Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Relationship between hybrid performance and genetic variation in self-fertile and self-sterile sugar beet pollinators as estimated by SSR markers

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Sugar beet hybrid varieties are produced through the crosses between male sterile lines and the multigerm pollinators. The uniformity of pollinators used for hybrid crosses depends on the presence of self-sterility (S s) and self-fertility (S f) genes. The aim of the study was to analyze correlation between hybrid performance and genetic distance or heterozygosity of the sugar beet pollinators. Twelve diploid pollinators classified as self-sterile (S s) or self-fertile (S f) and two cytoplasmic male sterile (CMS) lines were crossed in line × tester scheme, producing 24 F1 hybrids. The parents and the hybrids were evaluated for root yield and quality traits, from which F1 performance, combining abilities, mid-parent and high-parent heterosis were calculated. Parental genetic distance and diversity of the pollinators were estimated by SSR markers and, together with GCA and F1 performance, correlated with the heterosis effects. The S f hybrids had better GCA and higher values of root yield, root weight, and root circumference than the S s hybrids. Heterosis was recorded in more combinations with the S f than with the S s pollinators. Parameters of genetic diversity were higher in the S s (Na = 3.125; Ne = 2.341; He = 0.555) than in the S f pollinators (Na = 3.000; Ne = 2.188; He = 0.510). Genetic distance between the tested pollinators and the CMS lines was low (0.072–0.224) indicating that the genetic base of the investigated germplasm was narrow. Correlation of the heterosis effects with GD and heterozygosity was detected only for the root yield traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbasi Z, Arzani A, Majidi MM (2014) Evaluation of genetic diversity of sugar beet (Beta vulgaris L.) crossing parents using agro-morphological traits and molecular markers. J Agric Sci Technol 16:1397–1411

    Google Scholar 

  • Amelework B, Shimelis H, Laing M (2016) Genetic variation in sorghum as revealed by phenotypic and SSR markers: implications for combining ability and heterosis for grain yield. Plant Genet Res. doi:10.1017/S1479262115000696

    Google Scholar 

  • Andersen NS, Siegismund HR, Meyer V, Jorgensen RB (2005) Low level of gene flow from cultivated beets (Beta vulgaris L. ssp vulgaris) into Danish populations of sea beet (Beta vulgaris L. ssp. maritima (L.) Arcangeli). Mol Ecol 14:1391–1405

    Article  CAS  PubMed  Google Scholar 

  • Becker HC, Loptien H, Robbelen G (1999) Breeding: an overview. In: Gomez-Campo C (ed) Biology of brassica coeno species. Elsevier, Amsterdam, pp 413–460

    Chapter  Google Scholar 

  • Bosemark N (1993) Genetics and breeding. In: Cooke DA, Scott RK (eds) The sugar beet crop. Chapman and Hall, London, pp 67–119

    Chapter  Google Scholar 

  • Buti M, Giordani T, Vukich M, Pugliesi C, Natali L, Cavallini A (2013) Retrotransposon-related genetic distance and hybrid performance in sunflower (Helianthus annuus L.). Euphytica 192:289–303

    Article  CAS  Google Scholar 

  • Charcosset A, Gallais A (2003) Application of markers in selection. In: de Vienne D (ed) Molecular markers in plants genetics and biotechnology. Science Publishers, Enfield, pp 53–176

    Google Scholar 

  • Chołuj D, Wiśniewska A, Szafrański KM, Cebula J, Gozdowski D, Podlaski S (2014) Assessment of the physiological responses to drought in different sugar beet genotypes in connection with their genetic distance. J Plant Physiol 171:1221–1230

    Article  PubMed  Google Scholar 

  • Danojević D, Ćurčić Ž, Nagl N, Taški-Ajduković K, Boćanski J (2016) Evaluation of sugar beet genotypes for root traits by principal component analysis and cluster analysis. Genetika 48:339–348

    Article  Google Scholar 

  • De Biaggi M, Skaracis GN (2003) Selection methods. In: Biancardi E et al (eds) Genetics and breeding of sugar beet. Science Publishers Inc., Enfield, pp 169–191

    Google Scholar 

  • Dell Inc. (2015) STATISTICA (data analysis software system), version 12. www.statsoft.com

  • Diers BW, McVetty BE, Osborn TC (1996) Relationship between heterosis and genetic distance based on RFLP markers in oilseed rape (Brassica napus L.). Crop Sci 36:76–83

    Article  Google Scholar 

  • Doney DL, Theurer JC, Wyse RE (1985) Respiration efficiency and heterosis in sugar beet. Crop Sci 25:448–450

