Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

EphB signaling inhibits gap junctional intercellular communication and synchronized contraction in cultured cardiomyocytes

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Eph receptors and ephrin ligands are membrane-bound cell–cell communication molecules with important roles not only in development but also in the physiology of many adult organs. However, their cellular localization and functions in the myocardium are virtually unknown and therefore, we have investigated the expression of EphB receptors and ephrin-B ligands in the rodent heart ventricles and their functions in the rodent cardiomyocytes of primary culture. Examinations by RT-PCR, immunohistochemistry and in situ hybridization revealed that the EphB receptors are preferentially expressed in cardiomyocytes and ephrin-B ligands in the vasculature in adult mouse heart ventricles. Interestingly, we found that inducing high levels of EphB receptor activation in primary cultures of rodent cardiomyocytes by stimulation with ephrin-B1-Fc desynchronized the contraction of adjacent clusters of cardiomyocytes that had contracted synchronously before the treatment. Co-immunoprecipitation experiments revealed that EphB4 physically associates with connexin43, a major component of gap junctions in the myocardium, and that EphB activation inhibits gap junctional intracellular communication between cardiomyocytes. The present findings suggest that ephrin-B-EphB signaling can modulate the electrical coupling of cardiomyocytes through effects on gap junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams RH, Klein R (2000) Eph receptors and ephrin ligands. essential mediators of vascular development. Trends Cardiovasc Med 10(5):183–188

    Article  PubMed  CAS  Google Scholar 

  2. Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, Risau W, Klein R (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13(3):295–306

    Article  PubMed  CAS  Google Scholar 

  3. Batlle E, Henderson JT, Beghtel H, van den Born MM, Sancho E, Huls G, Meeldijk J, Robertson J, van de Wetering M, Pawson T, Clevers H (2002) Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111(2):251–263. doi:10.1016/S0092-8674(02)01015-2

    Article  PubMed  CAS  Google Scholar 

  4. Bennett BD, Wang Z, Kuang WJ, Wang A, Groopman JE, Goeddel DV, Scadden DT (1994) Cloning and characterization of HTK, a novel transmembrane tyrosine kinase of the EPH subfamily. J Biol Chem 269(19):14211–14218

    PubMed  CAS  Google Scholar 

  5. Bennett BD, Zeigler FC, Gu Q, Fendly B, Goddard AD, Gillett N, Matthews W (1995) Molecular cloning of a ligand for the EPH-related receptor protein-tyrosine kinase Htk. Proc Natl Acad Sci USA 92(6):1866–1870

    Article  PubMed  CAS  Google Scholar 

  6. Boengler K, Stahlhofen S, van de Sand A, Gres P, Ruiz-Meana M, Garcia-Dorado D, Heusch G, Schulz R (2009) Presence of connexin 43 in subsarcolemmal, but not in interfibrillar cardiomyocyte mitochondria. Basic Res Cardiol 104(2):141–147. doi:10.1007/s00395-009-0007-5

    Article  PubMed  CAS  Google Scholar 

  7. Bohme B, Holtrich U, Wolf G, Luzius H, Grzeschik KH, Strebhardt K, Rubsamen-Waigmann H (1993) PCR mediated detection of a new human receptor-tyrosine-kinase, HEK 2. Oncogene 8(10):2857–2862

    PubMed  CAS  Google Scholar 

  8. Ciossek T, Lerch MM, Ullrich A (1995) Cloning, characterization, and differential expression of MDK2 and MDK5, two novel receptor tyrosine kinases of the Eck/Eph family. Oncogene 11(10):2085–2095

    PubMed  CAS  Google Scholar 

  9. Cowan CA, Yokoyama N, Saxena A, Chumley MJ, Silvany RE, Baker LA, Srivastava D, Henkemeyer M (2004) Ephrin-B2 reverse signaling is required for axon pathfinding and cardiac valve formation but not early vascular development. Dev Biol 271(2):263–271. doi:10.1016/j.ydbio.2004.03.026

    Article  PubMed  CAS  Google Scholar 

  10. Davy A, Bush JO, Soriano P (2006) Inhibition of gap junction communication at ectopic Eph/ephrin boundaries underlies craniofrontonasal syndrome. PLoS Biol 4(10):e315. doi:10.1371/journal.pbio.0040315

