Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Growth rates of fine aerosol particles at a site near Beijing in June 2013

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Growth of fine aerosol particles is investigated during the Aerosol–CCN–Cloud Closure Experiment campaign in June 2013 at an urban site near Beijing. Analyses show a high frequency (∼ 50%) of fine aerosol particle growth events, and show that the growth rates range from 2.1 to 6.5 nm h−1 with a mean value of ∼ 5.1 nm h−1. A review of previous studies indicates that at least four mechanisms can affect the growth of fine aerosol particles: vapor condensation, intramodal coagulation, extramodal coagulation, and multi-phase chemical reaction. At the initial stage of fine aerosol particle growth, condensational growth usually plays a major role and coagulation efficiency generally increases with particle sizes. An overview of previous studies shows higher growth rates over megacity, urban and boreal forest regions than over rural and oceanic regions. This is most likely due to the higher condensational vapor, which can cause strong condensational growth of fine aerosol particles. Associated with these multiple factors of influence, there are large uncertainties for the aerosol particle growth rates, even at the same location.

摘 要

利用北京附近香河站点 2013 年 6 月开展的大型综合观测实验(气溶胶-云凝结核-云闭合实验)数据, 本文研究了气溶胶细颗粒物的增长速率. 分析发现该地区细颗粒增长事件出现频率可以高达 50%以上, 增长速率介于 2.1 至 6.5 nm/h, 平均增长速率大约 5.1 nm/h. 综合前人研究, 我们发现至少有 4 种机制可以影响细颗粒物的增长: 气态前体物浓度, 模内凝固, 模外凝固和多相化学反应. 在细粒子增长的初始阶段, 凝结增长起着主导作用; 随着粒子的增长, 凝固效率会增强. 对多个不同区域细粒子增长进行总结发现, 细粒子增长速率在大城市, 城区和森林区域要高于乡村和海洋区域. 很大一个原因是大城市, 城区和森林区域的气态前体物浓度高, 使得该地区细颗粒具有很强的凝结增长. 但同时由于影响细颗粒增长的因子较多, 细颗粒凝结增长速率具有较大的不确定性, 变化幅度较大, 即使是在相同地区.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht, B., 1989: Aerosols, cloud microphysics and fractional cloudiness. Science, 245, 1227–1230, http://dx.doi.org/10.1126/science.245.4923.1227.

    Google Scholar 

  • Birmili, W., H. Berresheim, C. Plass-Dülmer, T. Elste, S. Gilge, A. Wiedensohler, and U. Uhrner, 2003: The Hohenpeissenberg aerosol formation experiment (HAFEX): A longterm study including size-resolved aerosol, H2SO4, OH, and monoterpenes measurements. Atmos. Chem. Phys., 3, 361–376, https://doi.org/10.5194/acp-3-361-2003.

    Google Scholar 

  • Coffman, D. J., and D. A. Hegg, 1995: A preliminary study of the effect of ammonia on particle nucleation in the marine boundary layer. J. Geophys. Res., 100, 7147–7160, https://doi.org/10.1029/94JD03253.

    Google Scholar 

  • Doyle, G. J., 1961: Self-nucleation in the sulfuric acid-water system. The Journal of Chemical Physics, 35, 795–799, https://doi.org/10.1063/1.1701218.

    Google Scholar 

  • Easter, R. C., and L. K. Peters, 1994: Binary homogeneous nucleation: Temperature and relative humidity fluctuations, nonlinearity, and aspects of new particle production in the atmosphere. J. Appl. Meteor., 33, 775–784, https://doi.org/10.1175/1520-0450(1994)033<0775:BHNTAR>2.0.CO;2.

    Google Scholar 

  • Eisele, F. L., and P. H. McMurry, 1997: Recent progress in understanding particle nucleation and growth. Philos. Trans. Roy. Soc. B, 352, 191–201, https://doi.org/10.1098/rstb.1997.0014.

    Google Scholar 

  • Garrett, T. J., and C. F. Zhao, 2006: Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature, 440(7085), 787–789, https://doi.org/10.1038/nature04636.

