Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Methyl Jasmonate and Pseudomonas fluorescens Synergistically Boost Antioxidative Defense, Secondary Metabolites, and Osmolyte Production to Enhance Drought Resilience in Mustard

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Drought stress poses a significant threat to crop productivity worldwide, necessitating innovative approaches to mitigate its adverse impact on crops. This study investigates the combined effects of methyl jasmonate and Pseudomonas fluorescens (P. fluorescens) under drought conditions in providing resilience to mustard plants (Brassica juncea) by bolstering antioxidative defense mechanisms, elevating secondary metabolite production, and promoting osmolyte accumulation. Under drought stress, mustard plants exhibited reduced growth and increased oxidative stress markers malondialdehyde and H2O2. However, the application of MeJA and P. fluorescens resulted in a substantial improvement in plant growth, as indicated by increased photosynthesis and shoots and root biomass with decrease in oxidative stress. This enhancement was attributed to an upregulation of antioxidative enzymes, including superoxide dismutase, catalase, and ascorbate peroxidase and glutathione reductase which collectively reduced reactive oxygen species levels and prevented oxidative damage. Furthermore, in combination they significantly enhanced the production of secondary metabolites and osmolytes enabling mustard plants to maintain cellular turgor and osmotic balance under drought conditions together with improved stress tolerance. In conclusion, these findings provide valuable insights into sustainable strategies for improving crop resilience to drought, with potential applications in agriculture to mitigate the adverse effects of climate change on crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abbaoui B, Lucas CR, Riedl KM, Clinton SK, Mortazavi A (2018) Cruciferous vegetables, isothiocyanates, and bladder cancer prevention. Mol Nutr Food Res 62(18):1800079

    Google Scholar 

  • Abdela AA, Barka GD, Degefu T (2020) Co-inoculation effect of Mesorhizobium ciceri and Pseudomonas fluorescens on physiological and biochemical responses of Kabuli chickpea (Cicer arietinum L.) during drought stress. Plant Physiol Rep 25:359–369

    CAS  Google Scholar 

  • Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc 2(4):875–877

    CAS  PubMed  Google Scholar 

  • Akhtar SS, Amby DB, Hegelund JN, Fimognari L, Großkinsky DK, Westergaard JC, Roitsch T (2020) Bacillus licheniformis FMCH001 increases water use efficiency via growth stimulation in both normal and drought conditions. Front Plant Sci 11:297

    PubMed  PubMed Central  Google Scholar 

  • Ali MS, Baek KH (2020) Jasmonic acid signaling pathway in response to abiotic stresses in plants. Int J Mol Sci 21(2):621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ali MB, El-Sadek AN (2016) Evaluation of drought tolerance indices for wheat (Triticum aestivum L) under irrigated and rainfed conditions. Commun Biometry Crop 11(1):77–89

    Google Scholar 

  • Allakhverdiev SI (2020) Optimising photosynthesis for environmental fitness Funct. Plant Biol 47(11):iii–vii

    Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anjum SA, Xie X, Wang LC, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6(9):2026–2032

    Google Scholar 

  • Anjum SA, Ashraf U, Zohaib A, Tanveer M, Naeem M, Ali I, Nazir U (2017) Growth and developmental responses of crop plants under drought stress: a review. Zemdirbyste 104(3):267–276

    Google Scholar 

  • Ansari FA, Ahmad I, Pichtel J (2023) Synergistic effects of biofilm-producing PGPR strains on wheat plant colonization, growth and soil resilience under drought stress. Saudi J Biol Sci 30(6):103664

    Google Scholar 

  • Arunthavasu R, Thangavel K, Uthandi S (2019) Impact of drought-tolerant rice apoplastic fluid endophyte (Sphingobium yanoikuyae MH394206) on the morphological and physiological characteristics of rice (CO51) grown in moisture deficit condition. Madras Agric J 10(1–3):1

