Abstract
The structural, optical and electrical properties of undoped and rare-earth (Er, Yb) doped zinc oxide (ZnO) nanopowder samples synthesized by hydrothermal method were investigated. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy. The optical properties of undoped and rare-earth (Er, Yb) doped ZnO were carried out with UV–visible diffuse reflectance spectroscopy techniques. XRD results reveal that Yb and Er doped ZnO nanopowders have single phase hexagonal (Wurtzite) structure without any impurities. SEM analysis indicate that dopants with different radii affected the surface morphology of ZnO nanostructures. The optical band gap of all samples were calculated from UV–Vis diffuse reflectance spectroscopy data. We have obtained band gap values of undoped, Er and Yb doped ZnO as 3.24, 3.23, 3.22 eV, respectively. Electrical characterization of the samples were made in the 280–350 K temperature range using Van der Pauw method based on Hall effect measurement. The carrier concentrations decreased for both Er and Yb doping while the Hall mobility and electrical resistivity increased with Yb, Er doping compared to undoped ZnO nanopowder at room temperature. The temperature dependent resistivity measurements of Er doped ZnO showed a metal–semiconductor transition at about 295 K, while Yb doped ZnO showed characteristic semiconductor behavior.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
U. Ozgur, I.A. Ya, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)
S.M. Lukas, L.M.D. Judith, ZnO-nanostructures, defects, and devices. Mater. Today 10, 40 (2007)
H. Zeng, X. Xu, Y. Bando, U.K. Gautam, T. Zhai, X. Fang, B. Liu, D. Golberg, Template deformation-tailored ZNO nanorod/nanowire arrays: full growth control and optimization of field-emission. Adv. Funct. Mater. 19, 3165–3172 (2009)
H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls. Adv. Funct. Mater. 20, 561–572 (2010)
F. Xu, Y. Shen, L. Sun, H. Zengb, Y. Luc, Enhanced photocatalytic activity of hierarchical ZnO nanoplate-nanowire architecture as environmentally safe and facilely recyclable photocatalyst. Nanoscale 3, 5020–5025 (2011)
Z. Li, W. Zhong, X. Li, H. Zeng, G. Wang, W. Wang, Z. Yang, Y. Zhan, Strong room-temperature ferromagnetism of pure ZnO nanostructure arrays via colloidal template. J. Mater. Chem. C 1, 6807–6812 (2013)
M. Najim, G. Modi, Y.K. Mishra, R. Adelung, D. Singh, V. Agarwalaad, Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni–P coated tetrapod-shaped ZnO nano and microstructures. Phys. Chem. Chem. Phys. 17, 22923–22933 (2015)
Y.K. Mishra, S. Kaps, A. Schuchardt, I. Paulowicz, X. Jin, D. Gedamu, S. Freitag, M. Claus, S. Wille, A. Kovalev, S.N. Gorb, R. Adelung, Fabrication of macroscopically flexible and highly porous 3d semiconductor networks from interpenetrating nanostructures by a simple flame transport approach. Part. Part. Syst. Charact. 30, 775–783 (2013)
C. Westermeier, M. Fiebig, B. Nicke, Thin films: mapping of trap densities and hotspots in pentacene thin-film transistors by frequency-resolved scanning photoresponse microscopy. Adv. Mater. 25, 5677–5825 (2013)
D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y.K. Mishra, R. Adelung, Rapid fabrication technique for interpenetrated ZnO nanotetrapod networks for fast UV sensors. Adv. Mater. 26, 1541–1550 (2014)