    Google Scholar 

  • Ghan, S. J., and S. E. Schwartz, 2007: Aerosol properties and processes: A path from field and laboratory measurements to global climate models. Bull. Amer. Meteor. Soc., 88, 1059–1083, https://doi.org/10.1175/BAMS-88-7-1059.

    Google Scholar 

  • Gras, J. L., 1993: Condensation nucleus size distribution at mawson, Antarctica: seasonal cycle. Atmos. Environ. A, 27(9), 1417–1425, https://doi.org/10.1016/0960-1686(93)90127-K.

    Google Scholar 

  • Harrison, R. M., and J. X. Yin, 2000: Particulate matter in the atmosphere: Which particle properties are important for its effects on health? Science of the Total Environment, 249(1–3), 85–101, https://doi.org/10.1016/S0048-9697(99)00513-6.

    Google Scholar 

  • Heintzenberg, J., 1994: Properties of the log-normal particle size distribution. Aerosol Science and Technology, 21, 46–48, https://doi.org/10.1080/02786829408959695.

    Google Scholar 

  • Herrmann, E., and Coauthors, 2013: New particle formation in the western Yangtze River Delta: First data from SORPESstation. Atmos. Chem. Phys. Discuss., 13, 1455–1488, https://doi.org/10.5194/acpd-13-1455-2013.

    Google Scholar 

  • IPCC, 2007: Climate Change 2007: The Physical Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.

    Google Scholar 

  • Korhonen, P., M. Kulmala, A. Laaksonen, Y. Viisanen, R. Mc- Graw, and J. H. Seinfeld, 1999: Ternary nucleation of H2SO4, NH3, and H2O in the atmosphere. J. Geophys. Res., 104, 26 349–26 353, https://doi.org/10.1029/1999JD900784.

    Google Scholar 

  • Kreyling, W. G., M. Semmler, and W. Möller, 2004: Dosimetry and toxicology of ultrafine particles. Journal of Aerosol Medicine, 17(2), 140–152, https://doi.org/10.1089/0894268041457147.

    Google Scholar 

  • Kuang, C., M. Chen, J. Zhao, J. Smith, P. H. McMurry, and J. Wang, 2012: Size and time-resolved growth rate measurements of 1 to 5 nm freshly formed atmospheric nuclei. Atmos. Chem. Phys., 12, 3573–3589, https://doi.org/10.5194/acp-12-3573-2012.

    Google Scholar 

  • Kulmala, M., A. Laaksonen, and L. Pirjola, 1998: Parameterizations for sulfuric acid/water nucleation rates. J. Geophys. Res., 103, 8301–8307, https://doi.org/10.1029/97JD03718.

    Google Scholar 

  • Kulmala, M., L. Pirjola, and J. M. Mäkelä, 2000: Stable sulphate clusters as a source of new atmospheric particles. Nature, 404, 66–69, https://doi.org/10.1038/35003550.

    Google Scholar 

  • Kulmala, M., H. Vehkamäki, T. Petäjä, M. Dal Maso, A. Lauri, V.-M. Kerminen, W. Birmili, and P. H. McMurry, 2004a: Formation and growth rates of ultrafine atmospheric particles: A review of observations. Journal of Aerosol Science, 35, 143–176, https://doi.org/10.1016/j.jaerosci.2003.10.003.

    Google Scholar 

  • Kulmala, M., and Coauthors, 2004b: Initial steps of aerosol growth. Atmos. Chem. Phys., 4, 2553–2560, https://doi.org/10.5194/acp-4-2553-2004.

    Google Scholar 

  • Kulmala, M., T. Petäjä, P. Mönkkönen, I. K. Koponen, M. Dal Maso, P. P. Aalto, K. E. J. Lehtinen, and V.-M. Kerminen, 2005: On the growth of nucleation mode particles: Source rates of condensable vapor in polluted and clean environments. Atmos. Chem. Phys., 5, 409–416, https://doi.org/10.5194/acp-5-409-2005.