    Google Scholar 

  • Ashraf MA, Riaz M, Arif MS, Rasheed R, Iqbal M, Hussain I, Mubarik MS (2019) The role of non-enzymatic antioxidants in improving abiotic stress tolerance in plants. Plant tolerance to environmental stress. CRC Press, pp 129–144

    Google Scholar 

  • Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:1–31

    CAS  Google Scholar 

  • Ayuso-Calles M, García-Estévez I, Jiménez-Gómez A, Flores-Félix JD, Escribano-Bailón MT, Rivas R (2020) Rhizobium laguerreae improves productivity and phenolic compound content of lettuce (Lactuca sativa L.) under saline stress conditions. Foods 9(9):1166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E et al (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473

    PubMed  PubMed Central  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413

    Google Scholar 

  • Barnawal D, Singh R, Singh RP (2019) Role of plant growth promoting rhizobacteria in drought tolerance: regulating growth hormones and osmolytes. PGPR amelioration in sustainable agriculture. Woodhead Publishing, pp 107–128

    Google Scholar 

  • Bates LS, Waldren RA, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    CAS  Google Scholar 

  • Batool T, Ali S, Seleiman MF, Naveed NH, Ali A, Ahmed K, Mubushar M (2020) Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Sci Rep 10(1):16975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276–287

    CAS  PubMed  Google Scholar 

  • Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195(1):133–140

    CAS  PubMed  Google Scholar 

  • Boudet AM (2007) Evolution and current status of research in phenolic compounds. Phytochem 68(22–24):2722–2735

    CAS  Google Scholar 

  • Campos ML, Kang JH, Howe GA (2014) Jasmonate-triggered plant immunity. J Chem Ecol 40:657–675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CC, Yang MH, Wen HM, Chern JC (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10:178–182

    CAS  Google Scholar 

  • Dar TA, Uddin M, Khan MMA, Hakeem KR, Jaleel H (2015) Jasmonates counter plant stress: a review. Environ Exp Bot 115:49–57

    CAS  Google Scholar 

  • Demine S, Reddy N, Renard P, Raes M, Arnould T (2014) Unraveling biochemical pathways affected by mitochondrial dysfunctions using metabolomic approaches. Metabolites 4:831–878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dey PM (1990) Oligosaccharides. Methods in plant biochemistry, vol 2. Academic Press, pp 189–218

    Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379

    CAS  Google Scholar 

  • Duan B, Li L, Chen G, Su-Zhou C, Li Y, Merkeryan H, Liu X (2021) 1-Aminocyclopropane-1-Carboxylate deaminase-producing plant growth-promoting rhizobacteria improve drought stress tolerance in grapevine (Vitis vinifera L.). Front Plant Sci 12:706990

    PubMed  PubMed Central  Google Scholar 

  • Đurić M, Subotić A, Trifunović-Momčilov M, Milošević S (2023) Improvement of water deficit stress tolerance of Impatiens walleriana shoots grown in vitro by methyl jasmonate. Plant Cell Tissue Organ Cult 154(2):351–365

    Google Scholar 

  • Etesami H, Alikhani HA, Mirseyed Hosseini H (2015) Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX 2:72–78

    PubMed  PubMed Central  Google Scholar 

  • Farooq M, Wahid A, Kobayashi NSMA, Fujita DBSMA, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Sustainable agriculture. Springer, pp 153–188

    Google Scholar 

  • Farooq M, Hussain M, Siddique KH (2014) Drought stress in wheat during flowering and grain-filling periods. Crit Rev Plant Sci 33(4):331–349

    CAS  Google Scholar 

  • Fatma M, Iqbal N, Sehar Z, Alyemeni MN, Kaushik P, Khan NA, Ahmad P (2021) Methyl jasmonate protects the PS II system by maintaining the stability of chloroplast D1 protein and accelerating enzymatic antioxidants in heatstressed wheat plants. Antioxidants 10(8):1216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flexas J, Díaz-Espejo A, Conesa MA, Coopman RE, Douthe C, Gago J, Gallé A, Galmés J, Medrano H, Ribas-Carbo M, Tomàs M, Niinemets Ü (2016) Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant Cell Environ 39(5):965–982

