Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Growth and carbon isotopes of Mediterranean trees reveal contrasting responses to increased carbon dioxide and drought

  • Global change ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Forest dynamics will depend upon the physiological performance of individual tree species under more stressful conditions caused by climate change. In order to compare the idiosyncratic responses of Mediterranean tree species (Quercus faginea, Pinus nigra, Juniperus thurifera) coexisting in forests of central Spain, we evaluated the temporal changes in secondary growth (basal area increment; BAI) and intrinsic water-use efficiency (iWUE) during the last four decades, determined how coexisting species are responding to increases in atmospheric CO2 concentrations (C a) and drought stress, and assessed the relationship among iWUE and growth during climatically contrasting years. All species increased their iWUE (ca. +15 to +21 %) between the 1970s and the 2000s. This increase was positively related to C a for J. thurifera and to higher C a and drought for Q. faginea and P. nigra. During climatically favourable years the study species either increased or maintained their growth at rising iWUE, suggesting a higher CO2 uptake. However, during unfavourable climatic years Q. faginea and especially P. nigra showed sharp declines in growth at enhanced iWUE, likely caused by a reduced stomatal conductance to save water under stressful dry conditions. In contrast, J. thurifera showed enhanced growth also during unfavourable years at increased iWUE, denoting a beneficial effect of C a even under climatically harsh conditions. Our results reveal significant inter-specific differences in growth driven by alternative physiological responses to increasing drought stress. Thus, forest composition in the Mediterranean region might be altered due to contrasting capacities of coexisting tree species to withstand increasingly stressful conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andreu L, Planells O, Gutiérrez E, Helle G, Schleser GH (2008) Climatic significance of tree-ring width and δ13C in a Spanish pine forest network. Tellus B 60(5):771–781. doi:10.1111/j.1600-0889.2008.00370.x

    Article  Google Scholar 

  • Andreu-Hayles L, Planells O, Gutiérrez E, Muntan E, Helle G, Anchukaitis KJ, Schleser GH (2011) Long tree-ring chronologies reveal 20th century increases in water-use efficiency but no enhancement of tree growth at five Iberian pine forests. Glob Change Biol 17(6):2095–2112. doi:10.1111/j.1365-2486.2010.02373.x

    Article  Google Scholar 

  • Beedlow PA, Tingey DT, Phillips DL, Hogsett WE, Olszyk DM (2004) Rising atmospheric CO2 and carbon sequestration in forests. Front Ecol Environ 2(6):315–322. doi:10.1890/1540-9295(2004)002[0315:racacs]2.0.co;2

    Google Scholar 

  • Brueggemann N, Gessler A, Kayler Z, Keel SG, Badeck F, Barthel M, Boeckx P, Buchmann N, Brugnoli E, Esperschuetz J, Gavrichkova O, Ghashghaie J, Gomez-Casanovas N, Keitel C, Knohl A, Kuptz D, Palacio S, Salmon Y, Uchida Y, Bahn M (2011) Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review. Biogeosciences 8(11):3457–3489. doi:10.5194/bg-8-3457-2011

    Article  CAS  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Gao Chen X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Rueda VM, Mearns L, Menéndez CG, Räisänen J, Rinke A, Whetton ASP (2007) Regional climate projections. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. In: Solomon S, Qin D, Manning M, et al. (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 847–943

    Google Scholar 

  • Corcuera L, Camarero JJ, Gil-Pelegrin E (2004) Effects of a severe drought on growth and wood anatomical properties of Quercus faginea. Iawa J 25(2):185–204

    Article  Google Scholar 

  • Durante P, Oyonarte C, Valladares F (2009) Influence of land-use types and climatic variables on seasonal patterns of NDVI in Mediterranean Iberian ecosystems. Appl Veg Sci 12(2):177–185. doi:10.1111/j.1654-109X.2009.01012.x

    Article  Google Scholar 

  • Ehleringer JR, Cerling TE (1995) Atmospheric CO2 and the ratio of intercellular to ambient CO2 concentrations in plants. Tree Physiol 15(2):105–111

    Article  PubMed  Google Scholar 

  • Farquhar GD, Oleary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the inter-cellular crabon-dioxide concentration in leaves. Aust J Plant Physiol 9(2):121–137

    Article  CAS  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537. doi:10.1146/annurev.pp.40.060189.002443