    Google Scholar 

  • Kulmala, M., and Coauthors, 2012: Measurement of the nucleation of atmospheric aerosol particles. Nature Protocols, 7, 1651–1667, https://doi.org/10.1038/nprot.2012.091.

    Google Scholar 

  • Lance, S., A. Nenes, J. Medina, and J. N. Smith, 2006: Mapping the operation of the DMT continuous flow CCN counter. Aerosol Science and Technology, 40, 242–254, https://doi.org/10.1080/02786820500543290.

    Google Scholar 

  • Li, Z. Q., F. Niu, J. W. Fan, Y. G. Liu, D. Rosenfeld, and Y. N. Ding, 2011: Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nature Geoscience, 4, 888–894, https://doi.org/10.1038/NGEO1313.

    Google Scholar 

  • Lubin, D., and A. M. Vogelmann, 2006: A climatologically significant aerosol longwave indirect effect in the Arctic. Nature, 439, 453–456, https://doi.org/10.1038/nature04449.

    Google Scholar 

  • Makela, J. M., I. K. Koponen, P. Aalto, and M. Kulmala, 1999: One-year data of submicron size modes of tropospheric background aerosol in southern Finland. J. Aero. Sci., 31, 595–611, https://doi.org/10.1016/S0021-8502(99)00545-5.

    Google Scholar 

  • Makela, J. M., M. Dal Maso, L. Pirjola, P. Keronen, L. Laakso, M. Kulmala, and A. Laaksonen, 2000: Characteristics of the atmospheric particle formation events observed at a boreal forest site in southern Finland. Boreal Environ. Res., 5, 299–313, ISSN 1239-6095.

    Google Scholar 

  • McMurry, P. H., 2000: A review of atmospheric aerosol measurements. Atmos. Environ., 34, 1959–1999, https://doi.org/10.1016/S1352-2310(99)00455-0.

    Google Scholar 

  • Neusüss, C., and Coauthors, 2002: Characterization and parameterization of atmospheric particle number, mass, and chemical size distributions in central Europe during LACE-98 MINT. J. Geophys. Res., 107(D21), 8127, https://doi.org/10.1029/2001JD000514.

    Google Scholar 

  • Nilsson, E. D., and M. Kulmala, 1998: The potential for atmospheric mixing processes to enhance the binary nucleation rate. J. Geophys. Res., 103, 1381–1389, https://doi.org/10.1029/97JD02629.

    Google Scholar 

  • Park, J., H. Sakurai, K. Vollmers, and P. H. McMurry, 2004: Aerosol size distributions measured at the South Pole during ISCAT. Atmos. Environ., 38 (32), 5493–5500, https://doi.org/10.1016/j.atmosenv.2002.12.001.

    Google Scholar 

  • Raes, F., A. Saltelli, and R. Van Dingenen, 1992: Modelling formation and growth of H2SO4-H2O aerosols: Uncertainty analysis and experimental evaluation. Journal of Aerosol Science, 23, 759–771, https://doi.org/10.1016/0021-8502(92)90042-T.

    Google Scholar 

  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 1309–1313, https://doi.org/10.1126/science.1160606.

    Google Scholar 

  • Shen, X. J., and Coauthors, 2011: First long-term study of particle number size distributions and new particle formation events of regional aerosol in the North China Plain. Atmos. Chem. Phys., 11, 1565–1580, https://doi.org/10.5194/acp-11-1565-2011.

    Google Scholar 

  • Shi, J. P., and Y. Qian, 2003: Continuous measurements of 3 nm to 10 μm aerosol size distributions in St. Louis, M.S. Thesis, Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455.

    Google Scholar 

  • Spracklen, D. V., K. S. Carslaw, M. Kulmala, V.-M. Kerminen, G. W. Mann, and S.-L., Sihto, 2006: The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales. Atmos. Chem. Phys., 6, 5631–5648, https://doi.org/10.5194/acp-6-5631-2006.

