Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Body mass explains digestive traits in small vespertilionid bats

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Bats are unique among mammals in that they have evolved the capacity to fly. This has generated strong selective pressure on the morphology and function of their digestive system. Given that in bats intestinal length and nominal surface-area are proportional to body mass, this trait importantly relates to explaining some of their digestive characteristics. We described the relationship between digestive traits and body mass of four species of bats of the family Vespertilionidae living in a montane ecosystem in central Mexico. We calculated food transit time, apparent dry matter digestibility, and defecation rate in feeding trials under captive conditions. We also: (1) built a model of the relationship between digestive traits and body mass to determine if this association was consistent within the members of the family Vespertilionidae, and (2) mapped these traits along the phylogeny to explore how digestive characteristics may have evolved. In our feeding trials, body mass was positively related to transit time and negatively related to apparent dry matter digestibility. The model predicted accurately the transit time in bats with body mass < 20 g. The phylogenetic approach suggested that over the evolutionary history of the family, transit time decreased as digestibility increased. Because of the results obtained here, it is likely that for most bats of the family Vespertilionidae, adaptations in digestive traits to process food have followed evolutionary changes in their body mass. We discuss these findings in a physiological and ecological context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The submission of our material includes two complementary material which supports the data analyzed and the results presented in this investigation.

References

  • Acosta A, Kong A (1991) Guía de las excursiones botánicas y micológicas al Cerro del Peñón y Cañada Grande del Estado de Tlaxcala. IV Congreso Nacional de Micología Folleto de divulgación

  • Arlettaz R (1996) Feeding behaviour and foraging strategy of free-living mouse-eared bats, Myotis myotis and Myotis blythii. Anim behav 51:1–11

    Article  Google Scholar 

  • Arlettaz R (1999) Habitat selection as a major resource partitioning mechanism between the two sympatric sibling bat species Myotis myotis and Myotis blythii. J Anim Ecol 68:460–471

    Article  Google Scholar 

  • Arlettaz R, Perrin N (1995) The trophic niches of sympatric sibling Myotis myotis and M blythii: do mouse-eared bats select prey?. Ecology, evolution and behaviour of bats. Clarendon Press

  • Austad SN, Fischer KE (1991) Mammalian aging, metabolism, and ecology: evidence from the bats and marsupials. J Gerontol 46:B47–B53

    Article  CAS  PubMed  Google Scholar 

  • Ayala-Berdon J, Schondube JE, Stoner KE, Rodriguez-Pena N, Martínez del Rio CM (2008) The intake responses of three species of leaf-nosed Neotropical bats. J Comp Physiol B 178:477–485

    Article  CAS  PubMed  Google Scholar 

  • Ayala-Berdon J, Rodríguez-Peña N, Orduña-Villaseñor M, Stoner KE, Kelm DH, Schondube JE (2011) Foraging behavior adjustments related to changes in nectar sugar concentration in phyllostomid bats. Comp Biochem Physiol A 160:143–148

    Article  CAS  Google Scholar 

  • Ayala-Berdon J, Galicia R, Flores-Ortíz C, Medellín RA, Schondube JE (2013) Digestive capacities allow the Mexican long-nosed bat (Leptonycteris nivalis) to live in cold environments. Comp Biochem Physiol A 164:622–628

    Article  CAS  Google Scholar 

  • Ayala-Berdon J, Vázquez-Fuerte R, Rodríguez-Peña N, Gómez MM (2017) Bat fauna associated with artificial ponds in La Malinche National Park, a mountain ecosystem of Mexico. Mammalia 81:573–581

    Article  Google Scholar 

  • Barclay RM, Brigham RM (1991) Prey detection, dietary niche breadth, and body size in bats: why are aerial insectivorous bats so small? Am Nat 137:693–703

    Article  Google Scholar 

  • Barnard SM (2009) Maintaining bats for captive studies. In: Kunz TH, Parsons S (eds) Ecological and behavioral methods for the study of bats. The Johns Hopkins University Press, pp 329–372

  • Bishop KL (2008) The evolution of flight in bats: narrowing the field of plausible hypotheses. Q rev Biol 83:153–169

    Article  PubMed  Google Scholar 

  • Blomberg P, Garland T Jr, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745

    PubMed  Google Scholar 

  • Bogdanowicz W, Fenton MB, Daleszczyk K (1999) The relationships between echolocation calls, morphology and diet in insectivorous bats. J Zool 247:381–393

    Article  Google Scholar 

  • Brisbin IL Jr (1966) Energy-utilization in a captive hoary bat. J Mammal 47:719–720