    Article  PubMed  Google Scholar 

  11. DeHaan RL, Hirakow R (1972) Synchronization of pulsation rates in isolated cardiac myocytes. Exp Cell Res 70(1):214–220

    Article  PubMed  CAS  Google Scholar 

  12. Doble BW, Ping P, Kardami E (2000) The epsilon subtype of protein kinase C is required for cardiomyocyte connexin-43 phosphorylation. Circ Res 86(3):293–301

    PubMed  CAS  Google Scholar 

  13. Frieden LA, Townsend TA, Vaught DB, Delaughter DM, Hwang Y, Barnett JV, Chen J (2010) Regulation of heart valve morphogenesis by Eph receptor ligand, ephrin-A1. Dev Dyn 239(12):3226–3234. doi:10.1002/dvdy.22458

    Article  PubMed  CAS  Google Scholar 

  14. Gale NW, Baluk P, Pan L, Kwan M, Holash J, DeChiara TM, McDonald DM, Yancopoulos GD (2001) Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev Biol 230(2):151–160. doi:10.1006/dbio.2000.0112

    Article  PubMed  CAS  Google Scholar 

  15. Gerety SS, Anderson DJ (2002) Cardiovascular ephrinB2 function is essential for embryonic angiogenesis. Development 129(6):1397–1410

    PubMed  CAS  Google Scholar 

  16. Goshima K (1976) Antagonistic influences of dibutyryl cyclic AMP and dibutyryl cyclic GMP on the beating rate of cultured mouse myocardial cells. J Mol Cell Cardiol 08(9):713–725

    Article  PubMed  CAS  Google Scholar 

  17. Hill CS, Oh SY, Schmidt SA, Clark KJ, Murray AW (1994) Lysophosphatidic acid inhibits gap-junctional communication and stimulates phosphorylation of connexin-43 in WB cells: possible involvement of the mitogen-activated protein kinase cascade. Biochem J 303(Pt 2):475–479

    PubMed  Google Scholar 

  18. Ikegaki N, Tang XX, Liu XG, Biegel JA, Allen C, Yoshioka A, Sulman EP, Brodeur GM, Pleasure DE (1995) Molecular characterization and chromosomal localization of DRT (EPHT3): a developmentally regulated human protein-tyrosine kinase gene of the EPH family. Hum Mol Genet 4(11):2033–2045

    Article  PubMed  CAS  Google Scholar 

  19. Ishii M, Nakajima T, Ogawa K (2011) Complementary expression of EphB receptors and ephrin-B ligand in the pyloric and duodenal epithelium of adult mice. Histochem Cell Biol 136(3):345–356. doi:10.1007/s00418-011-0849-4

    Google Scholar 

  20. Itescu S, Schuster MD, Kocher AA (2003) New directions in strategies using cell therapy for heart disease. J Mol Med 81(5):288–296. doi:10.1007/s00109-003-0432-0

    PubMed  Google Scholar 

  21. John SA, Kondo R, Wang SY, Goldhaber JI, Weiss JN (1999) Connexin-43 hemichannels opened by metabolic inhibition. J Biol Chem 274(1):236–240. doi:10.1074/jbc.274.1.236

    Article  PubMed  CAS  Google Scholar 

  22. Kehat I, Gepstein L (2003) Human embryonic stem cells for myocardial regeneration. Heart Fail Rev 8(3):229–236. doi:10.1023/A:1024709332039

    Article  PubMed  Google Scholar 

  23. Konstantinova I, Nikolova G, Ohara-Imaizumi M, Meda P, Kucera T, Zarbalis K, Wurst W, Nagamatsu S, Lammert E (2007) EphA-ephrin-A-mediated beta cell communication regulates insulin secretion from pancreatic islets. Cell 129(2):359–370. doi:10.1016/j.cell.2007.02.044

    Article  PubMed  CAS  Google Scholar 

  24. Kullander K, Klein R (2002) Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol 3(7):475–486. doi:10.1038/nrm856

    Article  PubMed  CAS  Google Scholar 

  25. Leithe E, Rivedal E (2004) Epidermal growth factor regulates ubiquitination, internalization and proteasome-dependent degradation of connexin43. J Cell Sci 117(Pt 7):1211–1220. doi:10.1242/jcs.00951

