Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Advances in Atmospheric Sciences
  3. Article

Preface to the Special Issue on Changing Arctic Climate and Low/Mid-latitudes Connections

  • Editorial Notes
  • Published: 14 October 2023
  • Volume 40, pages 2135–2137, (2023)
  • Cite this article
Download PDF
Advances in Atmospheric Sciences Aims and scope Submit manuscript
Preface to the Special Issue on Changing Arctic Climate and Low/Mid-latitudes Connections
Download PDF
  • Xiangdong Zhang1,
  • Xianyao Chen2,
  • Andrew Orr3,
  • James E. Overland4,
  • Timo Vihma5,
  • Muyin Wang4,6,
  • Qinghua Yang7 &
  • …
  • Renhe Zhang8 
  • 1403 Accesses

  • Explore all metrics

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Cohen, J., and Coauthors, 2020: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nature Climate Change, 10, 20–29, https://doi.org/10.1038/s41558-019-0662-y.

    Article  Google Scholar 

  • Kim, B.-M., S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. D. Zhang, T. Shim, and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nature Communications, 5, 4646, https://doi.org/10.1038/ncomms5646.

    Article  Google Scholar 

  • Liu, D. A., Q. H. Yang, A. Tsarau, Y. T. Huang, and X. W. Li, 2023a: A parameterization scheme for wind wave modules that includes the sea ice thickness in the marginal ice zone. Adv. Atmos. Sci., 40(12), 2279–2287, https://doi.org/10.1007/s00376-023-2188-5.

    Google Scholar 

  • Liu, Y. C., Y. Q. Kong, Q. H. Yang, and X. M. Hu, 2023b: Influence of surface types on the seasonality and inter-model spread of Arctic amplification in CMIP6. Adv. Atmos. Sci., 40(12), 2288–2301, https://doi.org/10.1007/s00376-023-2338-9.

    Google Scholar 

  • Mu, M., D. H. Luo, and F. Zheng, 2022: Preface to the special issue on extreme cold events from East Asia to North America in winter 2020/21. Adv. Atmos. Sci., 39, 543–545, https://doi.org/10.1007/s00376-021-1004-3.

    Article  Google Scholar 

  • Overland, J. E., and Coauthors, 2021: How do intermittency and simultaneous processes obfuscate the Arctic influence on midlatitude winter extreme weather events?. Environmental Research Letters, 16, 043002, https://doi.org/10.1088/1748-9326/abdb5d.

    Article  Google Scholar 

  • Polvani, L. M., and D. W. Waugh, 2004: Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Climate, 17, 3548–3554, https://doi.org/10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2.

    Article  Google Scholar 

  • Screen, J. A., and Coauthors, 2018: Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models. Nature Geoscience, 11, 155–163, https://doi.org/10.1038/s41561-018-0059-y.

    Article  Google Scholar 

  • Tao, W., L. L. Zheng, Y. Hao, and G. P. Liu, 2023: An extreme gale event in East China under the Arctic potential vorticity anomaly through the Northeast China cold vortex. Adv. Atmos. Sci., 40(12), 2169–2182, https://doi.org/10.1007/s00376-023-2255-y.

    Google Scholar 

  • Tsubouchi, T., K. Våge, B. Hansen, K. M. H. Larsen, S. Østerhus, C. Johnson, S. Jónsson, and H. Valdimarsson, 2021: Increased ocean heat transport into the Nordic Seas and Arctic Ocean over the period 1993–2016. Nature Climate Change, 11, 21–26, https://doi.org/10.1038/s41558-020-00941-3.

    Article  Google Scholar 

  • Wang, T., Q. Fu, W. S. Tian, H. W. Liu, Y. F. Peng, F. Xie, H. Y. Tian, and J. L. Luo, 2023: The Influence of meridional variation in North Pacific sea surface temperature anomalies on the Arctic stratospheric polar vortex. Adv. Atmos. Sci., 40(12), 2262–2278, https://doi.org/10.1007/s00376-022-2033-2.

    Google Scholar 

  • Woods, C., R. Caballero, and G. Svensson, 2013: Large-scale circulation associated with moisture intrusions into the Arctic during winter. Geophys. Res. Lett., 40, 4717–4721, https://doi.org/10.1002/grl.50912.

