Online]. Available from: https://faolex.fao.org/docs/pdf/cam82001.pdf.

  • Minton G, Smith BD, Braulik GT, Kreb D, Sutaria D, Reeves R (2018). Orcaella brevirostris. The IUCN Red List of Threatened Species 2017: e.T15419A123790805. [Online]. [Accessed 19 February 2024]. Available from: https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T15419A50367860.en

  • Miya M, Sato Y, Fukunaga T, Sado T, Poulsen J, Sato K, Minamoto T, Yamamoto S, Yamanaka H, Araki H (2015) MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R Soc Open Sci 2(7):150088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouillot D, Bellwood DR, Baraloto C, Chave J, Galzin R, Harmelin-Vivien M, Kulbicki M, Lavergne S, Lavorel S, Mouquet N (2013) Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol 11(5):e1001569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouillot D, Villéger S, Parravicini V, Kulbicki M, Arias-González JE, Bender M, Chabanet P, Floeter SR, Friedlander A, Vigliola L, Bellwood DR (2014) Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc Natl Acad Sci 111(38):13757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami H, Yoon S, Kasai A, Minamoto T, Yamamoto S, Sakata MK, Horiuchi T, Sawada H, Kondoh M, Yamashita Y (2019) Correction to: dispersion and degradation of environmental DNA from caged fish in a marine environment. Fish Sci 85(6):1109–1109

    Article  CAS  Google Scholar 

  • Nagelkerken I, van der Velde G, Gorissen MW, Meijer GJ, Van’t Hof, T. and den Hartog, C. (2000) Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuar Coast Shelf Sci 51(1):31–44

    Article  Google Scholar 

  • Nagelkerken I, Roberts CM, van der Velde G, Dorenbosch M, van Riel MC, de la Morinière EC, Nienhuis PH (2002) How important are mangroves and seagrass beds for coral-reef fish? The nursery hypothesis tested on an island scale. Mar Ecol Prog Ser 244:299–305

    Article  Google Scholar 

  • Nagelkerken I (2009) Evaluation of nursery function of mangroves and seagrass beds for tropical decapods and reef fishes: patterns and underlying mechanisms. Ecological connectivity among tropical coastal ecosystems. Springer, pp. 357–399

  • Nakabo T (2013) Fishes of Japan with pictorial keys to the species = Nihon-san gyorui kensaku: Zenshu no d-otei Third. Tokai University Press

  • Nakamura Y, Tsuchiya M (2008) Spatial and temporal patterns of seagrass habitat use by fishes at the Ryukyu Islands, Japan. Estuar Coast Shelf Sci 76(2):345–356

    Article  Google Scholar 

  • Nguyen BN, Shen EW, Seemann J, Correa AMS, O’Donnell JL, Altieri AH, Knowlton N, Crandall KA, Egan SP, McMillan WO, Leray M (2020) Environmental DNA survey captures patterns of fish and invertebrate diversity across a tropical seascape. Sci Rep 10(1):6729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • OBIS (2024) OBIS mapper tool. OBIS Mapper. [Online]. Available from: https://mapper.obis.org/

  • Oka S, Doi H, Miyamoto K, Hanahara N, Sado T, Miya M (2021) Environmental DNA metabarcoding for biodiversity monitoring of a highly diverse tropical fish community in a coral reef lagoon: Estimation of species richness and detection of habitat segregation. Environ DNA 3:55–69

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2020). Vegan: Community ecology package. R package version 2.5-7

  • Pelletier D, Leleu K, Mou-Tham G, Guillemot N, Chabanet P (2011) Comparison of visual census and high definition video transects for monitoring coral reef fish assemblages. Fish Res 107(1–3):84–93

    Article  Google Scholar 

  • Petchey OL, Gaston KJ (2002) Extinction and the loss of functional diversity. Proc R Soc Lond Ser B Biol Sci 269(1501):1721–1727

    Article  Google Scholar 

  • Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9(6):741–758. https://doi.org/10.1111/ele.2006.9.issue-6https://doi.org/10.1111/j.1461-0248.2006.00924.x

  • Pin K, Nut S, Hogan ZS, Chandra S, Saray S, Touch B, Chheng P, Ngor PB (2020) Cambodian freshwater fish assemblage structure and distribution patterns: using a large-scale monitoring network to understand the dynamics and management implications of species clusters in a global biodiversity hotspot. Water 12(9):2506

    Article  Google Scholar 

  • Porter TM, Hajibabaei M (2018) Scaling up: a guide to high-throughput genomic approaches for biodiversity analysis. Mol Ecol 27(2):313–338

