Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Predicting the distribution of European Hop Hornbeam: application of MaxEnt algorithm and climatic suitability models

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Ostrya carpinifolia Scop. (European Hop Hornbeam) is a native tree in Europe as a species of the Betulaceae family. European Hop Hornbeam has a significant value for the European flora, and assessing the effects of climate change on habitats of species is essential for its sustainability. With this point of view, the main aim of the research was to predict the present and future potential distribution of European Hop Hornbeam across Europe. ‘‘IPSL-CM6A-LR’’ climate change model, ninety-six occurrence data, and seven bioclimatic variables were used to predict potential distribution areas with MaxEnt 3.4.1 program. This study applied a change analysis by comparing the present predicted potential distribution of European Hop Hornbeam with the future predicted potential distribution under the 2041–2060 and 2081–2100 SSP2 4.5 and SSP5 8.5 climate change scenarios. Study results indicated that the sum of suitable and highly suitable areas of European Hop Hornbeam is calculated to be 1,136,706 km2 for the current potential distribution. On the contrary, 2,107,187 km2 of highly suitable and suitable areas will be diminished in the worst case by 2100. The most affected bioclimatic variable is BIO 19 (Precipitation of Coldest Quarter), considering the prediction of the species distribution. These findings indicated that the natural ecosystems of the Mediterranean region will shift to northern areas. This study represented a reference for creating a strategy for the protection and conservation of the species in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Once the manuscript is accepted, the data will be archived in the repository of the Süleyman Demirel University and a link will be made available.

References

  • World Clim (2020) Future climate, 2.5 minutes’ spatial resolution WorldClim 1 documentation [WWW Document]. URL https://worldclim.org/data/cmip6/cmip6_clim2.5m.html (Accessed 12.1.20).

  • Abolmaali SMR, Tarkesh M, Bashari H (2018) MaxEnt modeling for predicting suitable habitats and identifying the effects of climate change on a threatened species, Daphne mucronata, in central Iran. Ecol Inform 43:116–123

    Article  Google Scholar 

  • Akhter S, McDonald MA, van Breugel P, Sohel S, Kjær ED, Mariott R (2017) Habitat distribution modelling to identify areas of high conservation value under climate change for Mangifera sylvatica Roxb. of Bangladesh. Land Use Policy 60:223–232

    Article  Google Scholar 

  • Akyol A, Orucu OK, Arslan ES (2020) Habitat suitability mapping of stone pine (Pinus pineaL.) under the effects of climate change. Biologia.

  • Arslan ES, Akyol A, Örücü ÖK, Sarıkaya AG (2020) Distribution of rose hip (Rosa canina L.) under current and future climate conditions. Reg Environ Change 20:1–13

    Article  Google Scholar 

  • Arzac A, Tychkov I, Rubtsov A, Tabakova MA, Brezhnev R, Koshurnikova N, Büntgen U (2021) Phenological shifts compensate warming-induced drought stress in southern Siberian Scots pines. Europ J of Forest Res 140(6):1487–1498

    Article  Google Scholar 

  • Austin M (2007) Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol Modell 200:1–19

    Article  Google Scholar 

  • Azadi H, Taheri F, Burkart S, Mahmoudi H, De Maeyer P, Witlox F (2020) Impact of agricultural land conversion on climate change. Environ Dev Sustain 45:1–12

    Google Scholar 

  • Bai J, Hou P, Jin D, Zhai J, Ma Y, Zhao J (2022) Habitat suitability assessment of black-necked crane (Grus nigricollis) in the zoige grassland wetland ecological function zone on the eastern tibetan plateau. Diversity 14(7):579

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Booth TH (2018) Species distribution modelling tools and databases to assist managing forests under climate change. Forest Ecol Manage 430:196–203

    Article  Google Scholar 

  • Boucher O, Servonnat J, Albright AL, Aumont O, Balkanski Y, Bastrikov V et al (2020) Presentation and evaluation of the IPSL-CM6A-LR climate model. J Advanc Model Earth Sys 12:e10

    Google Scholar 

  • Caudullo G, Welk E, San-Miguel-Ayanz J (2017) Chorological maps for the main European woody species. Data Brief 12:662–666

