Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system with a complex and heterogeneous pathology that may ultimately lead to neurodegeneration and brain atrophy. Brain volume loss in MS is known to occur early in the disease course and to be clinically relevant, as it has been related to disability progression. Nowadays, brain volume loss is relatively easy to measure with different automated, reproducible and accurate software tools. Therefore, most of (if not all) the newest clinical trials have incorporated brain volume outcomes as a measure of treatment effect. With this review, we aimed to update and summarize all existing data regarding brain volume and RRMS treatment in clinical trials as well as in open-label observational studies of drugs with positive results in its primary outcome in at least one phase III trial as of March 2014.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis—the plaque and its pathogenesis. N Engl J Med 354:942–955. doi:10.1056/NEJMra052130
Miller DH, Barkhof F, Frank JA et al (2002) Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain J Neurol 125:1676–1695
Bermel RA, Bakshi R (2006) The measurement and clinical relevance of brain atrophy in multiple sclerosis. Lancet Neurol 5:158–170
Smith SM, Zhang Y, Jenkinson M et al (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17:479–489
Zivadinov R, Reder AT, Filippi M et al (2008) Mechanisms of action of disease-modifying agents and brain volume changes in multiple sclerosis. Neurology 71:136–144
Filippi M, Rovaris M, Inglese M et al (2004) Interferon beta-1a for brain tissue loss in patients at presentation with syndromes suggestive of multiple sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet 364:1489–1496
De Stefano N, Comi G, Kappos L et al (2013) Efficacy of subcutaneous interferon -1a on MRI outcomes in a randomised controlled trial of patients with clinically isolated syndromes. J Neurol Neurosurg Psychiatry 85:647–653. doi:10.1136/jnnp-2013-306289
Kappos L, Freedman MS, Polman CH et al (2007) Effect of early versus delayed interferon beta-1b treatment on disability after a first clinical event suggestive of multiple sclerosis: a 3-year follow-up analysis of the BENEFIT study. Lancet 370:389–397
Kappos L, Freedman MS, Polman CH et al (2009) Long-term effect of early treatment with interferon beta-1b after a first clinical event suggestive of multiple sclerosis: 5-year active treatment extension of the phase 3 BENEFIT trial. Lancet Neurol 8:987–997
Rudick RA, Fisher E, Lee J-C et al (2000) Brain atrophy in relapsing multiple sclerosis: relationship to relapses, EDSS, and treatment with interferon -1a. Mult Scler 6:365–372. doi:10.1177/135245850000600601
Hardmeier M, Wagenpfeil S, Freitag P et al (2005) Rate of brain atrophy in relapsing MS decreases during treatment with IFN -1a. Neurology 64:236–240. doi:10.1212/01.WNL.0000149516.30155.B8
Kappos L, Traboulsee A, Constantinescu C et al (2006) Long-term subcutaneous interferon beta-1a therapy in patients with relapsing-remitting MS. Neurology 67:944–953. doi:10.1212/01.wnl.0000237994.95410.ce
Comi G, Martinelli V, Rodegher M et al (2009) Effect of glatiramer acetate on conversion to clinically definite multiple sclerosis in patients with clinically isolated syndrome (PreCISe study): a randomised, double-blind, placebo-controlled trial. Lancet 374:1503–1511
Comi G, Martinelli V, Rodegher M et al (2012) Effects of early treatment with glatiramer acetate in patients with clinically isolated syndrome. Mult Scler J 19:1074–1083. doi:10.1177/1352458512469695
Ge Y, Grossman RI, Udupa JK et al (2000) Glatiramer acetate (Copaxone) treatment in relapsing-remitting MS: quantitative MR assessment. Neurology 54:813–817
