Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

miRNAs play essential roles in the floral thermogenesis of Magnolia denudata (Magnoliaceae)

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

High-throughput sequencing and subsequent analysis indicated that miRNAs play crucial roles in floral thermogenesis of Magnolia denudata flowers.

Abstract

Animal-like thermogenic activity in flowers has been reported in several families of seed plants. Many studies have explored the ecological significance of thermogenesis in pollination biology; however, the molecular mechanisms regulating floral thermogenesis remain unclear. To characterize the roles of miRNA in floral thermogenesis, we analyzed miRNA expression in Magnolia denudata flowers during thermogenic and non-thermogenic stages. High-throughput sequencing and subsequent analysis revealed 82 conserved and 32 novel miRNAs in M. denudata flowers. A total of 187 EST sequences were predicted to be targets of 63 miRNAs. The target genes fell into 15 KOG functional classes and were involved in 25 KEGG pathways, suggesting that miRNAs play extensive regulatory roles in biological processes of M. denudata flowers. Among the identified miRNAs, 17 were differentially expressed between thermogenic and non-thermogenic stages and thus were thought to play roles in regulating floral thermogenesis in M. denudata. GO enrichment analysis revealed that target genes of these thermogenesis-related miRNAs were enriched in the functional groups ‘polyprenyl transferase activity’ and ‘photosynthetic electron transport’. Considering the important roles of polyprenyl transferase in the respiratory chain and the fact that floral thermogenesis of M. denudata flowers is associated with sunlight, we can infer that miRNAs play crucial roles in floral thermogenesis of M. denudata flowers by regulating cellular respiration and light reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Axtell MJ, Snyder JA, Bartel DP (2007) Common functions for diverse small RNAs of land plants. Plant Cell 19:1750–1769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455:64–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bartel DP (2004) microRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ding Y, Tao Y, Zhu C (2013) Emerging roles of microRNAs in the mediation of drought stress response in plants. J Exp Bot 64:3077–3086

    Article  CAS  PubMed  Google Scholar 

  • Forsgren M, Attersand A, Lake S, Grunler J, Swiezewska E, Dallner G, Climent I (2004) Isolation and functional expression of human CoQ2, a gene encoding a polyprenyl transferase involved in the synthesis of CoQ. Biochem J 382:519–526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gottsberger G, Amaral A (1984) Pollination strategies in Brazilian philodendron species. Ber deut bot Ges 97:391–410

    Google Scholar 

  • Ito-Inaba Y, Sato M, Masuko H, Hida Y, Toyooka K, Watanabe M, Inaba T (2009) Developmental changes and organelle biogenesis in the reproductive organs of thermogenic skunk cabbage (Symplocarpus renifolius). J Exp Bot 60:3909–3922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ito-Inaba Y, Hida Y, Matsumura H, Masuko H, Yazu F, Terauchi R, Watanabe M, Inaba T (2012) The gene expression landscape of thermogenic skunk cabbage suggests critical roles for mitochondrial and vacuolar metabolic pathways in the regulation of thermogenesis. Plant Cell Environ 35:554–566

    Article  CAS  PubMed  Google Scholar 

  • Kakizaki Y, Moore AL, Ito K (2012) Different molecular bases underlie the mitochondrial respiratory activity in the homoeothermic spadices of Symplocarpus renifolius and the transiently thermogenic appendices of Arum maculatum. Biochem J 445:237–246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kitao N, Hashimoto M (2012) Increased thermogenic capacity of brown adipose tissue under low temperature and its contribution to arousal from hibernation in Syrian hamsters. Am J Physiol Regul Integr Comp Physiol 302:R118–R125

    Article  CAS  PubMed  Google Scholar 

  • Li JK, Huang SQ (2009) Flower thermoregulation facilitates fertilization in Asian sacred lotus. Ann Bot 103:1159–1163

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu P, Yan K, Lei YX, Xu R, Zhang YM, Yang GD, Huang JG, Wu CA, Zheng CC (2013) Transcript profiling of microRNAs during the early development of the maize brace root via Solexa sequencing. Genomics 101:149–156

    Article  CAS  PubMed  Google Scholar 

  • Luevano-Martinez LA (2012) Uncoupling proteins (UCP) in unicellular eukaryotes: true UCPs or UCP1-like acting proteins? FEBS Lett 586:1073–1078

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Guo Z, Li L (2013) Evolutionary conservation of microRNA regulatory programs in plant flower development. Dev Biol 380:133–144

    Article  CAS  PubMed  Google Scholar 

  • Meeuse BD, Raskin I (1988) Sexual reproduction in the arum lily family, with emphasis on thermogenicity. Sex Plant Reprod 1:3–15

  • Miller RE, Grant NM, Giles L, Ribas-Carbo M, Berry JA, Watling JR, Robinson SA (2011) In the heat of the night—alternative pathway respiration drives thermogenesis in Philodendron bipinnatifidum. New Phytol 189:1013–1026

    Article  CAS  PubMed  Google Scholar 

  • Mohorianu I, Schwach F, Jing R, Lopez-Gomollon S, Moxon S, Szittya G, Sorefan K, Moulton V, Dalmay T (2011) Profiling of short RNAs during fleshy fruit development reveals stage-specific sRNAome expression patterns. Plant J 67:232–246

    Article  CAS  PubMed  Google Scholar 

  • Puzey JR, Karger A, Axtell M, Kramer EM (2012) Deep annotation of Populus trichocarpa microRNAs from diverse tissue sets. PLoS One 7:e33034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quinzii C, Naini A, Salviati L, Trevisson E, Navas P, DiMauro S, Hirano M (2006) A mutation in para-hydroxybenzoate-polyprenyl transferase (CoQ2) causes primary coenzyme Q10 deficiency. Am J Hum Genet 78:345–349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Romanel E, Silva TF, Correa RL, Farinelli L, Hawkins JS, Schrago CE, Vaslin MF (2012) Global alteration of microRNAs and transposon-derived small RNAs in cotton (Gossypium hirsutum) during cotton leafroll dwarf polerovirus (CLRDV) infection. Plant Mol Biol 80:443–460