    Article  PubMed  PubMed Central  Google Scholar 

  • Garzón MB, Dios RS, de Ollero HS (2008) Effects of climate change on the distribution of Iberian tree species. Appl Vegetation Sci 11:169–178

    Article  Google Scholar 

  • GBIF (2022) GBIF Occurrence Download F, Lionello P (2008) Climate change projections for the Mediterranean region. Global and Planet Change 63: 90–104. Doi: https://doi.org/10.15468/dl.kdm9nuGiorgi

  • Han H, Cho S, Song J, Seol A, Chung H, Kim J, Chung J (2014) Assessing the potential suitability of forest stands as Kirengeshoma koreana habitat using MaxEnt. Land and Ecol Eng 10:339–348

    Article  Google Scholar 

  • Harrison S (2020) Plant community diversity will decline more than increase under climatic warming. Philos Trans R Soc B 375(1794):20190106

    Article  Google Scholar 

  • Huang Z, Xie L, Wang H, Zhong J, Li Yanchen Liu J, Ou Z, Liang X, Li Yongshan Huang H (2019) Geographic distribution and impacts of climate change on the suitable habitats of Zingiber species in China. Indust Crops and Prod 138:e111429

    Article  Google Scholar 

  • Ilari A, Fabrizi S, Foppa Pedretti E (2022) European hophornbeam biomass for energy application: influence of different production processes and heating devices on environmental sustainability. Resources 11(2):11

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland.

  • IPSL (2020) Institut Pierre Simon Laplace Climate Modelling Center. URL http://cmc.ipsl.fr/ipsl-climate-models/ipsl-cm6/ (Accessed 12.7.20).

  • Jamshidi O, Asadi A, Kalantari K, Azadi H, Scheffran J (2019) Vulnerability to climate change of smallholder farmers in the Hamadan province. Iran Clim Risk Manage 23:146–159

    Article  Google Scholar 

  • Khwarahm NR (2020) Mapping current and potential future distributions of the oak tree (Quercus aegilops) in the Kurdistan Region. Iraq Ecol Proc 9:56

    Article  Google Scholar 

  • Kigen C, Okoth P, Konje M, Shivoga W, Ochieno D, Wanjala S, Agevi H, Onyando Z, Soy B, Kisoyan P (2013) Modeling the Spatial Impact of Climate Change on Grevy’s Zebra (Equus grevyi) niche in Kenya.

  • Kiliç M, Pürlusoy I, Kurnali M (2018) Measuring the surface roughness values of european hop-horn beam (Ostrya Carpinifolia Scop.) wood. Wood Research 63(2): 343–352.

  • Korkut S (2009) Gürgen Yapraklı Kayacık (Ostrya carpinifolia Scop.) Odununun Bazı Mekanik Özelikleri Üzerine Isıl slem Sıcaklık ve Süresinin Etkisi. Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi 5:121–130

    Google Scholar 

  • Kulac S, Filiz E, Cicek E, Degermenci Z, Vatansever R (2016) Assessment of genetic diversity in natural European hophornbeam (Ostrya carpinifolia Scop.) populations in Turkey. Biotechnol Biotechnol Equip 30(5):948–955

    Article  CAS  Google Scholar 

  • Kumar P (2012) Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: limitations and challenges. Conserva 21:1251–1266

    Google Scholar 

  • Lepcha DL, Pradhan A, Chhetri DR (2019) Population assessment and species distribution modeling of Paris polyphylla in Sikkim Himalaya. India. Biodivers J Biol Div 20:87

    Google Scholar 

  • Li J, Fan G, He Y (2020a) Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis. Sci Total Environ 698:134141

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Huang P, Lin F, Yang W, Gaisberger H, Christopher K, Zheng Y (2019) MaxEnt modelling for predicting the potential distribution of a near threatened rosewood species (Dalbergia cultrata Graham ex Benth). Ecol Engin 141:105612