    CAS  PubMed  Google Scholar 

  • Fujiyama BS, Silva ARBE, Silva Júnior MLD, Cardoso NRP, Fonseca ABD, Viana RG, Sampaio LS (2019) Boron fertilization enhances photosynthesis and water use efficiency in soybean at vegetative growth stage. Journal Plant Nutr 42:2498–2506

    CAS  Google Scholar 

  • Gharibi S, Tabatabaei BES, Saeidi G, Goli SAH (2016) Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of Achillea species. Appl Biochem Biotechnol 178:796–809

    CAS  PubMed  Google Scholar 

  • Ghasemzadeh A, Talei D, Jaafar HZ, Juraimi AS, Mohamed MTM, Puteh A, Halim MRA (2016) Plant-growth regulators alter phytochemical constituents and pharmaceutical quality in Sweet potato (Ipomoea batatas L.). BMC Complement Altern Med 16:1–13

    Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London, p 270

    Google Scholar 

  • Grieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307

    CAS  Google Scholar 

  • Grover M, Bodhankar S, Sharma A, Sharma P, Singh J, Nain L (2021) PGPR mediated alterations in root traits: way toward sustainable crop production. Front Sustain Food Syst 4:2020

    Google Scholar 

  • Gupta S, Pandey S (2019) ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Front Microbiol 10:1506

    PubMed  PubMed Central  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    CAS  PubMed  Google Scholar 

  • Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Canad J Bot 57(12):1332–1334

    CAS  Google Scholar 

  • Ilyas N, Mumtaz K, Akhtar N, Yasmin H, Sayyed RZ, Khan W, Ali Z (2020) Exopolysaccharides producing bacteria for the amelioration of drought stress in wheat. Sustainability 12(21):8876

    CAS  Google Scholar 

  • Iqbal S, Wang X, Mubeen I, Kamran M, Kanwal I, Díaz GA, Fahad S (2022) Phytohormones trigger drought tolerance in crop plants: outlook and future perspectives. Front Plant Sci 12:3378

    Google Scholar 

  • Jablonski PP, Anderson JW (1978) Light-dependent reduction of oxidized glutathione by ruptured chloroplasts. Plant Physiol 61(2):221–225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jafari SH, Arani AM, Esfahani ST (2023) The combined effects of rhizobacteria and methyl jasmonate on rosmarinic acid production and gene expression profile in Origanum vulgare l. under salinity conditions. J Plant Growth Regul 42:1472–1487

    CAS  Google Scholar 

  • Jain NK, Roy I (2010) Trehalose and protein stability. Curr Prot Protein Sci 59(1):4–9

    Google Scholar 

  • Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802

    Google Scholar 

  • Kasim WA, Osman ME, Omar MN, Salama S (2021) Enhancement of drought tolerance in Triticum aestivum L. seedlings using Azospirillum brasilense NO40 and Stenotrophomonas maltophilia B11. Bull Natl Res Centre 45(1):95

    Google Scholar 

  • Kaya C, Higgs D (2003) Supplementary potassium nitrate improves salt tolerance in bell pepper plants. J Plant Nutr 26(7):1367–1382

    CAS  Google Scholar 

  • Khan N, Bano A, Zandi P (2018) Effects of exogenously applied plant growth regulators in combination with PGPR on the physiology and root growth of chickpea (Cicer arietinum) and their role in drought tolerance. J Plant Interact 13(1):239–247

    CAS  Google Scholar 

  • Khan N, Bano A, Rahman MA, Guo J, Kang Z, Babar MA (2019) Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Sci Rep 9(1):2097

    PubMed  PubMed Central  Google Scholar 

  • Khan V, Umar S, Iqbal N (2023a) Palliating salt stress in mustard through plant-Growth-Promoting rhizobacteria: Regulation of secondary metabolites, osmolytes, antioxidative enzymes and stress ethylene. Plants 12(4):705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan V, Umar S, Iqbal N (2023b) Synergistic action of Pseudomonas fluorescens with melatonin attenuates salt toxicity in mustard by regulating antioxidant system and flavonoid profile. Physiol Plant 175:e14092