    Article  PubMed  CAS  Google Scholar 

  26. Matsuyama D, Kawahara K (2009) Proliferation of neonatal cardiomyocytes by connexin43 knockdown via synergistic inactivation of p38 MAPK and increased expression of FGF1. Basic Res Cardiol 104(6):631–642. doi:10.1007/s00395-009-0029-z

    Article  PubMed  CAS  Google Scholar 

  27. Matsuyama D, Kawahara K (2011) Oxidative stress-induced formation of a positive-feedback loop for the sustained activation of p38 MAPK leading to the loss of cell division in cardiomyocytes soon after birth. Basic Res Cardiol 106(5):815–828. doi:10.1007/s00395-011-0178-8

    Article  PubMed  CAS  Google Scholar 

  28. Mellitzer G, Xu Q, Wilkinson DG (1999) Eph receptors and ephrins restrict cell intermingling and communication. Nature 400(6739):77–81. doi:10.1038/21907

    Article  PubMed  CAS  Google Scholar 

  29. Mikalsen SO, Kaalhus O (1997) A characterization of permolybdate and its effect on cellular tyrosine phosphorylation, gap junctional intercellular communication and phosphorylation status of the gap junction protein, connexin43. Biochim Biophys Acta 1356(2):207–220. doi:10.1016/S0167-4889(96)00163-2

    Article  PubMed  CAS  Google Scholar 

  30. Mueller I, Kobayashi R, Nakajima T, Ishii M, Ogawa K (2010) Effective and steady differentiation of a clonal derivative of P19CL6 embryonal carcinoma cell line into beating cardiomyocytes. J Biomed Biotechnol 2010:380561. doi:10.1155/2010/380561

    Article  PubMed  Google Scholar 

  31. Noren NK, Pasquale EB (2004) Eph receptor-ephrin bidirectional signals that target Ras and Rho proteins. Cell Signal 16(6):655–666. doi:10.1016/j.cellsig.2003.10.006

    Article  PubMed  CAS  Google Scholar 

  32. Ogawa K, Wada H, Okada N, Harada I, Nakajima T, Pasquale EB, Tsuyama S (2006) EphB2 and ephrin-B1 expressed in the adult kidney regulate the cytoarchitecture of medullary tubule cells through Rho family GTPases. J Cell Sci 119(Pt 3):559–570. doi:10.1242/jcs.02777

    Article  PubMed  CAS  Google Scholar 

  33. Pasquale EB (2005) Eph receptor signalling casts a wide net on cell behaviour. Nat Rev Mol Cell Biol 6(6):462–475. doi:10.1038/nrm1662

    Article  PubMed  CAS  Google Scholar 

  34. Pasquale EB (2008) Eph-ephrin bidirectional signaling in physiology and disease. Cell 133(1):38–52. doi:10.1016/j.cell.2008.03.011

    Article  PubMed  CAS  Google Scholar 

  35. Rottlaender D, Boengler K, Wolny M, Michels G, Endres-Becker J, Motloch LJ, Schwaiger A, Buechert A, Schulz R, Heusch G, Hoppe UC (2010) Connexin 43 acts as a cytoprotective mediator of signal transduction by stimulating mitochondrial KATP channels in mouse cardiomyocytes. J Clin Invest 120(5):1441–1453. doi:10.1172/JCI40927

    Article  PubMed  CAS  Google Scholar 

  36. Ruiz JC, Conlon FL, Robertson EJ (1994) Identification of novel protein kinases expressed in the myocardium of the developing mouse heart. Mech Dev 48(3):153–164

    Article  PubMed  CAS  Google Scholar 

  37. Ruiz-Meana M, Rodriguez-Sinovas A, Cabestrero A, Boengler K, Heusch G, Garcia-Dorado D (2008) Mitochondrial connexin43 as a new player in the pathophysiology of myocardial ischaemia-reperfusion injury. Cardiovasc Res 77(2):325–333. doi:10.1093/cvr/cvm062

    Article  PubMed  CAS  Google Scholar 

  38. Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC (2003) Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 83(4):1359–1400. doi:10.1152/physrev.00007.2003

    PubMed  CAS  Google Scholar 

  39. Schulz R, Boengler K, Totzeck A, Luo Y, Garcia-Dorado D, Heusch G (2007) Connexin 43 in ischemic pre- and postconditioning. Heart Fail Rev 12(3–4):261–266. doi:10.1007/s10741-007-9032-3

