Abstract
The Ross-Amundsen sector is experiencing an accelerating warming trend and a more intensive advective influx of marine air streams. As a result, massive surface melting events of the ice shelf are occurring more frequently, which puts the West Antarctica Ice Sheet at greater risk of degradation. This study shows the connection between surface melting and the prominent intrusion of warm and humid air flows from lower latitudes. By applying the Climate Feedback-Response Analysis Method (CFRAM), the temporal surge of the downward longwave (LW) fluxes over the surface of the Ross Ice Shelf (RIS) and adjacent regions are identified for four historically massive RIS surface melting events. The melting events are decomposed to identify which physical mechanisms are the main contributors. We found that intrusions of warm and humid airflow from lower latitudes are conducive to warm air temperature and water vapor anomalies, as well as cloud development. These changes exert a combined impact on the abnormal enhancement of the downward LW surface radiative fluxes, significantly contributing to surface warming and the resultant massive melting of ice.
摘要
罗斯冰架-阿蒙森海海域不断增强的变暖趋势,伴随来自海洋的更为强烈的暖湿平流入侵,导致大规模冰架表面融化事件的发生频率升高,西南极洲冰盖面临着更大的退化风险。本文利用气候反馈-响应分析方法,定量分析了来自低纬度地区的暖湿气流入侵对罗斯冰架表面长波能量异常的贡献,揭示了引起冰架表面融化事件发生的原因。本次研究聚焦罗斯冰架有史以来最强烈的四次表面融化事件,发现融化事件发生期间均存在地表向下长波通量的激增现象。通过对云反馈过程、水汽反馈过程和大气动力反馈过程对向下长波辐射正异常贡献的定量分析,我们比较了四次融化事件中的主导过程。研究结果表明,来自低纬度海洋上空的暖湿气流的入侵,导致罗斯冰架上空的气温上升和水汽含量升高,并有利于云的生成;最终,云反馈过程、水汽反馈过程和大气反馈动力过程共同造成地表向下长波辐射异常增强,促成冰架表面升温和融化。
Similar content being viewed by others
References
Bennartz, R., and Coauthors, 2013: July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature, 496(7443), 83–86, https://doi.org/10.1038/nature12002.
Bozkurt, D., R. Rondanelli, J. C. Marín, and R. Garreaud, 2018: Foehn event triggered by an atmospheric river underlies record-setting temperature along continental Antarctica. J. Geophys. Res.: Atmos., 123(8), 3871–3892, https://doi.org/10.1002/2017JD027796.
Bromwich, D. H., J. P. Nicolas, A. J. Monaghan, M. A. Lazzara, L. M. Keller, G. A. Weidner, and A. B. Wilson, 2013: Central West Antarctica among the most rapidly warming regions on Earth. Nature Geoscience, 6(2), 139–145, https://doi.org/10.1038/ngeo1671.
Bronselaer, B., M. Winton, S. M. Griffies, W. J. Hurlin, K. B. Rodgers, O. V. Sergienko, R. J. Stouffer, and J. L. Russell, 2018: Change in future climate due to Antarctic meltwater. Nature, 564, 53–58, https://doi.org/10.1388/s41866-018-0712-z.
Cai, M., and J. H. Lu, 2009: A new framework for isolating individual feedback processes in coupled general circulation climate models. Part II: Method demonstrations and comparisons. Climate Dyn., 32(6), 887–900, https://doi.org/10.1007/s00382-008-0424-4.
Choi, Y.-S., J. Hwang, J. Ok, D.-S. R. Park, H. Su, J. H. Jiang, L. Huang, and T. Limpasuvan, 2020: Effect of Arctic clouds on the ice-albedo feedback in midsummer. International Journal of Climatology, 40(10), 4707–4714, https://doi.org/10.1002/joc.6469.
Clem, K. R., B. R. Lintner, A. J. Broccoli, and J. R. Miller, 2019: Role of the South Pacific Convergence Zone in West Antarctic decadal climate variability. Geophys. Res. Lett., 46, 6900–6909, https://doi.org/10.1029/2019GL082108.
Datta, R. T., M. Tedesco, X. Fettweis, C. Agosta, S. Lhermitte, J. T. M. Lenaerts, and N. Wever, 2019: The effect of Foehn-induced surface melt on firn evolution over the Northeast Antarctic Peninsula. Geophys. Res. Lett., 46(7), 3822–3831, https://doi.org/10.1029/2018GL080845.
Dietz, S., and F. Koninx, 2022: Economic impacts of melting of the Antarctic Ice Sheet. Nature Communications, 13, 5819, https://doi.org/10.1038/s41467-022-33406-6.