    Article  CAS  Google Scholar 

  • Feng XH (1999) Trends in intrinsic water-use efficiency of natural trees for the past 100–200 years: a response to atmospheric CO2 concentration. Geochimi Cosmochim Acta 63(13–14):1891–1903. doi:10.1016/s0016-7037(99)00088-5

    Article  CAS  Google Scholar 

  • Ferrio JP, Voltas J (2005) Carbon and oxygen isotope ratios in wood constituents of Pinus halepensis as indicators of precipitation, temperature and vapour pressure deficit. Tellus Ser B-Chem Phys Meteorol 57(2):164–173. doi:10.1111/j.1600-0889.2005.00137.x

    Article  Google Scholar 

  • Ferrio JP, Florit A, Vega A, Serrano L, Voltas J (2003) Delta(13)C and tree-ring width reflect different drought responses in Quercus ilex and Pinus halepensis. Oecologia 137(4):512–518. doi:10.1007/s00442-003-1372-7

    Article  CAS  PubMed  Google Scholar 

  • Francey RJ, Farquhar GD (1982) An explanation of C13/C12 variations in tree rings. Nature 297(5861):28–31. doi:10.1038/297028a0

    Article  CAS  Google Scholar 

  • Gea-Izquierdo G, Cherubini P, Cañellas I (2011) Tree-rings reflect the impact of climate change on Quercus ilex L. along a temperature gradient in Spain over the last 100 years. For Ecol Manage 262(9):1807–1816. doi:10.1016/j.foreco.2011.07.025

    Article  Google Scholar 

  • Gedalof Z, Berg AA (2010) Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century. Glob Biogeochem Cycles 24. doi:10.1029/2009gb003699

  • Gimeno TE, Camarero JJ, Granda E, Pias B, Valladares F (2012) Enhanced growth of Juniperus thurifera under a warmer climate is explained by a positive carbon gain under cold and drought. Tree Physiol 32(3):326–336. doi:10.1093/treephys/tps011

    Article  CAS  PubMed  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78

    Google Scholar 

  • Huang JG, Bergeron Y, Denneler B, Berninger F, Tardif J (2007) Response of forest trees to increased atmospheric CO2. Crit Rev Plant Sci 26:265–283. doi:10.1080/07352680701626978

    Article  CAS  Google Scholar 

  • IAEA (1995) Reference and intercomparison materials for stable isotopes of light elements. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Jaccard J, Turrisi R (2003) Interaction effects in multiple regression, 2nd edn. Sage, Thousand Oaks

    Google Scholar 

  • Klein T, Di Matteo G, Rotenberg E, Cohen S, Yakir D (2013) Differential ecophysiological response of a major Mediterranean pine species across a climatic gradient. Tree Physiol 33(1):26–36. doi:10.1093/treephys/tps116

    Article  PubMed  Google Scholar 

  • Koutavas A (2008) Late 20th century growth acceleration in greek firs (Abies cephalonica) from Cephalonia Island, Greece: a CO2 fertilization effect? Dendrochronologia 26(1):13–19. doi:10.1016/j.dendro.2007.06.001

    Article  Google Scholar 

  • Lavorel S, Canadell J, Rambal S, Terradas J (1998) Mediterranean terrestrial ecosystems: research priorities on global change effects. Glob Ecol Biogeogr Lett 7(3):157–166. doi:10.2307/2997371

    Article  Google Scholar 

  • Leavitt SW, Danzer SR (1993) Method for batch processing small wood samples to holocellulose for stable-carbon isotope analysis. Anal Chem 65(1):87–89. doi:10.1021/ac00049a017

    Article  CAS  Google Scholar 

  • Levanic T, Cater M, McDowell NG (2011) Associations between growth, wood anatomy, carbon isotope discrimination and mortality in a Quercus robur forest. Tree Physiol 31(3):298–308. doi:10.1093/treephys/tpq111

    Article  PubMed  Google Scholar 

  • Linares JC, Camarero JJ (2012) From pattern to process: linking intrinsic water-use efficiency to drought-induced forest decline. Glob Change Biol 18(3):1000–1015. doi:10.1111/j.1365-2486.2011.02566.x