    Article  Google Scholar 

  • Brun A, Fernández Marinone G, Price ER, Nell LA, Simões BM, Castellar A, Caviedes-Vidal E (2019) Morphological bases for intestinal paracellular absorption in bats and rodents. J Morphol 280:1359–1369

    PubMed  Google Scholar 

  • Buchler ER (1975) Food Transit Time in Myotis lucifugus Chiroptera: Vespertilionidae. J Mammal 56:252–255

    Article  CAS  PubMed  Google Scholar 

  • Caviedes-Vidal E, McWhorter TJ, Lavin SR, Chediack JG, Tracy CR, Karasov WH (2007) The digestive adaptation of flying vertebrates: high intestinal paracellular absorption compensates for smaller guts. Proc Natl Acad Sci 104:19132–19137

    Article  CAS  PubMed  Google Scholar 

  • Caviedes-Vidal E, Karasov WH, Chediack JG, Fasulo V, Cruz-Neto AP, Otani L (2008) Paracellular absorption: a bat breaks the mammal paradigm. PLoS ONE 3:e1425

    Article  PubMed  PubMed Central  Google Scholar 

  • Coles RB, Guppy A, Anderson ME, Schlegel P (1989) Frequency sensitivity and directional hearing in the gleaning bat, Plecotus auritus (Linnaeus 1758). J Comp Physiol A 165:269–280

    Article  CAS  PubMed  Google Scholar 

  • Czaplewski NJ, Menard KL, Peachey WD (2018) Mesquite bugs, other insects, and a bat in the diet of pallid bats in southeastern Arizona. PeerJ 6:e6065

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobson GE (1875) XLVII Conspectus of the suborders, families, and genera of Chiroptera arranged according to their natural affinities. Ann Mag Nat Hist 16:345–357

    Article  Google Scholar 

  • Erkert HG (1982) Ecological Aspects of Bat Activity Rhythms. In: Kunz TH (ed) Ecology of Bats. Springer, Boston, MA, pp 201–242

    Chapter  Google Scholar 

  • Faure PA, Barclay RMR (1994) Substrate-gleaning versus aerial-hawking: plasticity in the foraging and echolocation behaviour of the long-eared bat, Myotis evotis. J Comp Physiol A 174:651–660

    Article  CAS  PubMed  Google Scholar 

  • Faure PA, Fullard JH, Dawson JW (1993) The gleaning attacks of the northern long-eared bat, Myotis septentrionalis, are relatively inaudible to moths. J Exp Biol 178:173–189

    Article  CAS  PubMed  Google Scholar 

  • Giannini NP, Gunnell GF, Habersetzer J, Simmons NB (2012) Early evolution of body size in bats. In: Gunnell GF, Simmons NB (eds) Evolutionary history of bats: fossils, molecules and morphology. Cambridge University Press, pp 530–555

  • Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251

    Article  CAS  Google Scholar 

  • Herrera MLG, Mancina GCA (2008) Sucrose hydrolysis does not limit food intake by Pallas’s long-tongued bats. Physiol Biochem Zool 8:119–124

    Article  Google Scholar 

  • Houston RD, Boonman AM, Jones G (2004) Do echolocation signal parameters restrict bats’ choice of prey. In: Thomas J, Moss C, Vater M (eds) Echolocation in bats and dolphins. Chicago University Press, pp 339 345

  • Hutcheon JM, Garland T (2004) Are megabats big? J Mammal Evol 11:257–277

    Article  Google Scholar 

  • Jones G (1999) Scaling of echolocation call parameters in bats. J Exp Biol 202:3359–3367

    Article  CAS  PubMed  Google Scholar 

  • Jones KE, Purvis A (1997) An optimum body size for mammals? Comparative evidence from bats. Func Ecol 11:751–756

    Article  Google Scholar 

  • Jones KE, Bielby J, Cardillo M, Fritz SA, O’Dell J, Orme CDL et al (2009) PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals: Ecological Archives E090–184. Ecology 90:2648–2648

    Article  Google Scholar 

  • Karasov WH, Douglas AE (2013) Comparative digestive physiology Compr Physiol 3:741–783

    Article  PubMed  Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    Article  CAS  PubMed  Google Scholar 

  • Kleiber M (1947) Body size and metabolic rate. Physiol Rev 27:511–541

    Article  CAS  PubMed  Google Scholar 

  • Klite PD (1965) Intestinal bacterial flora and transit time of three neotropical bat species. J Bacteriol 90:375–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaVal RK (2004) Impact of global warming and locally changing climate on tropical cloud forest bats. J Mammal 85:237–244

    Article  Google Scholar 

  • Linscott TM, Roche E, Bonett RM (2014) The effects of diet, ecology, and physiology on the evolution of endothermic gastrointestinal tract lengths. In integrative and comparative biology. journals dept, 2001 evans rd, cary, oxford univ press inc, USA, pp e125-e125

