Abstract
Circulating tumor cells (CTCs) are prognostic in all stages of breast cancer. However, since they are extremely rare, little is known about the molecular nature of these cells. We report a novel strategy for the isolation and expression profiling of pure populations of CTCs derived from peripheral blood. We developed a method to isolate CTCs based on immunomagnetic capture followed by fluorescence-activated cell sorting (IE/FACS). After assay validation using the BT474 cell line spiked into blood samples in vitro, RNA from CTCs isolated from the blood of five metastatic breast cancer (MBC) patients was linearly amplified and subjected to gene expression profiling via cDNA microarrays. We isolated a range of 9-993 captured CTCs from five MBC patients’ blood and profiled their RNA in comparison to a diverse panel of primary breast tumors (n = 55). Unsupervised hierarchical clustering revealed that CTC profiles clustered with more aggressive subtypes of primary breast tumors and were readily distinguishable from peripheral blood (PB) and normal epithelium. Differential expression analysis revealed CTCs to have downregulated apoptosis, and they were distinguishable from PB by the relative absence of immune-related signals. As expected, CTCs from MBC had significantly higher risk of recurrence scores than primary tumors (p = 0.0073). This study demonstrates that it is feasible to isolate CTCs from PB with high purity through IE/FACS and profile them via gene expression analysis. Our approach may inform the discovery of therapeutic predictors and be useful for real-time identification of emerging resistance mechanisms in MBC patients.
Similar content being viewed by others
Abbreviations
- CTC:
-
Circulating tumor cell
- IE/FACS:
-
Immunomagnetic enrichment followed by fluorescence-activated cell sorting
- RNA:
-
ribonucleic acid
- MBC:
-
Metastatic breast cancer
- cDNA:
-
Complementary deoxyribonucleic acid
- PB:
-
Peripheral blood
- QPCR:
-
Quantitative real-time polymerase chain reaction
- EpCAM:
-
epithelial cell adhesion marker
- mAb:
-
Monoclonal antibody
- HER2:
-
Human epidermal growth factor receptor 2
- ER:
-
Estrogen receptor
- RPMI:
-
Roswell Park Memorial Institute
- EDTA:
-
Ethylenediaminetetraacetic acid
- CALGB:
-
Cancer and Leukemia Group B
- ACRIN:
-
American College of Radiology Imaging Network
- StratRef:
-
Stratagene Universal Human Pooled Reference RNA
- dIdC:
-
Poly(deoxyinosinic-deoxycytidylic) acid sodium salt
- M-MLV:
-
Moloney Murine Leukemia Virus Reverse Transcriptase
- GUS:
-
Beta-glucuronidase
- ABI:
-
Applied Biosystems
- CT:
-
Cycle threshold
- HLA:
-
Human leukocyte antigen
- GAPDH:
-
Glyceraldehyde 3-phosphate dehydrogenase
- Cy:
-
Cyanine dye
- GSE:
-
Gene Expression Omnibus series format file
- AU:
-
Approximately Unbiased
- ANOVA:
-
Analysis of variance
- BH:
-
Benjamini Hochberg
- FDR:
-
False discovery rate
- DAVID:
-
the Database for Annotation, Visualization and Integrated Discovery
- PAM50:
-
A 50 gene intrinsic subtype classifier
- BCL2:
-
B-cell lymphoma 2
- CDC6:
-
Cell division cycle 6
- NUF2:
-
Kinetochore protein Nuf2
- CENPF:
-
Centromere protein F
- CEP55:
-
Centrosomal protein 55 kDa
- CXXC5:
-
CXXC finger protein 5
- EGFR:
-
Epidermal growth factor receptor
- ERBB2:
-
Human epidermal growth factor receptor 2
- ESR1:
-
Estrogen receptor 1
- FGFR4:
-
Fibroblast growth factor receptor 4
- FOXC1:
-
Forkhead box C1
- GRB7:
-
Growth factor receptor-bound protein 7
- NDC80:
-