    Article  PubMed  Google Scholar 

  • R Core Team (2023) R: a language and environment for statistical computing. Available from: <https://www.R-project.org/>

  • Reid A, Haissoune A, Ferber P (2019) The status of coral reefs and seagrass meadows in the Kep Archipelago. Cambodian J Nat Hist 1:24–39

    Google Scholar 

  • Reimer JD, Biondi P, Lau YW, Masucci GD, Nguyen XH, Santos ME, Wee HB (2019) Marine biodiversity research in the Ryukyu Islands, Japan: current status and trends. PeerJ 7:e6532

    Article  PubMed  PubMed Central  Google Scholar 

  • Richards ZT (2013) A comparison of proxy performance in coral biodiversity monitoring. Coral Reefs 32(1):287–292

    Article  Google Scholar 

  • Rincón-Díaz MP, Bovcon ND, Cochia PD, Góngora ME, Galván DE (2021) Fish functional diversity as an indicator of resilience to industrial fishing in Patagonia Argentina. J Fish Biol 99(5):1650–1667

    Article  PubMed  Google Scholar 

  • Roberts CM, Ormond RF (1987) Habitat complexity and coral reef fish diversity and abundance on Red Sea fringing reefs. Mar Ecol Prog Ser pp 1–8

  • Roff G, Mumby PJ (2012) Global disparity in the resilience of coral reefs. Trends Ecol Evol 27(7):404–413

    Article  PubMed  Google Scholar 

  • Rogers A, Blanchard JL, Mumby PJ (2018) Fisheries productivity under progressive coral reef degradation. J Appl Ecol 55(3):1041–1049

    Article  Google Scholar 

  • Rourke ML, Fowler AM, Hughes JM, Broadhurst MK, DiBattista JD, Fielder S, Wilkes Walburn J, Furlan EM (2022) Environmental DNA (eDNA) as a tool for assessing fish biomass: a review of approaches and future considerations for resource surveys. Environ DNA 4(1):9–33

    Article  CAS  Google Scholar 

  • Satapoomin U (2000) A preliminary checklist of coral reef fishes of the Gulf of Thailand, South China Sea. Raffles Bull Zool 48(1):31–54

    Google Scholar 

  • Savage J, Osborne P, Hudson M (2013) Abundance and diversity of marine flora and fauna of protected. Cambodian J Nat Hist, p. 83

  • Scaps P, Scott C (2014) An update to the list of coral reef fishes from Koh Tao, Gulf of Thailand. Check List 10(5):1123–1133

    Article  Google Scholar 

  • Sigsgaard EE, Nielsen IB, Carl H, Krag MA, Knudsen SW, Xing Y, Holm-Hansen TH, Møller PR, Thomsen PF (2017) Seawater environmental DNA reflects seasonality of a coastal fish community. Mar Biol 164:1–15

    Article  CAS  Google Scholar 

  • Sigsgaard EE, Torquato F, Frøslev TG, Moore AB, Sørensen JM, Range P, Ben-Hamadou R, Bach SS, Møller PR, Thomsen PF (2020) Using vertebrate environmental DNA from seawater in biomonitoring of marine habitats. Conserv Biol 34(3):697–710

    Article  PubMed  Google Scholar 

  • Spens J, Evans AR, Halfmaerten D, Knudsen SW, Sengupta ME, Mak SST, Sigsgaard EE, Hellström M (2017) Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: advantage of enclosed filter. Methods Ecol Evol 8(5):635–645

    Article  Google Scholar 

  • Stoeckle MY, Soboleva L, Charlop-Powers Z (2017) Aquatic environmental DNA detects seasonal fish abundance and habitat preference in an urban estuary. PLoS ONE 12(4):e0175186

    Article  PubMed  PubMed Central  Google Scholar 

  • Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E (2012) Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol 21(8):2045–2050

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi A, Iijima T, Kakuzen W, Watanabe S, Yamada Y, Okamura A, Horie N, Mikawa N, Miller MJ, Kojima T, Tsukamoto K (2019) Release of eDNA by different life history stages and during spawning activities of laboratory-reared Japanese eels for interpretation of oceanic survey data. Sci Rep 9(1):6074

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor PG (1996) Reproducibility of ancient DNA sequences from extinct Pleistocene fauna. Mol Biol Evol 13(1):283–285

    Article  CAS  PubMed  Google Scholar 

  • Teoh M, Sour K, Glue M, Chea P (2020) Marine protected areas in Cambodia: a call for collaborative action. Cambodian J Nat Hist 2020:1–6