    Article  Google Scholar 

  • Linares JC, Tíscar PA (2010) Climate change impacts and vulnerability of the southern populations of Pinus nigra subsp. salzmannii. Tree Physiol 30(7):795–806. doi:10.1093/treephys/tpq052

    Article  PubMed  Google Scholar 

  • Linares JC, Delgado-Huertas A, Julio Camarero J, Merino J, Carreira JA (2009) Competition and drought limit the response of water-use efficiency to rising atmospheric carbon dioxide in the Mediterranean fir Abies pinsapo. Oecologia 161(3):611–624. doi:10.1007/s00442-009-1409-7

    Article  PubMed  Google Scholar 

  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, García-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manage 259(4):698–709. doi:10.1016/j.foreco.2009.09.023

    Article  Google Scholar 

  • Liu X, Shao X, Liang E, Zhao L, Chen T, Qin D, Ren J (2007) Species-dependent responses of juniper and spruce to increasing CO2 concentration and to climate in semi-arid and arid areas of northwestern China. Plant Ecol 193(2):195–209. doi:10.1007/s11258-006-9258-5

    Article  Google Scholar 

  • Lloret F, Escudero A, Iriondo JM, Martínez-Vilalta J, Valladares F (2012) Extreme climatic events and vegetation: the role of stabilizing processes. Glob Change Biol 18(3):797–805. doi:10.1111/j.1365-2486.2011.02624.x

    Article  Google Scholar 

  • Martínez-Vilalta J, López BC, Adell N, Badiella L, Ninyerola M (2008) Twentieth century increase of Scots pine radial growth in NE Spain shows strong climate interactions. Glob Change Biol 14(12):2868–2881. doi:10.1111/j.1365-2486.2008.01685.x

    Article  Google Scholar 

  • Maseyk K, Hemming D, Angert A, Leavitt SW, Yakir D (2011) Increase in water-use efficiency and underlying processes in pine forests across a precipitation gradient in the dry Mediterranean region over the past 30 years. Oecologia 167(2):573–585. doi:10.1007/s00442-011-2010-4

    Article  PubMed  Google Scholar 

  • McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23(7–8):771–801. doi:10.1016/j.quascirev.2003.06.017

    Article  Google Scholar 

  • Morgan JA, Pataki DE, Korner C, Clark H, Del Grosso SJ, Grunzweig JM, Knapp AK, Mosier AR, Newton PCD, Niklaus PA, Nippert JB, Nowak RS, Parton WJ, Polley HW, Shaw MR (2004) Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia 140(1):11–25. doi:10.1007/s00442-004-1550-2

    Article  CAS  PubMed  Google Scholar 

  • Nock CA, Baker PJ, Wanek W, Leis A, Grabner M, Bunyavejchewin S, Hietz P (2011) Long-term increases in intrinsic water-use efficiency do not lead to increased stem growth in a tropical monsoon forest in western Thailand. Glob Change Biol 17(2):1049–1063. doi:10.1111/j.1365-2486.2010.02222.x

    Article  Google Scholar 

  • Norby RJ, Wullschleger SD, Gunderson CA, Johnson DW, Ceulemans R (1999) Tree responses to rising CO2 in field experiments: implications for the future forest. Plant, Cell Environ 22(6):683–714. doi:10.1046/j.1365-3040.1999.00391.x

    Article  CAS  Google Scholar 

  • Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, De Angelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza GE, Schlesinger WH, Oren R (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci USA 102(50):18052–18056. doi:10.1073/pnas.0509478102

    Article  CAS  PubMed  Google Scholar 

  • Peñuelas J, Hunt JM, Ogaya R, Jump AS (2008) Twentieth century changes of tree-ring δ13C at the southern range-edge of Fagus sylvatica: increasing water-use efficiency does not avoid the growth decline induced by warming at low altitudes. Glob Change Biol 14(5):1076–1088. doi:10.1111/j.1365-2486.2008.01563.x

    Article  Google Scholar 

  • Peñuelas J, Canadell JG, Ogaya R (2011) Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Glob Ecol Biogeogr 20(4):597–608. doi:10.1111/j.1466-8238.2010.00608.x

    Article  Google Scholar 

  • Pias B, Matesanz S, Herrero A, Gimeno TE, Escudero A, Valladares F (2010) Transgenerational effects of three global change drivers on an endemic Mediterranean plant. Oikos 119(9):1435–1444. doi:10.1111/j.1600-0706.2010.18232.x