    Article  PubMed  CAS  Google Scholar 

  40. Schulz R, Gres P, Skyschally A, Duschin A, Belosjorow S, Konietzka I, Heusch G (2003) Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo. FASEB J 17(10):1355–1357. doi:10.1096/fj.02-0975fje

    PubMed  CAS  Google Scholar 

  41. Schwanke U, Konietzka I, Duschin A, Li X, Schulz R, Heusch G (2002) No ischemic preconditioning in heterozygous connexin43-deficient mice. Am J Physiol Heart Circ Physiol 283(4):H1740–H1742. doi:10.1152/ajpheart.00442.2002

    PubMed  CAS  Google Scholar 

  42. Shin D, Garcia-Cardena G, Hayashi S, Gerety S, Asahara T, Stavrakis G, Isner J, Folkman J, Gimbrone MA Jr, Anderson DJ (2001) Expression of ephrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization. Dev Biol 230(2):139–150. doi:10.1006/dbio.2000.9957

    Article  PubMed  CAS  Google Scholar 

  43. Shintani-Ishida K, Uemura K, Yoshida K (2007) Hemichannels in cardiomyocytes open transiently during ischemia and contribute to reperfusion injury following brief ischemia. Am J Physiol Heart Circ Physiol 293(3):H1714–H1720. doi:10.1152/ajpheart.00022.2007

    Article  PubMed  CAS  Google Scholar 

  44. Sirnes S, Leithe E, Rivedal E (2008) The detergent resistance of Connexin43 is lost upon TPA or EGF treatment and is an early step in gap junction endocytosis. Biochem Biophys Res Commun 373(4):597–601. doi:10.1016/j.bbrc.2008.06.095

    Article  PubMed  CAS  Google Scholar 

  45. Solan JL, Lampe PD (2009) Connexin43 phosphorylation: structural changes and biological effects. Biochem J 419(2):261–272. doi:10.1042/BJ20082319

    Article  PubMed  CAS  Google Scholar 

  46. Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93(5):741–753. doi:10.1016/S0092-8674(00)81436-1

    Article  PubMed  CAS  Google Scholar 

  47. Wengerhoff SM, Weiss AR, Dwyer KL, Dettman RW (2010) A migratory role for EphrinB ligands in avian epicardial mesothelial cells. Dev Dyn 239(2):598–609. doi:10.1002/dvdy.22163

    Article  PubMed  CAS  Google Scholar 

  48. Yamaguchi Y, Pasquale EB (2004) Eph receptors in the adult brain. Curr Opin Neurobiol 14(3):288–296. doi:10.1016/j.conb.2004.04.003

    Article  PubMed  CAS  Google Scholar 

  49. Zhang J, Hughes S (2006) Role of the ephrin and Eph receptor tyrosine kinase families in angiogenesis and development of the cardiovascular system. J Pathol 208(4):453–461. doi:10.1002/path.1937

    Article  PubMed  CAS  Google Scholar 

  50. Zhao C, Irie N, Takada Y, Shimoda K, Miyamoto T, Nishiwaki T, Suda T, Matsuo K (2006) Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab 4(2):111–121. doi:10.1016/j.cmet.2006.05.012

    Article  PubMed  CAS  Google Scholar 

  51. Ziman AP, Gomez-Viquez NL, Bloch RJ, Lederer WJ (2010) Excitation-contraction coupling changes during postnatal cardiac development. J Mol Cell Cardiol 48(2):379–386. doi:10.1016/j.yjmcc.2009.09.016

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (to K.O.; no. 18580296). We thank Stefan Mueller for help with VisoRhythm software programming.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazushige Ogawa.

Additional information

M. Ishii and I. Mueller contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 719 kb)

Supplementary material 1 (MOV 3.70 Mb)

Supplementary material 1 (MOV 3.66 Mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishii, M., Mueller, I., Nakajima, T. et al. EphB signaling inhibits gap junctional intercellular communication and synchronized contraction in cultured cardiomyocytes. Basic Res Cardiol 106, 1057–1068 (2011). https://doi.org/10.1007/s00395-011-0219-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00395-011-0219-3

Keywords