    Article  Google Scholar 

  • Dutton J, Huijbregts T (2006) Root quality and processing. In: Draycott AP (ed) Sugar beet. Blackwell Publishing Ltd, Oxford, pp 409–442

    Chapter  Google Scholar 

  • Falconer DS, Mackay TFC (1996) An introduction to quantitative genetics. Prentice Hall, London

    Google Scholar 

  • Fénart S, Arnaud J, Cauwer ID, Cuguen J (2008) Nuclear and cytoplasmic genetic diversity in weed beet and sugar beet accessions compared to wild relatives: new insights into the genetic relationships within the Beta vulgaris complex species. Theor Appl Genet 116:1063–1077

    Article  PubMed  Google Scholar 

  • Fisher RA (1925) Statistical methods for research workers. Oliver & Boyd, Edinburgh

    Google Scholar 

  • Flint-Garcia SA, Buckler ES, Tiffin P, Ersoz E, Springer NM (2009) Heterosis is prevalent for multiple traits in diverse maize germplasm. PLoS ONE 4:e7433

    Article  PubMed  PubMed Central  Google Scholar 

  • Helmerick RH, Finkner RE, Doxtator CW (1963) Variety crosses in sugar beets (Beta vulgaris L.) I. Expression of heterosis and combinig ability. J Am Soc Sugar Beet Technol 13:574–584

    Google Scholar 

  • Jagosz B (2011) The relationship between heterosis and genetic distances based on RAPD and AFLP markers in carrot. Plant Breed 130:574–579

    Article  CAS  Google Scholar 

  • Jaikishan I, Rajendrakumar P, Ramesha MS, Viraktamath BC, Balachandran SM, Neeraja CN, Sujatha K, SrinivasaRao K, Natarajkumar P, Hari Y, Sakthivel K, Ramaprasad AS, Sundaram RM (2010) Prediction of heterosis for grain yield in rice using key informative EST-SSR markers. Plant Breed 129:108–111

    Article  CAS  Google Scholar 

  • Kalia RK, Rai MK, Kalia S, Singh R, Dhawan A (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334

    Article  CAS  Google Scholar 

  • Kikindonov G, Kikindonov T (2001) Heterosis effect in hybrid combinations of dihaploid sugar beet lines. Bulg J Agric Sci 7:577–581

    Google Scholar 

  • Kruse A (1981) The potential use of heterosis in Beta vulgaris L. II. Yield performance of pure lines and their hybrids. Euphytica 30:791–802

    Article  Google Scholar 

  • Krystkowiak K, Adamski T, Surma M, Kaczmarek Z (2009) Relationship between phenotypic and genetic diversity of parental genotypes and the specific combining ability and heterosis effects in wheat (Triticum aestivum L.). Euphytica 165:419–434

    Article  Google Scholar 

  • Laurent V, Devaux P, Thiel T, Viard F, Mielordt S, Touzet P, Quillet MC (2007) Comparative effectiveness of sugar beet microsatellite markers isolated from genomic libraries and GenBank ESTs to map the sugar beet genome. Theor Appl Genet 115:793–805

    Article  CAS  PubMed  Google Scholar 

  • Le Cochec F, Soreau P (1989) Mode d’action des gènes et hétérosis pour Ie caractère montée à graines dans Ie croisement de deux lignées fixées de betterave à sucre (Beta vulgaris L.). Agronomie 9:585–590

    Article  Google Scholar 

  • Legesse BW, Myburg AA, Pixley KV, Twumasi-Afriye S, Botha AM (2008) Relationship between hybrid performance and AFLP based genetic distance in highland maize inbred lines. Euphytica 162:313–323

    Article  CAS  Google Scholar 

  • Lewellen RT (2000) Registration of rhizomania resistant sugar beet x Beta vulgaris subsp. maritima germplasms C26, C27, and C51. Crop Sci 40:1512–1513

    Google Scholar 

  • Lewellen RT (2002) Registration of high sucrose, rhizomania resistant sugar beet germplasm line CZ25-9. Crop Sci 42:320–321

    Article  PubMed  Google Scholar 

  • Lewellen RT (2004) Registration of sugar beet germplasm lines C927-4, C929-62, C930-19, and C930-35 with resistance to rhizomania, virus yellows, and bolting. Crop Sci 44:359–361

    Article  Google Scholar 

  • Lewellen RT (2006) Registration of C931, C941, CR11, and CZ25/2 self-fertile, genetic-male-sterile facilitated, random-mated, sugar beet germplasm populations. Crop Sci 46:1412–1413

