Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Hydrothermal derived nanostructure rare earth (Er, Yb)-doped ZnO: structural, optical and electrical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The structural, optical and electrical properties of undoped and rare-earth (Er, Yb) doped zinc oxide (ZnO) nanopowder samples synthesized by hydrothermal method were investigated. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy. The optical properties of undoped and rare-earth (Er, Yb) doped ZnO were carried out with UV–visible diffuse reflectance spectroscopy techniques. XRD results reveal that Yb and Er doped ZnO nanopowders have single phase hexagonal (Wurtzite) structure without any impurities. SEM analysis indicate that dopants with different radii affected the surface morphology of ZnO nanostructures. The optical band gap of all samples were calculated from UV–Vis diffuse reflectance spectroscopy data. We have obtained band gap values of undoped, Er and Yb doped ZnO as 3.24, 3.23, 3.22 eV, respectively. Electrical characterization of the samples were made in the 280–350 K temperature range using Van der Pauw method based on Hall effect measurement. The carrier concentrations decreased for both Er and Yb doping while the Hall mobility and electrical resistivity increased with Yb, Er doping compared to undoped ZnO nanopowder at room temperature. The temperature dependent resistivity measurements of Er doped ZnO showed a metal–semiconductor transition at about 295 K, while Yb doped ZnO showed characteristic semiconductor behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. U. Ozgur, I.A. Ya, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  2. S.M. Lukas, L.M.D. Judith, ZnO-nanostructures, defects, and devices. Mater. Today 10, 40 (2007)

    Google Scholar 

  3. H. Zeng, X. Xu, Y. Bando, U.K. Gautam, T. Zhai, X. Fang, B. Liu, D. Golberg, Template deformation-tailored ZNO nanorod/nanowire arrays: full growth control and optimization of field-emission. Adv. Funct. Mater. 19, 3165–3172 (2009)

    Article  Google Scholar 

  4. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls. Adv. Funct. Mater. 20, 561–572 (2010)

    Article  Google Scholar 

  5. F. Xu, Y. Shen, L. Sun, H. Zengb, Y. Luc, Enhanced photocatalytic activity of hierarchical ZnO nanoplate-nanowire architecture as environmentally safe and facilely recyclable photocatalyst. Nanoscale 3, 5020–5025 (2011)

    Article  Google Scholar 

  6. Z. Li, W. Zhong, X. Li, H. Zeng, G. Wang, W. Wang, Z. Yang, Y. Zhan, Strong room-temperature ferromagnetism of pure ZnO nanostructure arrays via colloidal template. J. Mater. Chem. C 1, 6807–6812 (2013)

    Article  Google Scholar 

  7. M. Najim, G. Modi, Y.K. Mishra, R. Adelung, D. Singh, V. Agarwalaad, Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni–P coated tetrapod-shaped ZnO nano and microstructures. Phys. Chem. Chem. Phys. 17, 22923–22933 (2015)

    Article  Google Scholar 

  8. Y.K. Mishra, S. Kaps, A. Schuchardt, I. Paulowicz, X. Jin, D. Gedamu, S. Freitag, M. Claus, S. Wille, A. Kovalev, S.N. Gorb, R. Adelung, Fabrication of macroscopically flexible and highly porous 3d semiconductor networks from interpenetrating nanostructures by a simple flame transport approach. Part. Part. Syst. Charact. 30, 775–783 (2013)

    Article  Google Scholar 

  9. C. Westermeier, M. Fiebig, B. Nicke, Thin films: mapping of trap densities and hotspots in pentacene thin-film transistors by frequency-resolved scanning photoresponse microscopy. Adv. Mater. 25, 5677–5825 (2013)

    Article  Google Scholar 

  10. D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y.K. Mishra, R. Adelung, Rapid fabrication technique for interpenetrated ZnO nanotetrapod networks for fast UV sensors. Adv. Mater. 26, 1541–1550 (2014)