  • López-Cuamatzi IL, Vega-Gutiérrez VH, Cabrera-Campos I, Ruiz-Sanchez E, Ayala-Berdon J, Saldaña-Vázquez RA (2020) Does body mass restrict call peak frequency in echolocating bats? Mammal Rev 50:304–313

    Article  Google Scholar 

  • Luckens MM, Eps J, Davis WH (1971) Transit time through the digestive tract of the bat, Eptesicus fuscus. Exp Med Surg 29:25–28

    CAS  PubMed  Google Scholar 

  • Ma J, Liang B, Zhang S, Metzner W (2008) Dietary composition and echolocation call design of three sympatric insectivorous bat species from China. Ecol Res 23:113

    Article  CAS  Google Scholar 

  • Makanya AN, Maina JN, Mayhew TM, Tschanz SA, Burri PH (1997) A stereological comparison of villous and microvillous surfaces in small intestines of frugivorous and entomophagous bats: species, inter-individual and craniocaudal differences. J Exp Biol 200:2415–2423

    Article  CAS  PubMed  Google Scholar 

  • Morris S, Curtin AL, Thompson MB (1994) Heterothermy, torpor, respiratory gas exchange, water balance and the effect of feeding in Gould’s long-eared bat Nyctophilus gouldi. J Exp Biol 197:309–335

    Article  CAS  PubMed  Google Scholar 

  • Moyers Arévalo RLM, Amador LI, Almeida FC, Giannini NP (2018) Evolution of body mass in bats: insights from a large supermatrix phylogeny. J Mammal Evol 27:123–138

    Article  Google Scholar 

  • Münkemüller T, Lavergne S, Bzeznik B, Dray S, Jombar T, Schiffers K, Thuiller W (2012) How to measure and test phylogenetic signal. Methods Ecol Evol 3:743–756

    Article  Google Scholar 

  • Norberg UM (1995) How a long tail and changes in mass and wing shape affect the cost for flight in animals. Funct Ecol 9:48–54

    Article  Google Scholar 

  • Nowak RM, Walker EP (1994) Walker's bats of the world. JHU Press

  • Nudds RL, Bryant DM (2002) Consequences of load carrying by birds during short flights are found to be behavioral and not energetic. Am J Physiol-Reg I 283:R249–R256

    CAS  Google Scholar 

  • Obrist MK (1995) Flexible bat echolocation: the influence of individual, habitat and conspecifics on sonar signal design. Behav Ecol Sociobiol 36:207–219

    Article  Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

    Article  CAS  PubMed  Google Scholar 

  • Pappenheimer JR (1990) Paracellular intestinal absorption of glucose, creatinine, and mannitol in normal animals: relation to body size. Am J Physiology Gastrointest Liver Physiol 259:G290–G299

    Article  CAS  Google Scholar 

  • Pappenheimer JR (1993) On the coupling of membrane digestion with intestinal absorption of sugars and amino acids. Am J Physiology Gastrointest Liver Physiol 265:G409–G417

    Article  CAS  Google Scholar 

  • Perry RW, Carter SA, Thill RE (2010) Temporal patterns in capture rate and sex ratio of forest bats in Arkansas. Am Midl Nat 164:270–282

    Article  Google Scholar 

  • Price ER, Rott KH, Caviedes-Vidal E, Karasov WH (2014) Paracellular nutrient absorption is higher in bats than rodents: integrating from intact animals to the molecular level. J Exp Biol 217:3483–3492

    PubMed  Google Scholar 

  • Price ER, Brun A, Caviedes-Vidal E, Karasov WH (2015) Digestive adaptations of aerial lifestyles. Physiology 30:69–78

    Article  CAS  PubMed  Google Scholar 

  • Rambaldini DA, Brigham RM (2011) Pallid bat (Antrozous pallidus) foraging over native and vineyard habitats in British Columbia, Canada. Can J Zool 89:816–822

    Article  Google Scholar 

  • Ramírez PN, Herrera MLG, Mirón ML (2005) Physiological constraint to food ingestion in a New World nectarivorous bat. Physiol Biochem Zool 78:1032–1038

    Article  PubMed  Google Scholar 

  • Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223

    Article  Google Scholar 

  • Rodríguez-San Pedro ARS, Simonetti JA (2014) Variation in search-phase calls of Lasiurus varius (Chiroptera: Vespertilionidae) in response to different foraging habitats. J Mammal 95:1004–1010

    Article  Google Scholar 

  • Roswag A, Becker NI, Encarnação JA (2012) Inter-and intraspecific comparisons of retention time in insectivorous bat species (Vespertilionidae). J Zool 288:85–92