    Article  Google Scholar 

  • Madeleine JB, Hourdin F, Grandpeix JY, Rio C, Dufresne JL, Vignon E, Boucher O, Konsta D, Cheruy F, Musat I, Idelkadi A, Fairhead L, Millour E, Lefebvre MP, Mellul L, Rochetin N, Lemonnier F, Touzé-Peiffer L, Bonazzola M (2020) Improved representation of clouds in the atmospheric component LMDZ6A of the IPSL Earth system model IPSL-CM6A. J of Adv in Model Earth Sys. https://doi.org/10.1029/2020MS002046

    Article  Google Scholar 

  • Maharaj SS, Asmath H, Ali S, Agard J, Harris SA, New M (2019) Assessing protected area effectiveness within the Caribbean under changing climate conditions: a case study of the small island, Trinidad. Land Use Policy 81:185–193

    Article  Google Scholar 

  • Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E (2020) Environmental and health impacts of air pollution: a review. Front Public Heal 8:87

    Google Scholar 

  • Marsberg A, Kemler M, Jami F, Nagel JH, Postma-Smidt A, Naidoo S, Slippers B (2017) Botryosphaeria dothidea: a latent pathogen of global importance to woody plant health. Mol Plant Pathol 18(4):477–488

    Article  CAS  PubMed  Google Scholar 

  • McMahon SM, Harrison SP, Armbruster WS, Bartlein PJ, Beale CM, Edwards ME, Kattge J, Midgley G, Morin X, Prentice IC (2011) Improving assessment and modelling of climate change impacts on global terrestrial biodiversity. Trends in Ecol Evol 26:249–259

    Article  Google Scholar 

  • Nunez S, Arets E, Alkemade R, Verwer C, Leemans R (2019) Assessing the impacts of climate change on biodiversity: is below 2° C enough? Clim Change 154(3):351–365

    Article  Google Scholar 

  • Pasta S, de Rigo D, Caudullo G (2016) Ostrya carpinifolia in Europe: distribution, habitat, usage and threats. European Atlas of Forest Tree Species, J. San-Miguel-Ayanz, D. De Rigo, G. Caudullo, T. Houston Durrant, Und A. Mauri,(HRSG.) Publ. Off. EU: Luxembourg. e01fd3d.

  • Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson AJJ (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117

    Article  Google Scholar 

  • Pearson RG, Stanton JC, Shoemaker KT, Aiello-Lammens ME, Ersts PJ, Horning N, Fordham DA, Raxworthy CJ, Ryu HY, McNees J (2014) Life history and spatial traits predict extinction risk due to climate change. Nat Climate Change 4:217–221

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire REJE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259

    Article  Google Scholar 

  • Qin A, Liu B, Guo Q, Bussmann RW, Ma F, Jian Z, Xu G, Pei S (2017) Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Glob Ecol Conserv 10:139–146

    Article  Google Scholar 

  • Raney PA, Leopold DJ (2018) Fantastic wetlands and where to find them: modeling rich fen distribution in New York State with Maxent. Wetlands 38:81–93

    Article  Google Scholar 

  • Rather TA, Kumar S, Khan JA (2020) Multi-scale habitat modelling and predicting change in the distribution of tiger and leopard using random forest algorithm. Sci Rep 10(1):1–19

    Article  Google Scholar 

  • Rosencranz A, Singh D, Pais JG (2009) Climate change adaptation, policies, and measures in India. Geo Int’l Envt L Rev 22:575–590

    Google Scholar 

  • Sayyadi F, Moghaddasi R, Yazdani S (2019) How climate change affects land use pattern: an Iranian provincial experience. Int J of Environ Res 13(1):67–75

    Article  Google Scholar 

  • Shaw K, Roy S, Wilson B (2014) Ostrya carpinifolia. The IUCN Red List of Threatened Species 2014: e.T194280A2309186. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2014-3.RLTS.T194280A2309186.en. Downloaded on 14 October 2020.