J. Gröttrupa, I. Paulowicza, A. Schuchardta, V. Kaidasa, S. Kapsa, O. Lupana, R. Adelunga, Y.K. Mishra, Three-dimensional flexible ceramics based on interconnected network of highly porous pure and metal alloyed ZnO tetrapods. Ceram. Int. 42, 8664–8676 (2016)
I. Hölken, M. Hoppe, Y.K. Mishra, S.N. Gorb, R. Adelung, M.J. Baum, Complex shaped ZnO nano- and microstructure based polymer composites: mechanically stable and environmentally friendly coatings for potential antifouling applications. Phys. Chem. Chem. Phys. 18, 7114–7123 (2016)
Y.K. Mishra, G. Modi, V. Cretu, V. Postica, O. Lupa, T. Reimer, I. Paulowicz, V. Hrkac, W. Benecke, L. Kienle, R. Adelung, Direct growth of freestanding ZnO tetrapod networks for multifunctional applications in photocatalysis, UV photodetection, and gas sensing. ACS Appl. Mater. Interfaces 7(26), 14303–14316 (2015)
T. Reimer, I. Paulowicz, R. Röder, S. Kaps, O. Lupan, S. Chemnitz, W. Benecke, C. Ronning, R. Adelung, Y.K. Mishra, Single step integration of ZnO nano- and microneedles in Si trenches by novel flame transport approach: whispering gallery modes and photocatalytic properties. ACS Appl. Mater. Interfaces 6(10), 7806–7815 (2014)
Y.K. Mishra, S. Kaps, A. Schuchardt, I. Paulowicz, X. Jin, D. Gedamu, S. Wille, O. Lupan, R. Adelung, Versatile fabrication of complex shaped metal oxide nano-microstructures and their interconnected networks for multifunctional applications. KONA Powder Part. J. 31, 92–110 (2014)
S. Baruah, J. Dutta, Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 10, 013001 (2009)
R. Zamiri, A. Rebelo, H.R.B. Poor, J.M.F. Ferreira, Quantum cutting effect and photoluminescence emission at about 1,000 nm from Er–Yb co-doped ZnO nanoplates prepared by wet chemical precipitation method. Appl. Phys. A 117–4, 2289–2294 (2014)
R. Zamiri, A.F. Lemos, A. Rebelo, H.A. Ahangar, J.M.F. Ferreira, Effects of rare-earth (Er, La and Yb) doping on morphology and structure properties of ZnO nanostructures prepared by wet chemical method. Ceram. Int. 40, 523–529 (2014)
R. Zamiri, A. Kaushal, A. Rebelo, J.M.F. Ferreira, Er doped ZnO nanoplates: synthesis, optical and dielectric properties. Ceram. Int. 40, 1635–1639 (2014)
A.K. Pradhan, K. Zhang, G.B. Loutts, U.N. Roy, Y. Cui, A. Burger, Structural and spectroscopic characteristics of ZnO and ZnO:Er3+ nanostructures. J. Phys. Condens. Matter 16, 7123–7129 (2004)
G.L. Kabongo, G.H. Mhlongo, B.M. Mothudi, K.T. Hillie, H.C. Swart, M.S. Dhlamini, Enhanced exciton emission from ZnO nano-phosphor induced by Yb3+ ions. Mater. Lett. 119, 71–74 (2014)
L. Honglin, L. Yingbo, L. Jinzhu, Y. Ke, Experimental and first-principles studies of structural and optical properties of rare earth (RE = La, Er, Nd) doped ZnO. J. Alloys Compd. 617, 102–107 (2014)
M. Balestrieri, G. Ferblantier, S. Colis, G. Schmerber, C. Ulhaq-Bouillet, D. Muller, A. Slaoui, A. Dinia, Structural and optical properties of Yb-doped ZnO films deposited by magnetron reactive sputtering for photon conversion. Sol. Energy Mater. Sol. Cells 117, 363–371 (2013)
M. Lluscà, J. López-Vidrier, A. Antony, S. Hernández, B. Garrido, J. Bertomeu, Up-conversion effect of Er- and Yb-doped ZnO thin films. Thin Solid Films 562, 456–461 (2014)