    Article  Google Scholar 

  • Xiao, C. D., Q. Zhang, J. Yang, Z. H. Du, M. H. Ding, T. F. Dou, and B. H. Luo, 2023: A statistical linkage between extreme cold wave events in southern China and sea ice extent in the Barents–Kara Seas from 1289 to 2017. Adv. Atmos. Sci., 40(12), 2154–2168, https://doi.org/10.1007/s00376-023-2227-2.

    Google Scholar 

  • Zhang, P. F., G. Chen, M. Ting, L. R. Leung, B. Guan, and L. F. Li, 2023: More frequent atmospheric rivers slow the seasonal recovery of Arctic sea ice. Nature Climate Change, 13, 266–273, https://doi.org/10.1038/s41558-023-01599-3.

    Article  Google Scholar 

  • Zhang, X. D., T. Jung, M. Y. Wang, Y. Luo, T. Semmler, and A. Orr, 2018: Preface to the special issue: Towards improving understanding and prediction of Arctic change and its linkage with Eurasian mid-latitude weather and climate. Adv. Atmos. Sci., 35, 1–4, https://doi.org/10.1007/s00376-017-7004-7.

    Article  Google Scholar 

  • Zhang, X. D., J. X. He, J. Zhang, I. Polyakov, R. Gerdes, J. Inoue, and P. L. Wu, 2013: Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nature Climate Change, 3, 47–51, https://doi.org/10.1038/nclimate1631.

    Article  Google Scholar 

  • Zhang, X. D., Y. F. Fu, Z. Han, J. E. Overland, A. Rinke, H. Tang, T. Vihma, and M. Y. Wang, 2022: Extreme cold events from East Asia to North America in winter 2020/21: Comparisons, causes, and future implications. Adv. Atmos. Sci., 39, 553–565, https://doi.org/10.1007/s00376-021-1229-1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. North Carolina State University, Asheville, NC, 28801, USA

    Xiangdong Zhang

  2. Frontier Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Physical Oceanography, Ocean University of China, Qingdao, 266100, China

    Xianyao Chen

  3. High Cross, British Antarctic Survey, Madingley Road, Cambridge, CB3 0ET, UK

    Andrew Orr

  4. NOAA/Pacific Marine Environmental Laboratory, Seattle, WA, 98115, USA

    James E. Overland & Muyin Wang

  5. Finnish Meteorological Institute, Helsinki, FI-00560, Finland

    Timo Vihma

  6. University of Washington, Seattle, WA, 98105, USA

    Muyin Wang

  7. School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China

    Qinghua Yang

  8. Department of Atmospheric and Oceanic Sciences, Fudan University, Shanghai, 200438, China

    Renhe Zhang

Authors
  1. Xiangdong Zhang
    View author publications

    Search author on:PubMed Google Scholar

  2. Xianyao Chen
    View author publications

    Search author on:PubMed Google Scholar

  3. Andrew Orr
    View author publications

    Search author on:PubMed Google Scholar

  4. James E. Overland
    View author publications

    Search author on:PubMed Google Scholar

  5. Timo Vihma
    View author publications

    Search author on:PubMed Google Scholar

  6. Muyin Wang
    View author publications

    Search author on:PubMed Google Scholar

  7. Qinghua Yang
    View author publications

    Search author on:PubMed Google Scholar

  8. Renhe Zhang
    View author publications

    Search author on:PubMed Google Scholar

Additional information

This paper is a contribution to the special issue on Changing Arctic Climate and Low/Mid-latitudes Connections

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, X., Orr, A. et al. Preface to the Special Issue on Changing Arctic Climate and Low/Mid-latitudes Connections. Adv. Atmos. Sci. 40, 2135–2137 (2023). https://doi.org/10.1007/s00376-023-3015-8

Download citation

  • Published: 14 October 2023

  • Issue date: December 2023

  • DOI: https://doi.org/10.1007/s00376-023-3015-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Associated Content

Part of a collection:

Towards Improving Understanding and Prediction of Arctic Change and its Linkage with Eurasian Mid-latitude Weather and Climate

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

132.145.61.108

Not affiliated

Springer Nature

© 2025 Springer Nature