NDC80 kinetochore complex component
- KRT14:
-
Keratin 14
- MYBL2:
-
Myeloblastosis oncogene-like 2
- PTTG1:
-
Pituitary tumor-transforming 1
- RRM2:
-
Ribonucleotide reductase M2
- TMEM45B:
-
Transmembrane protein 45B
- TYMS:
-
Thymidylate synthetase
- UBE2C:
-
Ubiquitin-conjugating enzyme E2C
- UBE2T:
-
Ubiquitin-conjugating enzyme E2
- ROR ~ P:
-
Risk of recurrence score
- PBS:
-
Phosphate-buffered saline
- KEGG:
-
Kyoto Encyclopedia of Genes and Genomes
- GO:
-
Gene ontology
- UTR:
-
Untranslated region
- UCSF:
-
University of California, San Francisco
- USC:
-
University of Southern California
- I-SPY1:
-
Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging And moLecular Analysis 1 clinical trial
- SWOG:
-
Southwest Oncology Group
- NCI:
-
National Cancer Institute
- PE:
-
Phycoerythrin
- CI:
-
Confidence interval
References
Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, Tibbe AG, Uhr JW, Terstappen LW (2004) Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 10(20):6897–6904. doi:10.1158/1078-0432.CCR-04-0378
Budd GT, Cristofanilli M, Ellis MJ, Stopeck A, Borden E, Miller MC, Matera J, Repollet M, Doyle GV, Terstappen LW, Hayes DF (2006) Circulating tumor cells versus imaging–predicting overall survival in metastatic breast cancer. Clin Cancer Res 12(21):6403–6409
Liu MC, Shields PG, Warren RD, Cohen P, Wilkinson M, Ottaviano YL, Rao SB, Eng-Wong J, Seillier-Moiseiwitsch F, Noone AM, Isaacs C (2009) Circulating tumor cells: a useful predictor of treatment efficacy in metastatic breast cancer. J Clin Oncol 27(31):5153–5159. doi:10.1200/JCO.2008.20.6664
Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B, Collura CV, Inserra E, Diederichs S, Iafrate AJ, Bell DW, Digumarthy S, Muzikansky A, Irimia D, Settleman J, Tompkins RG, Lynch TJ, Toner M, Haber DA (2008) Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med 359(4):366–377. doi:10.1056/NEJMoa0800668
Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM, Concannon KF, Donaldson MC, Sequist LV, Brachtel E, Sgroi D, Baselga J, Ramaswamy S, Toner M, Haber DA, Maheswaran S (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339(6119):580–584. doi:10.1126/science.1228522
Sieuwerts AM, Mostert B, Bolt-de Vries J, Peeters D, de Jongh FE, Stouthard JM, Dirix LY, van Dam PA, Van Galen A, de Weerd V, Kraan J, van der Spoel P, Ramirez-Moreno R, van Deurzen CH, Smid M, Yu JX, Jiang J, Wang Y, Gratama JW, Sleijfer S, Foekens JA, Martens JW (2011) mRNA and microRNA expression profiles in circulating tumor cells and primary tumors of metastatic breast cancer patients. Clin. Cancer Res 17(11):3600–3618. doi:10.1158/1078-0432.CCR-11-0255
Smirnov DA, Zweitzig DR, Foulk BW, Miller MC, Doyle GV, Pienta KJ, Meropol NJ, Weiner LM, Cohen SJ, Moreno JG, Connelly MC, Terstappen LW, O’Hara SM (2005) Global gene expression profiling of circulating tumor cells. Cancer Res 65(12):4993–4997. doi:10.1158/0008-5472.CAN-04-4330
Ring A, Smith IE, Dowsett M (2004) Circulating tumour cells in breast cancer. Lancet Oncol 5(2):79–88
Xenidis N, Perraki M, Kafousi M, Apostolaki S, Bolonaki I, Stathopoulou A, Kalbakis K, Androulakis N, Kouroussis C, Pallis T, Christophylakis C, Argyraki K, Lianidou ES, Stathopoulos S, Georgoulias V, Mavroudis D (2006) Predictive and prognostic value of peripheral blood cytokeratin-19 mRNA-positive cells detected by real-time polymerase chain reaction in node-negative breast cancer patients. J Clin Oncol 24(23):3756–3762