Elvidge, A. D., and I. A. Renfrew, 2016: The causes of Foehn warming in the Lee of mountains. Bull. Amer. Meteor. Soc., 97(3), 455–466, https://doi.org/10.1175/BAMS-D-14-00194.1.
Elvidge, A. D., P. K. Munneke, J. C. King, I. A. Renfrew, and E. Gilbert, 2020: Atmospheric drivers of melt on Larsen C Ice Shelf: Surface energy budge regimes and the impact of Foehn. J. Geophys. Res.: Atmos., 125(17), e2020JD032463, https://doi.org/10.1029/2020JD032463.
Feron, S., R. R. Cordero, A. Damiani, A. Malhotra, G. Seckmeyer, and P. Llanillo, 2021: Warming events projected to become more frequent and last longer across Antarctica. Scientific Reports, 11(1), 19564, https://doi.org/10.1038/S41598-021-98619-Z.
Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49(22), 2139–2156, https://doi.org/10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2.
Ghiz, M. L., R. C. Scott, A. M. Vogelmann, J. T. M. Lenaerts, M. Lazzara, and D. Lubin, 2021: Energetics of surface melt in West Antarctica. The Cryosphere, 15(7), 3459–3494, https://doi.org/10.5194/TC-15-3459-2021.
Golledge, N. R., E. D. Keller, N. Gomez, K. A. Naughten, J. Bernales, L. D. Trusel, and T. L. Edwards, 2019: Global environmental consequences of twenty-first-century ice-sheet melt. Nature, 566, 65–72, https://doi.org/10.1038/s41586-019-0889-9.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146(730), 1999–2049, https://doi.org/10.1002/qj.3803.
Hu, X. M., S. A. Sejas, M. Cai, Z. N. Li, and S. Yang, 2019: Atmospheric dynamics footprint on the January 2016 ice sheet melting in West Antarctica. Geophys. Res. Lett., 46(5), 2829–2835, https://doi.org/10.1029/2018GL081374.
Kingslake, J., J. C. Ely, I. Das, and R. E. Bell, 2017: Widespread movement of meltwater onto and across Antarctic ice shelves. Nature, 544(7650), 349–352, https://doi.org/10.1038/nature22049.
Lenaerts, J., and Coauthors, 2017: Meltwater produced by wind–albedo interaction stored in an East Antarctic ice shelf. Nature Climate Change, 7, 58–62, https://doi.org/10.1038/nclimate3180.
Li, X. C., and Coauthors, 2021: Tropical teleconnection impacts on Antarctic climate changes. Nature Reviews Earth & Environment, 2, 680–698, https://doi.org/10.1038/S43017-021-00204-5.
Lu, J. H., and M. Cai, 2009: A new framework for isolating individual feedback processes in coupled general circulation climate models. Part I: Formulation. Climate Dyn., 32(6), 873–885, https://doi.org/10.1007/s00382-008-0425-3.
Nicolas, J. P., and Coauthors, 2017: January 2016 extensive summer melt in West Antarctica favoured by strong El Niño. Nature Communications, 8(1), 5799, https://doi.org/10.1038/ncomms15799.
Paolo, F. S., H. A. Fricker, and L. Padman, 2015: Volume loss from Antarctic ice shelves is accelerating. Science, 348(6232), 327–331, https://doi.org/10.1126/science.aaa0940.
Picard, G., and M. Fily, 2006: Surface melting observations in Antarctica by microwave radiometers: Correcting 26-year time series from changes in acquisition hours. Remote Sensing of Environment, 104(3), 325–336, https://doi.org/10.1016/j.rse.2006.05.010.
Picard, G., M. Fily, and H. Gallee, 2007: Surface melting derived from microwave radiometers: A climatic indicator in Antarctica. Annals of Glaciology, 46, 29–34, https://doi.org/10.3189/172756407782871684.
Rignot, E., J. Mouginot, B. Scheuchl, M. van den Broeke, M. J. van Wessem, and M. Morlighem, 2019: Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proceedings of the National Academy of Sciences of the United States of America, 116(4), 1095–1103, https://doi.org/10.1073/pnas.1812883116.
Schloesser, F., T. Friedrich, A. Timmermann, R. M. DeConto, and D. Pollard, 2019: Antarctic iceberg impacts on future Southern Hemisphere climate. Nature Climate Change, 9, 672–677, https://doi.org/10.1038/s41558-019-0546-1.
Scott, R. C., J. P. Nicolas, D. H. Bromwich, J. R. Norris, and D. Lubin, 2019: Meteorological drivers and large-scale climate forcing of West Antarctic surface melt. J. Climate, 32(3), 665–684, https://doi.org/10.1175/JCLI-D-18-0233.1.