    Article  Google Scholar 

  • Li J, Schulz B, Stich B (2010) Population structure and genetic diversity in elite sugar beet germplasm investigated with SSR markers. Euphytica 175:35–42

    Article  CAS  Google Scholar 

  • MacLachlan JB (1972) Estimation of genetic parameters in population of monogerm sugar beet (Beta vulgaris). Irish J Agric Res 11:237–246

    Google Scholar 

  • McGrath JM (2006) Registration of EL53 sugar beet germplasm with smooth-root and moderate resistance to rhizoctonia crown and root rot. Crop Sci 46:2334–2335

    Article  Google Scholar 

  • McGrath JM, Lewellen RT (2004) Registration of EL0204 Sugar beet germplasm with smooth-root and resistance to rhizomania. Crop Sci 44:1032–1033

    Article  Google Scholar 

  • McGrath JM, Derrico A, Yu Y (1999) Genetic diversity in selected, historical US sugar beet germplasm and Beta vulgaris ssp. maritima. Theor Appl Genet 98:968–976

    Article  Google Scholar 

  • McGrath JM, Trebbi D, Fenwick A, Panella L, Schultz B, Laurent V, Barnes S, Murray S (2007) An open-source first-generation molecular genetic map from a sugar beet x table beet cross and its extension to physical mapping. Plant Genome Supp Crop Sci 47:S27–S44

    Google Scholar 

  • Melchinger AE (1999) Genetic diversity and heterosis. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis in crops, ASA, CSS, and SSSA. Wisconsin, Madison, pp 99–118

    Google Scholar 

  • Melchinger AE, Lee M, Lamkey KR, Woodman WW (1990) Genetic diversity for restriction fragment length polymorphism: relation to estimated genetic effect in maize inbreds. Crop Sci 30:1033–1040

    Article  CAS  Google Scholar 

  • Mezei S, Kovačev L, Čačić N, Nagl N, Stojaković Ž (2007) Maintenance and improvement of self-sterile sugar beet pollinators using tissue culture and recurrent selection. Period Sci Res Field Veg Crops 43:195–200 (in Serbian)

    Google Scholar 

  • Moll RH, Lonquist JH, Foreuno JV, Johnson EC (1965) The relationship of heterosis and genetic divergence in maize. Genetics 52:139–144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagl N, Taški-Ajduković K, Popović A, Ćurčić Ž, Danojević D, Kovačev L (2011) Estimation of genetic variation among related sugar beet genotypes by using RAPD. Genetika 43:575–582

    Article  Google Scholar 

  • Ndhlela T, Herselman L, Semagn K, Magorokosho C, Mutimaamba C, Labuschagne MT (2015) Relationships between heterosis, genetic distances and specific combining ability among CIMMYT and Zimbabwe developed maize inbred lines under stress and optimal conditions. Euphytica 204:635–647

    Article  CAS  Google Scholar 

  • Owen F (1942) Inheritance of cross-and self-sterility and self-fertility in Beta vulgaris. J Agric Res 64:679–698

    Google Scholar 

  • Panella L, Lewellen RT, Hanson LE (2008) Breeding for multiple disease resistance in sugar beet: registration of FC220 and FC221. J Plant Registration 2:146–155

    Article  Google Scholar 

  • Parentoni SN, Magalhaes JV, Pacheco CAP, Santos MX, Abadie T, Gama EEG, Guimarães PEO, Meirelles WF, Lopes MA, Vasconcelos MJV, Paiva E (2001) Heterotic groups based on yield-specific combining ability data and phylogenetic relationship determined by RAPD markers for 28 tropical maize open pollinated varieties. Euphytica 121:197–208

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2010) GenAlEx 6.41: Genetic analysis in Excel. Population genetic software for teaching and research. The Australian National University website (Canberra, Australia)

  • Poulsen G, Holten C, von Bothmer R (2007) AFLP similarities among historic Danish cultivars of fodder beet (Beta vulgaris L. subsp. vulgaris var. rapacea Koch). Genet Resour Crop Evol 54:1105–1115

    Article  Google Scholar 

  • Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222

    Article  Google Scholar 

  • Rajabi A, Griffiths H, Ober ES, Kromdijk W, Pidgeon JD (2008) Genetic characteristics of water-use related traits in sugar beet. Euphytica 160:175–187