Apostolaki S, Perraki M, Kallergi G, Kafousi M, Papadopoulos S, Kotsakis A, Pallis A, Xenidis N, Kalmanti L, Kalbakis K, Agelaki S, Kalykaki A, Stournaras C, Stathopoulos E, Georgoulias V, Mavroudis D (2009) Detection of occult HER2 mRNA-positive tumor cells in the peripheral blood of patients with operable breast cancer: evaluation of their prognostic relevance. Breast Cancer Res Treat 117(3):525–534. doi:10.1007/s10549-008-0239-3
Sieuwerts AM, Kraan J, Bolt-de Vries J, van der Spoel P, Mostert B, Martens JW, Gratama JW, Sleijfer S, Foekens JA (2009) Molecular characterization of circulating tumor cells in large quantities of contaminating leukocytes by a multiplex real-time PCR. Breast Cancer Res Treat 118(3):455–468. doi:10.1007/s10549-008-0290-0
Powell AA, Talasaz AH, Zhang H, Coram MA, Reddy A, Deng G, Telli ML, Advani RH, Carlson RW, Mollick JA, Sheth S, Kurian AW, Ford JM, Stockdale FE, Quake SR, Pease RF, Mindrinos MN, Bhanot G, Dairkee SH, Davis RW, Jeffrey SS (2012) Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS One 7(5):e33788. doi:10.1371/journal.pone.0033788
Magbanua MJ, Park JW (2013) Isolation of circulating tumor cells by immunomagnetic enrichment and fluorescence-activated cell sorting (IE/FACS) for molecular profiling. Methods. doi:10.1016/j.ymeth.2013.07.029
Magbanua MJ, Sosa EV, Roy R, Eisenbud LE, Scott JH, Olshen A, Pinkel D, Rugo HS, Park JW (2013) Genomic profiling of isolated circulating tumor cells from metastatic breast cancer patients. Cancer Res 73(1):30–40. doi:10.1158/0008-5472.CAN-11-3017
Lang JE, Magbanua MJ, Scott JH, Makrigiorgos GM, Wang G, Federman S, Esserman LJ, Park JW, Haqq CM (2009) A comparison of RNA amplification techniques at sub-nanogram input concentration. BMC Genom 10:326. doi:10.1186/1471-2164-10-326
Lasfargues EY, Coutinho WG, Redfield ES (1978) Isolation of two human tumor epithelial cell lines from solid breast carcinomas. J Natl Cancer Inst 61(4):967–978
Baugh LR, Hill AA, Brown EL, Hunter CP (2001) Quantitative analysis of mRNA amplification by in vitro transcription. Nucleic Acids Res 29(5):E29
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262
Haqq C, Nosrati M, Sudilovsky D, Crothers J, Khodabakhsh D, Pulliam BL, Federman S, Miller JR 3rd, Allen RE, Singer MI, Leong SP, Ljung BM, Sagebiel RW, Kashani-Sabet M (2005) The gene expression signatures of melanoma progression. Proc Natl Acad Sci USA 102(17):6092–6097
Hughes TR, Mao M, Jones AR, Burchard J, Marton MJ, Shannon KW, Lefkowitz SM, Ziman M, Schelter JM, Meyer MR, Kobayashi S, Davis C, Dai H, He YD, Stephaniants SB, Cavet G, Walker WL, West A, Coffey E, Shoemaker DD, Stoughton R, Blanchard AP, Friend SH, Linsley PS (2001) Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol 19(4):342–347
DeRisi J, Penland L, Brown PO, Bittner ML, Meltzer PS, Ray M, Chen Y, Su YA, Trent JM (1996) Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 14(4):457–460
Yang YH, Paquet A, Dudoit S (2009) marray: Exploratory analysis for two-color spotted microarray data.. R package version 1.36.0. edn.,
R_Core_Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
Smyth GK (2005) Limma: linear models for microarray data. Bioinformatics and Computational Biology Solutions using R and Bioconductor. Springer, New York
Suzuki R, Hidetoshi S (2011) pvclust: Hierarchical clustering with P-values via multiscale bootstrap resampling. R package version 1.2–2. edn.,
Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4(5):P3
Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z, Quackenbush JF, Stijleman IJ, Palazzo J, Marron JS, Nobel AB, Mardis E, Nielsen TO, Ellis MJ, Perou CM, Bernard PS (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27(8):1160–1167. doi:10.1200/JCO.2008.18.1370
McShane LM, Hayes DF (2012) Publication of tumor marker research results: the necessity for complete and transparent reporting. J Clin Oncol 30(34):4223–4232. doi:10.1200/JCO.2012.42.6858
Esserman LJ, Berry DA, DeMichele A, Carey L, Davis SE, Buxton M, Hudis C, Gray JW, Perou C, Yau C, Livasy C, Krontiras H, Montgomery L, Tripathy D, Lehman C, Liu MC, Olopade OI, Rugo HS, Carpenter JT, Dressler L, Chhieng D, Singh B, Mies C, Rabban J, Chen YY, Giri D, van ‘t Veer L, Hylton N (2012) Pathologic complete response predicts recurrence-free survival more effectively by cancer subset: results from the I-SPY 1 TRIAL–CALGB 150007/150012, ACRIN 6657. J Clin Oncol 30(26):3242–3249. doi:10.1200/JCO.2011.39.2779
van ’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536. doi:10.1038/415530a
van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009. doi:10.1056/NEJMoa021967347/25/1999
Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lonning PE, Brown PO, Borresen-Dale AL, Botstein D (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100(14):8418–8423
Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF, Beitsch PD, Leitch M, Hoover S, Euhus D, Haley B, Morrison L, Fleming TP, Herlyn D, Terstappen LW, Fehm T, Tucker TF, Lane N, Wang J, Uhr JW (2004) Circulating tumor cells in patients with breast cancer dormancy. Clin. Cancer Res 10(24):8152–8162
Smerage JB, Barlow WE, Hortobagyi GN, Winer EP, Leyland-Jones B, Srkalovic G, Tejwani S, Schott AF, O’Rourke MA, Lew DL, Doyle GV, Gralow JR, Livingston RB, Hayes DF (2014) Circulating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500. J Clin Oncol. doi:10.1200/JCO.2014.56.2561
Acknowledgments
We would like to thank Daisuke Nonaka, Daniel Khodabakhsh, Kavitha Krishnan, Hema Parmar, Alfred Au, Scot Federman, Pamela Derish, David Ginzinger, Joe Gray, and Eduardo Sosa for their contributions to this work. We acknowledge William Hyun and the UCSF Comprehensive Cancer Center Molecular Cytometry Core. We acknowledge Emily Park and Tom Frey of BD Biosciences for contributing reagents used for these experiments.
Financial support
Dr. Park’s laboratory was supported by the National Cancer Institute (NCI) Interdisciplinary Research Teams for Molecular Target Assessment (U54 CA90788). Dr. Lang’s laboratory was supported by a Ginny Clements Research Award, a Better than Ever Award (University of Arizona), a Society of Surgical Oncology Clinical Investigator Award, a California Breast Cancer Research Program Idea Award, and a STOP Cancer Award. The project described was supported in part by award number P30CA014089 from the National Cancer Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health. Southwest Environmental Health Sciences Center Grant ES006694 supported Petr Novak. We acknowledge the I-SPY Program for additional statistical support.
Conflict of interest
Christopher M. Haqq owns stock in Johnson & Johnson. The other authors have no relevant financial disclosures.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Lang, J.E., Scott, J.H., Wolf, D.M. et al. Expression profiling of circulating tumor cells in metastatic breast cancer. Breast Cancer Res Treat 149, 121–131 (2015). https://doi.org/10.1007/s10549-014-3215-0
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s10549-014-3215-0