    Google Scholar 

  • Spracklen, D. V., and Coauthors, 2008: Contribution of particle formation to global cloud condensation nuclei concentrations. Geophys. Res. Lett., 35, L06808, https://doi.org/10.1029/2007GL033038.

    Google Scholar 

  • Spracklen, D. V., and Coauthors, 2010: Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation. Atmos. Chem. Phys., 10, 4775–4793, https://doi.org/10.5194/acp-10-4775-2010.

    Google Scholar 

  • Sun, Y., Z. F. Wang, H. B. Dong, T. Tang, J. Li, X. L. Pan, P. Chen, and J. T. Jayne, 2012: Characterization of summer organic and inorganic aerosols in Beijing, China with an Aerosol Chemical Speciation Monitor. Atmos. Environ., 51, 250–259, https://doi.org/10.1016/j.atmosenv.2012.01.013.

    Google Scholar 

  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8, 1251–1256, https://doi.org/10.1016/0004-6981(74)90004-3.

    Google Scholar 

  • Weber, R. J., J. J. Marti, P. H. McMurry, F. L. Eisele, D. J. Tanner, and A. Jefferson, 1997: Measurements of new particle formation and ultrafine particle growth rates at a clean continental site. J. Geophys. Res., 102, 4375–4385, https://doi.org/10.1029/96JD03656.

    Google Scholar 

  • Wu, Z. J., and Coauthors, 2007: New particle formation in Beijing, China: Statistical analysis of a 1-year data set. J. Geophys. Res., 112(D9), D09209, https://doi.org/10.1029/2006JD007406.

    Google Scholar 

  • Yu, F. Q., and Coauthors, 2010: Spatial distributions of particle number concentrations in the global troposphere: Simulations, observations, and implications for nucleation mechanism. J. Geophys. Res., 115, D17205, https://doi.org/10.1029/2009JD013473.

    Google Scholar 

  • Yue, D. L., and Coauthors, 2010: The roles of sulfuric acid in new particle formation and growth in the mega-city of Beijing. Atmos. Chem. Phys., 10, 4953–4960, https://doi.org/10.5194/acp-10-4953-2010.

    Google Scholar 

  • Zhang, L. M., S. L. Gong, J. Padro, and L. Barrie, 2001: A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmos. Environ., 35(3), 549–560, https://doi.org/10.1016/S1352-2310(00)00326-5.

    Google Scholar 

  • Zhang, Y. M., X. Y. Zhang, J. Y. Sun, W. L. Lin, S. L. Gong, X. J. Shen, and S. Yang, 2011: Characterization of new particle and secondary aerosol formation during summertime in Beijing, China. Tellus B, 63, 382–394, https://doi.org/10.1111/j.1600-0889.2011.00533.x.

    Google Scholar 

  • Zhao, C. F., S. A. Klein, S. C. Xie, X. H. Liu, J. S. Boyle, and Y. Y. Zhang, 2012: Aerosol first indirect effects on nonprecipitating low-level liquid cloud properties as simulated by CAM5 at ARM sites. Geophys. Res. Lett., 39, L08806, https://doi.org/10.1029/2012GL051213.

    Google Scholar 

  • Zhu, Y., and Coauthors, 2016: Distribution and sources of air pollutants in the North China plain based on on-road mobile measurements. Atmos. Chem. Phys., 16, 12 551–12 565, https://doi.org/10.5194/acp-16-12551-2016.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (Grant No. 2017YFC1501403), the National Natural Science Foundation of China (Grant No. 41575143), the China “1000 Plan” Young Scholar Program, the State Key Laboratory of Earth Surface Processes and Resource Ecology, and the Fundamental Research Funds for the Central Universities. The data used in this study are from the AC3E campaign, which was supported by the Ministry of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanfeng Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Li, Y., Zhang, F. et al. Growth rates of fine aerosol particles at a site near Beijing in June 2013. Adv. Atmos. Sci. 35, 209–217 (2018). https://doi.org/10.1007/s00376-017-7069-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00376-017-7069-3

Keywords

关键词