    Article  Google Scholar 

  • Rajendrakumar P, Hariprasanna K, Seetharama N (2015) Prediction of heterosis in crop plants—Status and prospects. Am J Exp Agric 9:1–16

    Article  Google Scholar 

  • Reinefeld E, Emmerich A, Baumgarten G, Winner C, Beiss U (1974) ZurVoraussagedes Melassezuckersaus Ruebenanalysen. Zucker 27:2–15

    CAS  Google Scholar 

  • Richards C, Brownson M, Mitchell S, Kresovich S, Panella L (2004) Polymorphic microsatellite markers for inferring diversity in wild and domesticated sugar beet (Beta vulgaris). Mol Ecol Notes 4:243–245

    Article  Google Scholar 

  • Savitsky H (1954) Obtaining tetraploid monogerm self-fertile, self-sterile and male-sterile beets. Proc Gen Meet Am Soc Sugar Beet Technol 8:50–58

    Google Scholar 

  • Singh RK, Chaudhary BD (1985) Biometrical techniques in genetics and breeding. International Bioscience Publishers, Hisar

    Google Scholar 

  • Skaracis GN, De Biaggi M (2003) Production of commercial varieties. In: Biancardi E et al (eds) Genetics and breeding of sugar beet. Science Publishers Inc., Enfield, pp 191–206

    Google Scholar 

  • Skaracis GN, Smith GA (1984) Prediction of three-way top cross sugar beet hybrid performance. Crop Sci 24:55–60

    Article  Google Scholar 

  • Smith GA, Hecker RJ, Maag GW, Rasmuson DW (1973) Combining ability and gene action estimates in an eight parent diallel cross of sugar beet. Crop Sci 13:312–316

    Article  Google Scholar 

  • Smulders MJM, Esselink GD, Everaert I, De Riek J, Vosman B (2010) Characterisation of sugar beet (Beta vulgaris L. ssp. vulgaris) varieties using microsatellite markers. BMC Genet 11:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Solomon KF, Zeppa A, Mulugeta SD (2012) Combining ability, genetic diversity and heterosis in relation to F1 performance of tropically adapted shrunken (sh2) sweet corn lines. Plant Breed 131:430–436

    Article  Google Scholar 

  • Somma M (2004) Extraction and purification of DNA. In: Querci M, Jermini M, Van den Eadel G (eds) The analysis of food samples for the presence of genetically modified organisms, special publication 1.03.114 edn. European Commission, Joint Research Centre, Ispra Ch. 4

    Google Scholar 

  • Steel RGD, Torrie JH (1980) Principles and procedures of statistics. McGraw-Hill Book Co., Inc., New York

    Google Scholar 

  • Stevanato P, Trebbi D, Biancardi E, Cacco G, McGrath JM, Saccomani M (2013) Evaluation of genetic diversity and root traits of sea beet accessions of the Adriatic Sea coast. Euphytica 189:135–146

    Article  Google Scholar 

  • Stevanato P, Broccanello C, Biscarini F, Del Corvo M, Sablok G, Panella L, Stella A, Concheri G (2014) High-throughput RAD-SNP genotyping for characterization of sugar beet genotypes. Plant Mol Biol Rep 32:691–696

    CAS  Google Scholar 

  • Teklewold A, Becker H (2006) Comparison of phenotypic and molecular distance to predict heterosis and F1 performance in Ethiopian mustard (Brassica carinata A. Braun). Theor Appl Genet 112:752–759

    Article  CAS  PubMed  Google Scholar 

  • Viard F, Bernard J, Desplanque B (2002) Crop-weed interactions in the Beta vulgaris complex at a local scale: allelic diversity and gene flow within sugar beet fields. Theory Appl Genet 104:688–697

  • Wegary D, Vivek B, Labuschagne M (2013) Association of parental genetic distance with heterosis and specific combining ability in quality protein maize. Euphytica 191:205–216

    Article  Google Scholar 

Download references

Acknowledgement

Presented study was the part of the project TR 31015, funded by the Ministry of Education, Science and Technological Development, Republic of Serbia. The authors thank Dr. Mitch McGrath (US Department of Agriculture) for providing the primer sequences and Dr. Bojana Stanic for assistance in English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Živko Ćurčić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ćurčić, Ž., Taški-Ajduković, K. & Nagl, N. Relationship between hybrid performance and genetic variation in self-fertile and self-sterile sugar beet pollinators as estimated by SSR markers. Euphytica 213, 108 (2017). https://doi.org/10.1007/s10681-017-1897-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-1897-1

Keywords

Profiles

  1. Ksenija Taški-Ajduković