    PubMed  Google Scholar 

  • Koca N, Karaman Ş (2015) The effects of plant growth regulators and L-phenylalanine on phenolic compounds of sweet basil. Food Chem 166:515–521

    CAS  PubMed  Google Scholar 

  • Kosar F, Akram NA, Sadiq M, Al-Qurainy F, Ashraf M (2019) Trehalose: a key organic osmolyte effectively involved in plant abiotic stress tolerance. J Plant Growth Regul 38:606–618

    CAS  Google Scholar 

  • Kour D, Khan SS, Kaur T, Kour H, Singh G, Yadav A, Yadav AN (2022) Drought adaptive microbes as bioinoculants for the horticultural crops. Heliyon 8:e09493

    PubMed  PubMed Central  Google Scholar 

  • Kumar D, Yusuf MA, Singh P, Sardar M, Sarin NB (2014) Histochemical detection of superoxide and H2O2 accumulation in Brassica juncea seedlings. Bio-Protoc 4(8):e1108–e1108

    Google Scholar 

  • Laxa M, Liebthal M, Telman W, Chibani K, Dietz KJ (2019) The role of the plant antioxidant system in drought tolerance. Antioxidants 8(4):94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li HW, Zang BS, Deng XW, Wang XP (2011) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234:1007–1018

    CAS  PubMed  Google Scholar 

  • Li ZG, Luo LJ, Zhu LP (2014) Involvement of trehalose in hydrogen sulfide donor sodium hydrosulfide-induced the acquisition of heat tolerance in maize (Zea mays L.) seedlings. Bot Stud 55:1–9

    CAS  Google Scholar 

  • Ma C, Wang ZQ, Zhang LT, Sun MM, Lin TB (2014) Photosynthetic responses of wheat (Triticum aestivum L.) to combined effects of drought and exogenous methyl jasmonate. Photosynthetica 52:377–385

    CAS  Google Scholar 

  • Ma Y, Dias MC, Freitas H (2020) Drought and salinity stress responses and microbe-induced tolerance in plants. Front Plant Sci 11:2020

    Google Scholar 

  • Mahmood S, Daur I, Al-Solaimani SG, Ahmad S, Madkour MH, Yasir M, Hirt H, Ali S, Ali Z (2016) Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front Plant Sci 7:2016

    Google Scholar 

  • Mancinelli AL (1984) Photoregulation of anthocyanin synthesis: VIII. Effect of light pretreatments. Plant Physiol 75(2):447–453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mansour E, Mahgoub HA, Mahgoub SA, El-Sobky ESE, Abdul-Hamid MI, Kamara MM, Desoky ESM (2021) Enhancement of drought tolerance in diverse Vicia faba cultivars by inoculation with plant growth-promoting rhizobacteria under newly reclaimed soil conditions. Sci Rep 11(1):24142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mechri B, Tekaya M, Cheheb H, Attia F, Hammami M (2015) Accumulation of flavonoids and phenolic compounds in olive tree roots in response to mycorrhizal colonization: a possible mechanism for regulation of defense molecules. Plant Physiol 185:40–43

    CAS  Google Scholar 

  • Meng LL, Song JF, Wen J, Zhang J, Wei JH (2016) Effects of drought stress on fluorescence characteristics of photosystem II in leaves of Plectranthus scutellarioides. Photosynthetica 54(3):414–421

    CAS  Google Scholar 

  • Miranshahi B, Sayyari M (2016) Methyl jasmonate mitigates drought stress injuries and affects essential oil of summer savory. J Agric Sci Technol 18(6):1635–1645

    Google Scholar 

  • Mishra SK, Khan MH, Misra S, Dixit VK, Gupta S, Tiwari S, Chauhan PS (2020) Drought tolerant Ochrobactrum sp. inoculation performs multiple roles in maintaining the homeostasis in Zea mays L. subjected to deficit water stress. Plant Physiol Biochem 150:1–14