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, the R Development Core Team (2000) nlme: Linear and nonlinear mixed effects models. R package version 3.1–108

  • Rathgeber C, Guiot J, Edouard JL (2000) Using a biogeochemical model in dendroecology. Application to Pinus cembra. C R Acad Sci Ser Iii-Sci Vie-Life Sci 323 (5). doi:10.1016/s0764-4469(00)00154-2

  • Robertson A, Overpeck J, Rind D, Mosley-Thompson E, Zielinski G, Lean J, Koch D, Penner J, Tegen I, Healy R (2001) Hypothesized climate forcing time series for the last 500 years. J Geophy Res-Atmos 106 (D14):14783–14803. doi:10.1029/2000jd900469

    Google Scholar 

  • Sarris D, Christodoulakis D, Koerner C (2011) Impact of recent climatic change on growth of low elevation eastern Mediterranean forest trees. Clim Change 106(2):203–223. doi:10.1007/s10584-010-9901-y

    Article  Google Scholar 

  • Sarris D, Siegwolf R, Körner C (2013) Inter- and intra-annual stable carbon and oxygen isotope signals in response to drought in Mediterranean pines. Agric For Meteorol 168:59–68. doi:10.1016/j.agrformet.2012.08.007

    Article  Google Scholar 

  • Silva LCR, Anand M, Leithead MD (2010) Recent widespread tree growth decline despite increasing atmospheric CO2. PlOS One 5(7). doi:10.1371/journal.pone.0011543

  • Stokes MA, Smiley TL (1968) An introduction to tree ring dating. University Chicago Press, Chicago

    Google Scholar 

  • Thornthwaite CW, Mather JR (1957) Instructions and tables for computing potential evapotranspiration and the water balance. Publ Climatol Lab Climatol Dresel Inst Technol 10(3):185–311

    Google Scholar 

  • Tognetti R, Cherubini P, Innes JL (2000) Comparative stem-growth rates of Mediterranean trees under background and naturally enhanced ambient CO2 concentrations. New Phytol 146(1) doi:10.1046/j.1469-8137.2000.00620.x

  • Voltas J, Camarero JJ, Carulla D, Aguilera M, Ortíz A, Ferrio JP (2013) A retrospective, dual-isotope approach reveals individual predispositions to winter-drought induced tree dieback in the southernmost distribution limit of Scots pine. Plant Cell Environ. doi:10.1111/pce.12072

    PubMed  Google Scholar 

  • Wang G, Feng X (2012) Response of plants’ water use efficiency to increasing atmospheric CO2 concentration. Environ Sci Technol 46(16):8610–8620. doi:10.1021/es301323m

    Article  CAS  PubMed  Google Scholar 

  • Zuur AF, Ieno EN, Smith GM (2007) Analysing ecological data. Springer, New York

    Google Scholar 

Download references

Acknowledgments

We thank the Junta de Castilla-La Mancha, the Director and park rangers of the Alto Tajo Natural Park for permission and facilities provided. Meteorological data were provided by the Spanish Agencia Estatal de Meteorología. We are very grateful to David L. Quiroga, Arben Q. Alla and Enrique Palma for their valuable support in the field, and to Adrián Escudero, Teresa E. Gimeno, Silvia Matesanz and three anonymous referees for suggestions that greatly improved the manuscript. This work was supported by the Spanish Ministry for Innovation and Science with the grants FPI (CGL2007-66066-C04-02) to E. G., Consolider Montes (CSD2008 00040) and VULGLO (CGL2010 22180 C03 03) and by the Community of Madrid grant REMEDINAL 2 (CM S2009 AMB 1783). J. J. Camarero acknowledges the support of ARAID. This study was conceived and performed within the Globimed network (www.globimed.net).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Granda.

Additional information

Communicated by Dan Yakir.

Electronic supplementary material

Below is the link to the ESM.

Supplementary material 1 (DOC 317 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granda, E., Rossatto, D.R., Camarero, J.J. et al. Growth and carbon isotopes of Mediterranean trees reveal contrasting responses to increased carbon dioxide and drought. Oecologia 174, 307–317 (2014). https://doi.org/10.1007/s00442-013-2742-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00442-013-2742-4

Keywords

Profiles

  1. J. Julio Camarero