  • Sinclair SJ, White MD, Newell GR (2010) How useful are species distribution models for managing biodiversity under future climates? Ecol Soc 15:87

    Article  Google Scholar 

  • Song W, Kim E, Lee D, Lee M, Jeon SW (2013) The sensitivity of species distribution modeling to scale differences. Ecol Modell 248:113–118

    Article  Google Scholar 

  • Sun S, Zhang Y, Huang D, Wang H, Cao Q, Fan P, Yang N, Zheng P, Wang R (2020) The effect of climate change on the richness distribution pattern of oaks (Quercus L.) in China. Sci Total Environ 744:140786

    Article  CAS  PubMed  Google Scholar 

  • Thiébault S, Moatti JP (2016) The Mediterranean region under climate change: a scientific update.

  • Thrippleton T, Lüscher F, Bugmann H (2020) Climate change impacts across a large forest enterprise in the Northern Pre-Alps: dynamic forest modelling as a tool for decision support. Europ J Forest Res 139(3):483–498

    Article  Google Scholar 

  • Thuiller W (2007) Climate change and the ecologist. Nature 448:550–552

    Article  CAS  PubMed  Google Scholar 

  • Tytar VM (2019) Climatic limits for the present European distribution of hornbeam (Carpinus betulus), with special reference to Ukraine. bioRxiv 506428.

  • Ueda K (2020) iNaturalist research-grade observations. iNaturalist.org. Occurrence dataset accessed via GBIF.Org. 2020–12–07. Doi: https://doi.org/10.15468/ab3s5x

  • Urban MC, Bocedi G, Hendry AP, Mihoub JB, Pe’er G, Singer A, Bridle J, Crozier L, De Meester L, Godsoe W (2016) Improving the forecast for biodiversity under climate change. Sci 353.

  • Vallese Ch, Nascimbene J, Giordani P, Benesperi R, Casazza G (2021) Modelling range dynamics of terricolous lichens of the genus Peltigera in the Alps under a climate change scenario. Fungal Ecol 49:101014

    Article  Google Scholar 

  • Van Zonneveld M, Koskela J, Vinceti B, Jarvis A (2009) Impact of climate change on the distribution of tropical pines in Southeast Asia. Unasylva 60:24–28

    Google Scholar 

  • Wan JZ, Wang CJ, Yu FH (2017) Spatial conservation prioritization for dominant tree species of Chinese forest communities under climate change. Clim Change 144:303–316

    Article  Google Scholar 

  • Wang YL (2012) Predicting the potential geographic distribution of crofton weed (Ageratina Adenophora) around the world using maxent modeling. Vegetos 25:324–335

    CAS  Google Scholar 

  • Ward DF (2007) Modelling the potential geographic distribution of invasive ant species in New Zealand. Biol Invasions 9:723–735

    Article  Google Scholar 

  • Warren R, Price J, VanDerWal J, Cornelius S, Sohl H (2018) The implications of the United Nations Paris agreement on climate change for globally significant biodiversity areas. Clim Change 147(3):395–409

    Article  Google Scholar 

  • Yang XQ, Kushwaha S, Saran S, Xu J, Roy P (2013) Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol Engin 51:83–87

    Article  CAS  Google Scholar 

  • Yuan HS, Wei YL, Wang XG (2015) Maxent modeling for predicting the potential distribution of Sanghuang, an important group of medicinal fungi in China. Fungal Ecol 17:140–145

    Article  Google Scholar 

  • Zhao H, Zhang H, Xu C (2020) Study on Taiwania cryptomerioides under climate change: MaxEnt modeling for predicting the potential geographical distribution. Glob Ecol Conserv 24:e01313

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

OKO and HA performed the study and developed the main text. ESA contributed to the first draft manuscript and enriched it up to the final version. ÖKA enriched it up to the final version, reviewed and edited the final version of the manuscript. ShCh, SNN and HIS reviewed, enriched and edited the final version of the manuscript.

Corresponding authors

Correspondence to Hossein Azadi or E. Seda Arslan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Christian Ammer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Örücü, Ö.K., Azadi, H., Arslan, E.S. et al. Predicting the distribution of European Hop Hornbeam: application of MaxEnt algorithm and climatic suitability models. Eur J Forest Res 142, 579–591 (2023). https://doi.org/10.1007/s10342-023-01543-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10342-023-01543-2

Keywords

Profiles

  1. Ömer K. Örücü