    Article  Google Scholar 

  • RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/

  • Safi K, Seid MA, Dechmann DK (2005) Bigger is not always better: when brains get smaller. Biol Lett 1:283–286

    Article  PubMed  PubMed Central  Google Scholar 

  • Schnitzler HU, Moss CF, Denzinger A (2003) From spatial orientation to food acquisition in echolocating bats. Trends Ecol Evol 18:386–394

    Article  Google Scholar 

  • Segura-Trujillo CA, Lidicker WZ Jr, Álvarez-Castañeda ST (2016) New perspectives on trophic guilds of arthropodivorous bats in North and Central America. J Mammal 97:644–654

    Article  Google Scholar 

  • Shi JJ, Rabosky DL (2015) Speciation dynamics during the global radiation of extant bats. Evolution 69:1528–1545

    Article  PubMed  Google Scholar 

  • Spaargaren DH (1994) Metabolic rate and body size. Acta Biotheor 42:263–269

    Article  CAS  PubMed  Google Scholar 

  • Speakman JR (2005) Body size, energy metabolism and lifespan. J Exp Biol 208:1717–1730

    Article  PubMed  Google Scholar 

  • Staliński J (1994) Digestion, defecation and food passage rate in the insectivorous bat Myotis myotis. Acta Theriol 39:1–11

    Article  Google Scholar 

  • Thabah A, Li G, Wang Y, Liang B, Hu K, Zhang S, Jones G (2007) Diet, echolocation calls, and phylogenetic affinities of the great evening bat (Ia io; Vespertilionidae): another carnivorous bat. J Mammal 88:728–735

    Article  Google Scholar 

  • Thiagavel J, Santana SE, Ratcliffe JM (2017) Body size predicts echolocation call peak frequency better than gape height in vespertilionid bats. Sci Rep 7:828

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas SP, Suthers RA (1972) The physiology and energetics of bat flight. J Exp Biol 57:317–335

    Article  Google Scholar 

  • Villers RL, Rojas F, Tenorio P (2006) Guía botánica del Parque Nacional Malinche, Tlaxcala-Puebla. Universidad Nacional Autónoma de México, Centro de Ciencias de la Atmósfera e Instituto de Biología. México, Distrito Federal

  • Voigt CC, Winter Y (1999) Energetic cost of hovering flight in nectar-feeding bats (Phyllostomidae: Glossophaginae) and its scaling in moths, birds and bats. J Comp Physiol B 169:38–48

    Article  CAS  PubMed  Google Scholar 

  • Warrington PD (2001) Animal weights and their food and water requirements. British Columbia. Enviromental protection división. http://www.env.gov.bc.ca/wat/wq/reference/foodandwater.html#references

  • Wilman H, Belmaker J, Simpson J, de la Rosa C, Rivadeneira MM, Jetz W (2014) EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammal: Ecological Archives E095–178. Ecology 95:2027–2027

    Article  Google Scholar 

  • Zhang ZQ, Brun A, Price ER, Cruz-Neto AP, Karasov WH, Caviedes-Vidal E (2015) A Comparison of mucosal surface area and villous histology in small intestines of the Brazilian free-tailed bat (Tadarida brasiliensis) and the mouse (Mus musculus). J Morphol 276:102–108

    Article  PubMed  Google Scholar 

  • Zhukova NF, Kovtin MF (1988) Influence of different factors on food passage time in insectivorous bats. In: Topachevski VA, Kovtin MF (eds) Rukokrylye (morfologiya, ekologiya, ekholokatsiya, parazity, okhrana). Naukova dumka, Kiev, pp 50–54

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support by the program CONACYT FOSEC CB2017-2018 (A1-S-39572) Granted to JAB, and La Malinche Biological station for logistical support.

Funding

This investigation was supported by the program CONACYT FOSEC CB2017-2018 (A1-S-39572) Granted to JAB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Ayala-Berdon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Bats were captured and maintained under captive conditions with the approval of the Animal Care Committee of the University of Tlaxcala, and the permission of the Department of Wildlife Management (SEMARNAT 07019 permit Granted to our institution).

Consent to participate and publication

All authors involved in this investigation give their consent for participation and publication.

Additional information

Communicated by G. Heldmaier.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 35 KB)

Supplementary file2 (XLSX 622 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrera-Campos, I., Carballo-Morales, J.D., Saldaña-Vázquez, R.A. et al. Body mass explains digestive traits in small vespertilionid bats. J Comp Physiol B 191, 427–438 (2021). https://doi.org/10.1007/s00360-021-01348-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00360-021-01348-y

Keywords

Profiles

  1. Jorge D. Carballo-Morales