    CAS  PubMed  Google Scholar 

  • Mohamed HI, El-Shazly HH, Badr A (2020) Role of salicylic acid in biotic and abiotic stress tolerance in plants. Plant Phenolics Sus Agric 1:533–554

    Google Scholar 

  • Moubayidin L, Di Mambro R, Sabatini S (2009) Cytokinin-auxin crosstalk. Trends Plant Sci 14:557–562

    CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1987) Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol 28(1):131–140

    CAS  Google Scholar 

  • Niu X, Song L, Xiao Y, Ge W (2018) Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front Microbiol 8:2580

    PubMed  PubMed Central  Google Scholar 

  • Overvoorde P, Fukaki H, Beeckman T (2011) Auxin control of root development. Cold Spring Harb Perspect Biol 2:a001537

    Google Scholar 

  • Pallai R, Hynes RK, Verma B, Nelson LM (2012) Phytohormone production and colonization of canola (Brassica napus L.) roots by Pseudomonas fluorescens 6–8 under gnotobiotic conditions. Can J Microbiol 58:2

    Google Scholar 

  • Rehman M, Saeed MS, Fan X, Salam A, Munir R, Yasin MU, Khan AR, Muhammad S, Ali B, Ali I, Khan J, Gan Y (2023) The multifaceted role of jasmonic acid in plant stress mitigation: an overview. Plants 12:3982

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci 104(49):19631–19636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roychoudhury A, Banerjee A (2016) Endogenous glycine betaine accumulation mediates abiotic stress tolerance in plants. Trop Plant Res 3(1):105–111

    Google Scholar 

  • Sandhya V, Z ASK, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26

    CAS  Google Scholar 

  • Sehar Z, Fatma M, Khan S, Mir IR, Abdi G, Khan NA (2023) Melatonin influences methyl jasmonate-induced protection of photosynthetic activity in wheat plants against heat stress by regulating ethylene-synthesis genes and antioxidant metabolism. Sci Rep 13(1):7468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serna L (2022) Maize stomatal responses against the climate change. Front Plant Sci 13:1. https://doi.org/10.3389/fpls.2022.952146

    Article  Google Scholar 

  • Shekhawat K, Rathor SS, Premi OP, Kandpal BK, Chauhan JS (2012) Advances in agronomic management of Indian mustard (Brassica juncea (L.) Czernj. Cosson): an overview. Int J Agron 2012:1–14

    Google Scholar 

  • Shirinbayan S, Khosravi H, Malakouti MJ (2019) Alleviation of drought stress in maize (Zea mays) by inoculation with Azotobacter strains isolated from semi-arid regions. Appl Soil Ecol 133:138–145

    Google Scholar 

  • Silva R, Filgueiras L, Santos B, Coelho M, Silva M, Estrada-Bonilla G, Meneses C (2020) Gluconacetobacter diazotrophicus changes the molecular mechanisms of root development in Oryza sativa L. growing under water stress. Int J Mol Sci 21(1):333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siracusa L, Gresta F, Sperlinga E, Ruberto G (2017) Effect of sowing time and soil water content on grain yield and phenolic profile of four buckwheat (Fagopyrum esculentum Moench.) varieties in a Mediterranean environment. J Food Compos Anal 62:1–7

    CAS  Google Scholar 

  • Srivastava K, Srivastava A, Sinha B (2021) Analysis of drought susceptibility index in Indian mustard [Brassica juncea (L.) czern and coss]. Indian J Agric Res 55(4):446–451

    Google Scholar 

  • Stepanova AN, Alonso JM (2009) Ethylene signaling and response: where different regulatory modules meet. Curr Opin Plant Biol 12:548–555

    CAS  PubMed  Google Scholar 

  • Susilowati A, Puspita AA, Yunus A (2018) Drought resistant of bacteria producing exopolysaccharide and IAA in rhizosphere of soybean plant (Glycine max) in Wonogiri Regency Central Java Indonesia. In: IOP conference series: earth and environmental science, vol 142. IOP Publishing, p. 012058.