Rovaris M, Comi G, Rocca MA et al (2001) Short-term brain volume change in relapsing-remitting multiple sclerosis: effect of glatiramer acetate and implications. Brain J Neurol 124:1803–1812
Sormani MP, Rovaris M, Valsasina P et al (2004) Measurement error of two different techniques for brain atrophy assessment in multiple sclerosis. Neurology 62:1432–1434. doi:10.1212/01.WNL.0000120663.85143.B3
Rovaris M, Comi G, Rocca MA et al (2007) Long-term follow-up of patients treated with glatiramer acetate: a multicentre, multinational extension of the European/Canadian double-blind, placebo-controlled, MRI-monitored trial. Mult Scler 13:502–508. doi:10.1177/1352458506070704
Comi G, Cohen JA, Arnold DL et al (2011) Phase III dose-comparison study of glatiramer acetate for multiple sclerosis. Ann Neurol 69:75–82. doi:10.1002/ana.22316
Mikol DD, Barkhof F, Chang P et al (2008) Comparison of subcutaneous interferon beta-1a with glatiramer acetate in patients with relapsing multiple sclerosis (the REbif vs Glatiramer Acetate in Relapsing MS Disease [REGARD] study): a multicentre, randomised, parallel, open-label trial. Lancet Neurol 7:903–914. doi:10.1016/S1474-4422(08)70200-X
O’Connor P, Filippi M, Arnason B et al (2009) 250 microg or 500 microg interferon beta-1b versus 20 mg glatiramer acetate in relapsing-remitting multiple sclerosis: a prospective, randomised, multicentre study. Lancet Neurol 8:889–897. doi:10.1016/S1474-4422(09)70226-1
Lublin FD, Cofield SS, Cutter GR et al (2013) Randomized study combining interferon and glatiramer acetate in multiple sclerosis: the CombiRx Study. Ann Neurol 73:327–340. doi:10.1002/ana.23863
Miller DH, Soon D, Fernando KT et al (2007) MRI outcomes in a placebo-controlled trial of natalizumab in relapsing MS. Neurology 68:1390–1401
Radue E-W, Stuart WH, Calabresi PA et al (2010) Natalizumab plus interferon beta-1a reduces lesion formation in relapsing multiple sclerosis. J Neurol Sci 292:28–35. doi:10.1016/j.jns.2010.02.012
Kappos L, Radue E-W, O’Connor P et al (2010) A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 362:387–401
Cohen JA, Barkhof F, Comi G et al (2010) Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med 362:402–415
Calabresi PA, Radue E-W, Goodin D et al (2014) Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol 13:545–556. doi:10.1016/S1474-4422(14)70049-3
Radue E-W (2012) Impact of Fingolimod Therapy on Magnetic Resonance Imaging Outcomes in Patients With Multiple Sclerosis. Arch Neurol 69:1259. doi:10.1001/archneurol.2012.1051
Cohen JA, Barkhof F, Comi G et al (2013) Fingolimod versus intramuscular interferon in patient subgroups from TRANSFORMS. J Neurol 260:2023–2032. doi:10.1007/s00415-013-6932-0
Khatri B, Barkhof F, Comi G et al (2011) Comparison of fingolimod with interferon beta-1a in relapsing-remitting multiple sclerosis: a randomised extension of the TRANSFORMS study. Lancet Neurol 10:520–529
Arnold DL, Gold R, Kappos L et al (2014) Effects of delayed-release dimethyl fumarate on MRI measures in the phase 3 DEFINE study. J Neurol. doi:10.1007/s00415-014-7412-x
Miller DH, Fox RJ, Phillips JT et al (2015) Effects of delayed-release dimethyl fumarate on MRI measures in the phase 3 CONFIRM study. Neurology 84:1145–1152. doi:10.1212/WNL.0000000000001360
O’Connor P, Wolinsky JS, Confavreux C et al (2011) Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med 365:1293–1303
Wolinsky JS, Narayana PA, Nelson F et al (2013) Magnetic resonance imaging outcomes from a phase III trial of teriflunomide. Mult Scler J 19:1310–1319. doi:10.1177/1352458513475723
Comi G, Jeffery D, Kappos L et al (2012) Placebo-controlled trial of oral laquinimod for multiple sclerosis. N Engl J Med 366:1000–1009
On behalf of the BRAVO Study Group, Vollmer TL, Sorensen PS et al (2014) A randomized placebo-controlled phase III trial of oral laquinimod for multiple sclerosis. J Neurol 261:773–783. doi:10.1007/s00415-014-7264-4