Scott, R. C., D. Lubin, A. M. Vogelmann, and S. Kato, 2017: West Antarctic Ice Sheet cloud cover and surface radiation budget from NASA A-Train Satellites. J. Climate, 30(16), 6151–6170, https://doi.org/10.1175/JCLI-D-16-0644.1.
Shepherd, A., and Coauthors, 2012: A reconciled estimate of icesheet mass balance. Science, 338(6111), 1183–1189, https://doi.org/10.1126/science.1228102.
Steig, E. J., D. P. Schneider, S. D. Rutherford, M. E. Mann, J. C. Comiso, and D. T. Shindell, 2009: Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457(7228), 459–462, https://doi.org/10.1038/nature07669.
Steig, E. J., and Coauthors, 2013: Recent climate and ice-sheet changes in West Antarctica compared with the past 2, 000 years. Nature Geoscience, 6(5), 372–375, https://doi.org/10.1038/ngeo1778.
The IMBIE Team., 2018: Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558(7709), 219–222, https://doi.org/10.1038/s41586-018-0179-y.
Thomas, E. R., T. J. Bracegirdle, J. Turner, and E. W. Wolff, 2013: A 308 year record of climate variability in West Antarctica. Geophys. Res. Lett., 40(20), 5492–5496, https://doi.org/10.1002/2013GL057782.
Torinesi, O., M. Fily, and C. Genthon, 2003: Variability and trends of the summer melt period of Antarctic ice margins since 1980 from microwave sensors. J. Climate, 16, 1047–1060, https://doi.org/10.1175/1520-0442(2003)016<1047:VATOTS>2.0.CO;2.
Turner, J., and Coauthors, 2022: Record low Antarctic sea ice cover in February 2022. Geophys. Res. Lett., 49(12), e2022GL098904, https://doi.org/10.1029/2022GL098904.
Uotila, P., T. Vihma, and M. Tsukernik, 2013: Close interactions between the Antarctic cyclone budget and large-scale atmospheric circulation. Geophys. Res. Lett., 40(12), 3237–3241, https://doi.org/10.1002/grl.50560.
Van Den Broeke, M., C. Reijmer, D. Van As, and W. Boot, 2006: Daily cycle of the surface energy balance in Antarctica and the influence of clouds. International Journal of Climatology, 26(12), 1587–1605, https://doi.org/10.1002/joc.1323.
Wille, J. D., V. Favier, A. Dufour, I. V. Gorodetskaya, J. Turner, C. Agosta, and F. Codron, 2019: West Antarctic surface melt triggered by atmospheric rivers. Nature Geoscience, 12(11), 911–916, https://doi.org/10.1038/s41561-019-0460-1.
Wille, J. D., and Coauthors, 2022: Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula. Communications Earth & Environment, 3, 90, https://doi.org/10.1038/S43247-022-00422-9.
Zhang, C. R., J. Zhang, and Q. G. Wu, 2021: Antarctic Peninsula regional circulation and its impact on the surface melt of Larsen C ice shelf. J. Climate, 34(17), 7297–7309, https://doi.org/10.1175/JCLI-D-20-1002.1.
Zou, X., D. H. Bromwich, A. Montenegro, S.-H. Wang, and L. S. Bai, 2021: Major surface melting over the Ross Ice Shelf part II: Surface energy balance. Quart. J. Roy. Meteor. Soc., 147(738), 2895–2916, https://doi.org/10.1002/qj.4105.
Acknowledgements
The authors are grateful for the insightful comments from the editor and two anonymous reviewers that helped to greatly improve the paper. This study was supported by the National Natural Science Foundation of China (Grant Nos. 42075028 and 42222502) and the Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (Grant SML2021SP302).
Author information
Authors and Affiliations
Corresponding author
Additional information
Article Highlights
• The surface warming and melting events over the Ross Ice Shelf are accompanied by strong intrusions of marine air advection from lower latitudes.
• Cloud processes and air temperature feedbacks play primary roles in downward longwave radiative surface energy fluxes increase.
• Atmospheric advective processes significantly contribute to atmospheric warming during melting events.
Rights and permissions
About this article
Cite this article
Li, W., Wu, Y. & Hu, X. The Processes-Based Attributes of Four Major Surface Melting Events over the Antarctic Ross Ice Shelf. Adv. Atmos. Sci. 40, 1662–1670 (2023). https://doi.org/10.1007/s00376-023-2287-3
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s00376-023-2287-3
Key words
- Ross Ice Shelf (RIS)
- surface melting
- warm and humid air advection
- downward longwave radiation
- Climate Feedback-Response Analysis Method (CFRAM)