    Article  CAS  PubMed  Google Scholar 

  • Seymour RS (2010) Scaling of heat production by thermogenic flowers: limits to floral size and maximum rate of respiration. Plant Cell Environ 33:1474–1485

    PubMed  Google Scholar 

  • Seymour RS, Schultze-Motel P (1996) Thermoregulating lotus flowers. Nature 383:305

    Article  CAS  Google Scholar 

  • Seymour RS, Schultze-Motel P (1998) Physiological temperature regulation by flowers of the sacred lotus. Philos Trans R Soc Lond B Biol Sci 353:935–943

    Article  PubMed Central  Google Scholar 

  • Seymour RS, White CR, Gibernau M (2003) Environmental biology: heat reward for insect pollinators. Nature 426:243–244

    Article  CAS  PubMed  Google Scholar 

  • Seymour RS, Maass E, Bolin JF (2009a) Floral thermogenesis of three species of Hydnora (Hydnoraceae) in Africa. Ann Bot 104:823–832

    Article  PubMed Central  PubMed  Google Scholar 

  • Seymour RS, Gibernau M, Pirintsos SA (2009b) Thermogenesis of three species of Arum from Crete. Plant Cell Environ 32:1467–1476

    Article  PubMed  Google Scholar 

  • Seymour RS, Ito Y, Onda Y, Ito K (2009c) Effects of floral thermogenesis on pollen function in Asian skunk cabbage Symplocarpus renifolius. Biol Lett 5:568–570

    Article  PubMed Central  PubMed  Google Scholar 

  • Seymour RS, Silberbauer-Gottsberger I, Gottsberger G (2010) Respiration and temperature patterns in thermogenic flowers of Magnolia ovata under natural conditions in Brazil. Funct Plant Biol 37:870–878

    Article  Google Scholar 

  • Suinyuy TN, Donaldson JS, Johnson SD (2013) Patterns of odour emission, thermogenesis and pollinator activity in cones of an African cycad: what mechanisms apply? Ann Bot 112:891–902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thien LB, Bernhardt P, Devall MS, Chen ZD, Luo YB, Fan JH, Yuan LC, Williams JH (2009) Pollination biology of basal angiosperms (ANITA grade). Am J Bot 96:166–182

    Article  PubMed  Google Scholar 

  • Wang RH, Jia H, Wang JZ, Zhang ZX (2010) Flowering and pollination patterns of Magnolia denudata with emphasis on anatomical changes in ovule and seed development. Flora 205:259–265

    Article  Google Scholar 

  • Wang ZJ, Huang JQ, Huang YJ, Li Z, Zheng BS (2012) Discovery and profiling of novel and conserved microRNAs during flower development in Carya cathayensis via deep sequencing. Planta 236:613–621

    Article  CAS  PubMed  Google Scholar 

  • Wang RH, Liu XY, Mou SL, Xu S, Zhang ZX (2013) Temperature regulation of floral buds and floral thermogenicity in Magnolia denudata (Magnoliaceae). Trees 27:1755–1762

    Article  Google Scholar 

  • Watling JR, Robinson SA, Seymour RS (2006) Contribution of the alternative pathway to respiration during thermogenesis in flowers of the sacred lotus. Plant Physiol 140:1367–1373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xia NH, Liu YH, Nooteboom HP (2008) Magnoliaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China. Science Press and Missouri Botanical Garden Press, Beijing and St. Louis, pp 48–90

  • Zhai J, Zhao Y, Simon SA, Huang S, Petsch K, Arikit S, Pillay M, Ji L, Xie M, Cao X, Yu B, Timmermans M, Yang B, Chen X, Meyers BC (2013) Plant microRNAs display differential 3′ truncation and tailing modifications that are ARGONAUTE1 dependent and conserved across species. Plant Cell 25:2417–2428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author contribution statement

XL, DC, and RW conceived and designed the experiments; XL, DC, and XJ performed the experiments; XL, DC, ZZ, YW, and RW analyzed the data; XL, DC, and RW wrote the paper.

Acknowledgments

This work was supported by the Fundamental Research Funds for Central Universities (No. YX 2014-14) and National Science Fund of China (No. 31100450 & No. J1103516).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruohan Wang.

Additional information

Communicated by R. D. Guy.

X. Liu and D. Cao contributed equally to the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 43 kb)

Figure S1. Work flow of ACGT-101.

Supplementary material 2 (PDF 44 kb)

Table S1. Detailed information for conserved miRNAs.

Supplementary material 3 (PDF 37 kb)

Table S2. Detailed information for novel miRNAs.

Supplementary material 4 (PDF 47 kb)

Table S3. Predicted targets of identified miRNAs.

Supplementary material 5 (PDF 39 kb)

Table S4. Differentially expressed miRNAs in pistils at bud swelling and female stage flowers.

Supplementary material 6 (PDF 38 kb)

Table S5. Differentially expressed miRNAs in pistils at bud swelling and male stage flowers.

Supplementary material 7 (PDF 34 kb)

Table S6. Putative targets of thermogenesis-related miRNAs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Cao, D., Ji, X. et al. miRNAs play essential roles in the floral thermogenesis of Magnolia denudata (Magnoliaceae). Trees 29, 35–42 (2015). https://doi.org/10.1007/s00468-014-1051-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00468-014-1051-9

Keywords

Profiles

  1. Dechang Cao