CAMMS223 Trial Investigators, Coles AJ, Compston DAS et al (2008) Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med 359:1786–1801. doi:10.1056/NEJMoa0802670
Cohen JA, Coles AJ, Arnold DL et al (2012) Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet 380:1819–1828
Coles AJ, Twyman CL, Arnold DL et al (2012) Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet 380:1829–1839
Paolillo A, Pozzilli C, Giugni E et al (2002) A 6-year clinical and MRI follow-up study of patients with relapsing–remitting multiple sclerosis treated with Interferon-beta. Eur J Neurol 9:645–655
Frank JA, Richert N, Bash C et al (2004) Interferon-β-1b slows progression of atrophy in RRMS: three-year follow-up in NAb− and NAb+ patients. Neurology 62:719–725. doi:10.1212/01.WNL.0000113765.75855.19
Zivadinov R, Locatelli L, Cookfair D et al (2007) Interferon beta-1a slows progression of brain atrophy in relapsing-remitting multiple sclerosis predominantly by reducing gray matter atrophy. Mult Scler 13:490–501. doi:10.1177/1352458506070446
Calabrese M, Bernardi V, Atzori M et al (2011) Effect of disease-modifying drugs on cortical lesions and atrophy in relapsing-remitting multiple sclerosis. Mult Scler J 18:418–424. doi:10.1177/1352458510394702
Khan O, Bao F, Shah M et al (2012) Effect of disease-modifying therapies on brain volume in relapsing–remitting multiple sclerosis: results of a five-year brain MRI study. J Neurol Sci 312:7–12. doi:10.1016/j.jns.2011.08.034
Rojas JI, Patrucco L, Miguez J et al (2013) Brain atrophy as a non-response predictor to interferon-beta in relapsing-remitting multiple sclerosis. Neurol Res 36:615–618. doi:10.1179/1743132813Y.0000000304
Magraner M, Coret F, Casanova B (2012) The relationship between inflammatory activity and brain atrophy in natalizumab treated patients. Eur J Radiol 81:3485–3490. doi:10.1016/j.ejrad.2012.01.028
Vidal-Jordana A, Sastre-Garriga J, Pérez-Miralles F et al (2013) Early brain pseudoatrophy while on natalizumab therapy is due to white matter volume changes. Mult Scler J 19:1175–1181
Sastre-Garriga J, Tur C, Pareto D et al (2014) Brain atrophy in natalizumab-treated patients: a 3-year follow-up. Mult Scler Houndmills Basingstoke Engl. doi:10.1177/1352458514556300
Rinaldi F, Calabrese M, Seppi D et al (2012) Natalizumab strongly suppresses cortical pathology in relapsing-remitting multiple sclerosis. Mult Scler J 18:1760–1767. doi:10.1177/1352458512447704
Portaccio E, Stromillo ML, Goretti B et al (2013) Natalizumab may reduce cognitive changes and brain atrophy rate in relapsing-remitting multiple sclerosis: a prospective, non-randomized pilot study. Eur J Neurol 20:986–990. doi:10.1111/j.1468-1331.2012.03882.x
Zivadinov R (2005) Reproducibility and accuracy of quantitative magnetic resonance imaging techniques of whole-brain atrophy measurement in multiple sclerosis. J Neuroimaging 15:27–36. doi:10.1177/1051228404271010
Huppertz H-J, Kröll-Seger J, Klöppel S et al (2010) Intra- and interscanner variability of automated voxel-based volumetry based on a 3D probabilistic atlas of human cerebral structures. Neuroimage 49:2216–2224. doi:10.1016/j.neuroimage.2009.10.066
Dalton CM, Chard DT, Davies GR et al (2004) Early development of multiple sclerosis is associated with progressive grey matter atrophy in patients presenting with clinically isolated syndromes. Brain 127:1101–1107. doi:10.1093/brain/awh126
Perez-Miralles F, Sastre-Garriga J, Tintore M et al (2013) Clinical impact of early brain atrophy in clinically isolated syndromes. Mult Scler J 19:1878–1886. doi:10.1177/1352458513488231
Racke MK, Lovett-Racke AE, Karandikar NJ (2010) The mechanism of action of glatiramer acetate treatment in multiple sclerosis. Neurology 74:S25–S30