C.F. Jin, X. Yuan, W.W. Ge et al., Synthesis of ZnO nanorods by solid state reaction at room temperature. Nanotechnology 14, 667 (2003)
R. John, R. Rajakumari, Synthesis and characterization of rare earth ion doped nano ZnO. Nano-Micro Lett. 4(2), 65–72 (2012)
I. Soumahoro, G. Schmerber, A. Douayar, S. Colis, M. Abd-Lefdil, N. Hassanain, A. Berrada, D. Muller, A. Slaoui, H. Rinnert, A. Dinia, Structural, optical, and electrical properties of Yb-doped ZnO thin films prepared by spray pyrolysis method. J. Appl. Phys. 109, 033708 (2011)
J. Lang, J. Wang, Q. Zhang, S. Xu, D. Han, J. Yang, Q. Han, L. Yang, Y. Sui, X. Li, X. Liu, Synthesis and photoluminescence characterizations of the Er3+ doped ZnO nanosheets with irregular porous microstructure. Mater. Sci. Semicond. Process. 41, 32–37 (2016)
Y. Sun, Y. Chen, L. Tian, Y. Yu, X. Kong, Q. Zeng, Y. Zhang, H. Zhang, Morphology-dependent upconversion luminescence of ZnO:Er3+ nanocrystals. J. Lumin. 128, 15–21 (2008)
C.Y. Chen, Y.C. Chao, C.A. Lin, J.W. Lo, J.H. He, Characterization of Er-doped ZnO nanorod arrays for broadband antireflection. in Nanoelectronics Conference (INEC), 2010 3rd International, Hong Kong (2010), pp. 1339–1340
R. Jenkins, J.L. de Vries, Worked Examples in X-Ray Analysis, 2nd edn. (Philips Technical Library, Macmillan, 1978)
M. Gaudon, O. Toulemonde, A. Demourgues, Green coloration of co-doped ZnO explained from structural refinement and bond considerations. Inorg. Chem. 46(1002), 10996–11002 (2007)
A.F. da Silva, N. Veissid, C.Y. An, I. Pepe, N.B. de Oliveira, A.V.B. da Silva, Optical determination of the direct bandgap energy of lead iodide crystals. Appl. Phys. Lett. 69, 1930 (1996)
L.C. Chao, C.C. Liau, W.C. Chang, On the electrical and photoluminescence properties of erbium doped ZNO thin film. in Materials Research Society Symposia Proceedings, vol. 1471 (2012)
J.G. Lu, Z.Z. Ye, Y.J. Zeng, L.P. Zhu, L. Wang, J. Yuan, B.H. Zhao, Q.L. Liang, Structural, optical, and electrical properties of (Zn, Al)O films over a wide range of compositions. J. Appl. Phys. 100, 073714 (2006)
A.K. Pradhan, L. Douglas, H. Mustafa, R. Mundle, D. Hunter, C.E. Bonner, Pulsed-laser deposited Er:ZnO films for 1.54 μm emission. Appl. Phys. Lett. 90, 072108 (2007)
C. Fournier, O. Bamiduro, H. Mustafa, R. Mundle, R.B. Konda, F. Williams, A.K. Pradhan, Effects of substrate temperature on the optical and electrical properties of Al:ZnO films. Semicond. Sci. Technol. 23, 085019 (2008)
K. Lord, T.M. Williams, D. Hunter, K. Zhang, J. Dadson, A.K. Pradhan, Effects of As and Mn doping on microstructure and electrical conduction in ZnO films. Appl. Phys. Lett. 88, 262105 (2006)
V. Bhosle, A. Tiwari, J. Narayan, Metallic conductivity and metal-semiconductor transition in Ga-doped ZnO. Appl. Phys. Lett. 88, 032106 (2006)
N.F. Mott, Metal-Insulator Transition (Taylor and Francis, London, 1974)
Acknowledgments
This research has been supported by the Abant İzzet Baysal University Scientific Research Projects under the Project No: BAP- 2015.03.03.897.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Senol, S.D. Hydrothermal derived nanostructure rare earth (Er, Yb)-doped ZnO: structural, optical and electrical properties. J Mater Sci: Mater Electron 27, 7767–7775 (2016). https://doi.org/10.1007/s10854-016-4765-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-016-4765-1