  • Tomar V, Das N, Chauhan H, Roy P (2021) Sircar D (2021) Closed polybag foliar methyl-jasmonate treatment: New technology for rapid enhancement of bioactive withanolide biosynthesis in field-grown plants of Withania somnifera. Industrial Crops Product 162:113262

    CAS  Google Scholar 

  • Usuda H (1985) The activation state of ribulose 1, 5-bisphosphate carboxylase in maize leaves in dark and light. Plant Cell Physiol 26(8):1455–1463

    CAS  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    PubMed  PubMed Central  Google Scholar 

  • Valifard M, Mohsenzadeh S, Kholdebarin B, Rowshan V (2014) Effects of salt stress on volatile compounds, total phenolic content and antioxidant activities of Salvia mirzayanii. S Afr J Bot 93:92–97

    CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva AJPS (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151(1):59–66

    CAS  Google Scholar 

  • Wang X, Liu H, Yu F, Hu B, Jia Y, Sha H, Zhao H (2019) Differential activity of the antioxidant defence system and alterations in the accumulation of osmolyte and reactive oxygen species under drought stress and recovery in rice (Oryza sativa L.) tillering. Sci Rep 9(1):8543

    PubMed  PubMed Central  Google Scholar 

  • Wang J, Song L, Gong X, Xu J, Li M (2020) Functions of jasmonic acid in plant regulation and response to abiotic stress. Int J Mol Sci 21(4):1446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wasternack C, Strnad M (2018) Jasmonates: news on occurrence, biosynthesis, metabolism and action of an ancient group of signaling compounds. Int J Mol Sci 19(9):2539

    PubMed  PubMed Central  Google Scholar 

  • Wu H, Wu X, Li Z, Duan L, Zhang M (2012) Physiological evaluation of drought stress tolerance and recovery in cauliflower (Brassica oleracea L) seedlings treated with methyl jasmonate and coronatine. J Plant Growth Regul 31:113–123

    CAS  Google Scholar 

  • Wu G, Liu Y, Xu Y, Zhang G, Shen Q, Zhang R (2018) Exploring elicitors of the beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 to induce plant systemic resistance and their interactions with plant signaling pathways. Mol Plant Microbe Interact 31(5):560–567

    CAS  PubMed  Google Scholar 

  • Xiong B, Wang Y, Zhang Y, Ma M, Gao Y, Zhou Z, Wang Z (2020) Alleviation of drought stress and the physiological mechanisms in Citrus cultivar (Huangguogan) treated with methyl jasmonate. Biosci Biotechnol Biochem 84(9):1958–1965

    CAS  PubMed  Google Scholar 

  • Xu P, Zhap P-X, Cai XT, Mao JL, Miao ZQ, Xing CB (2020) Integration of jasmonic acid and ethylene into auxin signaling in root development. Front Plant Sci 11:2020

    Google Scholar 

  • Yan Z, Zhang W, Chen J, Li X (2015) Methyl jasmonate alleviates cadmium toxicity in Solanum nigrum by regulating metal uptake and antioxidative capacity. Biol Plant 59(2):373–381

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, NI; methodology, VK, MM; validation, NI and SU; formal analysis, VK and P; investigation, VK and NI; data curation, VK, P and MM; writing-original draft preparation, NI and VK; writing-review and editing, NI and SU; supervision, SU and NI; All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Shahid Umar or Noushina Iqbal.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Péter Poór.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, V., Princi, Mubashshir, M. et al. Methyl Jasmonate and Pseudomonas fluorescens Synergistically Boost Antioxidative Defense, Secondary Metabolites, and Osmolyte Production to Enhance Drought Resilience in Mustard. J Plant Growth Regul 44, 198–216 (2025). https://doi.org/10.1007/s00344-024-11310-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00344-024-11310-1

Keywords