    Google Scholar 

  • Thalinger B, Deiner K, Harper LR, Rees HC, Blackman RC, Sint D, Traugott M, Goldberg CS, Bruce K (2021) A validation scale to determine the readiness of environmental DNA assays for routine species monitoring. Environ DNA 3(4):823–836. https://doi.org/10.1002/edn3.189

    Article  Google Scholar 

  • Thomsen PF, Willerslev E (2015) Environmental DNA-An emerging tool in conservation for monitoring past and present biodiversity. Biol Cons 183:4–18

    Article  Google Scholar 

  • Thomsen PF, Møller PR, Sigsgaard EE, Knudsen SW, Jørgensen OA, Willerslev E (2016) Environmental DNA from seawater samples correlate with trawl catches of subarctic, deepwater fishes. PLoS ONE 11(11):e0165252

    Article  PubMed  PubMed Central  Google Scholar 

  • Thorne B, Mulligan B, Mag Aoidh R, Longhurst K (2015) Current status of coral reef health around the Koh Rong Archipelago, Combodia. Cambodian J Nat Hist 2015:98–113

    Google Scholar 

  • Tilman D (2001) Functional diversity. In Levin SA (ed) Encyclopedia of biodiversity [Online]. New York: Elsevier, pp. 109–120. [Accessed 19 February 2024]. Available from: https://www.sciencedirect.com/science/article/pii/B0122268652001322

  • Troyer EM, Coker DJ, Berumen ML (2018) Comparison of cryptobenthic reef fish communities among microhabitats in the Red Sea. PeerJ 6:e5014

    Article  PubMed  PubMed Central  Google Scholar 

  • Tubbs SE, Keen E, Jones A, Thap R (2020) On the distribution, behaviour and seasonal variation of Irrawaddy dolphins (Orcaella brevirostris) in the Kep Archipelago. Cambodia Raffles Bull Zool 68:137–149

    Google Scholar 

  • Vergés A, McCosker E, Mayer-Pinto M, Coleman MA, Wernberg T, Ainsworth T, Steinberg PD (2019) Tropicalisation of temperate reefs: implications for ecosystem functions and management actions. Funct Ecol 33(6):1000–1013

    Article  Google Scholar 

  • Verweij MC, Nagelkerken I, Hans I, Ruseler SM, Mason PRD (2008) Seagrass nurseries contribute to coral reef fish populations. Limnol Oceanogr 53(4):1540–1547. https://doi.org/10.4319/lo.2008.53.4.1540

    Article  Google Scholar 

  • Wang JY, Reeves R (2017) Neophocaena phocaenoides. The IUCN Red List of Threatened Species 2017: e.T198920A50386795. [Online]. [Accessed 19 February 2024]. Available from: https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T198920A50386795.en

  • West KM, Stat M, Harvey ES, Skepper CL, DiBattista JD, Richards ZT, Travers MJ, Newman SJ, Bunce M (2020) eDNA metabarcoding survey reveals fine-scale coral reef community variation across a remote, tropical island ecosystem. Mol Ecol 29(6):1069–1086. https://doi.org/10.1111/mec.15382

    Article  CAS  PubMed  Google Scholar 

  • Wickham H, Chang W, Wickham MH (2016) Package ‘ggplot2’. Create Elegant Data Visualisations Using the Grammar of Graphics. 2(1):1–189

  • Woodhead AJ, Hicks CC, Norström AV, Williams GJ, Graham NAJ (2019) Coral reef ecosystem services in the anthropocene. Funct Ecol 33(6):1023–1034. https://doi.org/10.1111/1365-2435.13331

    Article  Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci 96(4):1463–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou K, Chen J, Ruan H, Li Z, Guo W, Li M, Liu L (2020) eDNA metabarcoding as a promising conservation tool for monitoring fish diversity in a coastal wetland of the Pearl River Estuary compared to bottom trawling. Sci Total Environ 702:134704

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Fauna & Flora, funded by Arcadia, Blue Action Fund and FAO under the Cambodia Marine Program. Field surveys were led by Matthew Glue, Morokot Long and Srey Oun Ith, and we would like to thank Sorn Srenh and the Song Saa Foundation for their tireless field survey efforts. We also like to thank the Fisheries Administration and the Ministry of Environment, Royal Government of Cambodia for their support in permission to conduct these surveys.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Charlotte G. Clay or Fabian Gösser.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1129 kb)

Supplementary file 2 (XLSX 132 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clay, C.G., Gösser, F., Glue, M. et al. Exploring species and functional diversity of fishes in Cambodian coastal habitats using eDNA metabarcoding. Coral Reefs 44, 221–241 (2025). https://doi.org/10.1007/s00338-024-02599-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00338-024-02599-1

Keywords