Thöne J, Ellrichmann G, Seubert S et al (2012) Modulation of autoimmune demyelination by laquinimod via induction of brain-derived neurotrophic factor. Am J Pathol 180:267–274. doi:10.1016/j.ajpath.2011.09.037
Freedman MS, Kaplan JM, Markovic-Plese S (2013) Insights into the Mechanisms of the Therapeutic Efficacy of Alemtuzumab in Multiple Sclerosis. J Clin Cell Immunol 4:152. doi:10.4172/2155-9899.1000152
Colombo E, Di Dario M, Capitolo E et al (2014) Fingolimod may support neuroprotection via blockade of astrocyte nitric oxide. Ann Neurol 76:325–337. doi:10.1002/ana.24217
Groves A, Kihara Y, Chun J (2013) Fingolimod: direct CNS effects of sphingosine 1-phosphate (S1P) receptor modulation and implications in multiple sclerosis therapy. J Neurol Sci 328:9–18. doi:10.1016/j.jns.2013.02.011
Miron VE, Schubart A, Antel JP (2008) Central nervous system-directed effects of FTY720 (fingolimod). J Neurol Sci 274:13–17. doi:10.1016/j.jns.2008.06.031
Coelho RP, Payne SG, Bittman R et al (2007) The immunomodulator FTY720 has a direct cytoprotective effect in oligodendrocyte progenitors. J Pharmacol Exp Ther 323:626–635. doi:10.1124/jpet.107.123927
Kelland EE, Gilmore W, Hayardeny L et al (2014) In vitro assessment of the direct effect of laquinimod on basic functions of human neural stem cells and oligodendrocyte progenitor cells. J Neurol Sci 346:66–74. doi:10.1016/j.jns.2014.07.058
Kerschensteiner M, Gallmeier E, Behrens L et al (1999) Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 189:865–870
Dhib-Jalbut S, Marks S (2010) Interferon-β mechanisms of action in multiple sclerosis. Neurology 74:S17–S24
Ransohoff RM (2007) Natalizumab for multiple sclerosis. N Engl J Med 356:2622–2629
Linker RA, Lee D-H, Ryan S et al (2011) Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain J Neurol 134:678–692. doi:10.1093/brain/awq386
Bar-Or A, Pachner A, Menguy-Vacheron F et al (2014) Teriflunomide and its mechanism of action in multiple sclerosis. Drugs 74:659–674. doi:10.1007/s40265-014-0212-x
De Stefano N, Filippi M, Miller D et al (2007) Guidelines for using proton MR spectroscopy in multicenter clinical MS studies. Neurology 69:1942–1952. doi:10.1212/01.wnl.0000291557.62706.d3
Sormani MP, Arnold DL, De Stefano N (2014) Treatment effect on brain atrophy correlates with treatment effect on disability in multiple sclerosis. Ann Neurol 75:43–49. doi:10.1002/ana.24018
Conflicts of interest
Dr. Vidal-Jordana reports personal fees from Teva, Biogen-Idec, Novartis, and Genzyme, all outside the submitted work. Dr. Sastre-Garriga reports personal fees from Biogen-Idec, Novartis, Almirall, Teva, Roche, Merck-Serono and grants and personal fees from Genzyme, all outside the submitted work. Dr. Rovira serves on scientific advisory boards for Biogen Idec, Novartis, Genzyme, and OLEA Medical, and on the editorial board of the American Journal of Neuroradiology and Neuroradiology, has received speaker honoraria from Bayer, Genzyme, Bracco, Merck-Serono, Teva Pharmaceutical Industries Ltd., OLEA Medical, Stendhal, Novartis and Biogen Idec, receives research support from Bayer, and has research agreements with Siemens AG. Dr. Montalban has received speaking honoraria and travel expense reimbursement for participation in scientific meetings, has been a steering committee member of clinical trials or participated in advisory boards of clinical trials in the past years with Actelion, Almirall, Bayer, Biogen Idec, Genzyme, Merck, Novartis, Receptos, Roche, Sanofi-Genzyme, Teva and Trophos.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Vidal-Jordana, A., Sastre-Garriga, J., Rovira, A. et al. Treating relapsing–remitting multiple sclerosis: therapy effects on brain atrophy. J Neurol 262, 2617–2626 (2015). https://doi.org/10.1007/s00415-015-7798-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00415-015-7798-0