    Article  Google Scholar 

  11. J. Gröttrupa, I. Paulowicza, A. Schuchardta, V. Kaidasa, S. Kapsa, O. Lupana, R. Adelunga, Y.K. Mishra, Three-dimensional flexible ceramics based on interconnected network of highly porous pure and metal alloyed ZnO tetrapods. Ceram. Int. 42, 8664–8676 (2016)

    Article  Google Scholar 

  12. I. Hölken, M. Hoppe, Y.K. Mishra, S.N. Gorb, R. Adelung, M.J. Baum, Complex shaped ZnO nano- and microstructure based polymer composites: mechanically stable and environmentally friendly coatings for potential antifouling applications. Phys. Chem. Chem. Phys. 18, 7114–7123 (2016)

    Article  Google Scholar 

  13. Y.K. Mishra, G. Modi, V. Cretu, V. Postica, O. Lupa, T. Reimer, I. Paulowicz, V. Hrkac, W. Benecke, L. Kienle, R. Adelung, Direct growth of freestanding ZnO tetrapod networks for multifunctional applications in photocatalysis, UV photodetection, and gas sensing. ACS Appl. Mater. Interfaces 7(26), 14303–14316 (2015)

    Article  Google Scholar 

  14. T. Reimer, I. Paulowicz, R. Röder, S. Kaps, O. Lupan, S. Chemnitz, W. Benecke, C. Ronning, R. Adelung, Y.K. Mishra, Single step integration of ZnO nano- and microneedles in Si trenches by novel flame transport approach: whispering gallery modes and photocatalytic properties. ACS Appl. Mater. Interfaces 6(10), 7806–7815 (2014)

    Article  Google Scholar 

  15. Y.K. Mishra, S. Kaps, A. Schuchardt, I. Paulowicz, X. Jin, D. Gedamu, S. Wille, O. Lupan, R. Adelung, Versatile fabrication of complex shaped metal oxide nano-microstructures and their interconnected networks for multifunctional applications. KONA Powder Part. J. 31, 92–110 (2014)

    Article  Google Scholar 

  16. S. Baruah, J. Dutta, Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 10, 013001 (2009)

    Article  Google Scholar 

  17. R. Zamiri, A. Rebelo, H.R.B. Poor, J.M.F. Ferreira, Quantum cutting effect and photoluminescence emission at about 1,000 nm from Er–Yb co-doped ZnO nanoplates prepared by wet chemical precipitation method. Appl. Phys. A 117–4, 2289–2294 (2014)

    Article  Google Scholar 

  18. R. Zamiri, A.F. Lemos, A. Rebelo, H.A. Ahangar, J.M.F. Ferreira, Effects of rare-earth (Er, La and Yb) doping on morphology and structure properties of ZnO nanostructures prepared by wet chemical method. Ceram. Int. 40, 523–529 (2014)

    Article  Google Scholar 

  19. R. Zamiri, A. Kaushal, A. Rebelo, J.M.F. Ferreira, Er doped ZnO nanoplates: synthesis, optical and dielectric properties. Ceram. Int. 40, 1635–1639 (2014)

    Article  Google Scholar 

  20. A.K. Pradhan, K. Zhang, G.B. Loutts, U.N. Roy, Y. Cui, A. Burger, Structural and spectroscopic characteristics of ZnO and ZnO:Er3+ nanostructures. J. Phys. Condens. Matter 16, 7123–7129 (2004)

    Article  Google Scholar 

  21. G.L. Kabongo, G.H. Mhlongo, B.M. Mothudi, K.T. Hillie, H.C. Swart, M.S. Dhlamini, Enhanced exciton emission from ZnO nano-phosphor induced by Yb3+ ions. Mater. Lett. 119, 71–74 (2014)

    Article  Google Scholar 

  22. L. Honglin, L. Yingbo, L. Jinzhu, Y. Ke, Experimental and first-principles studies of structural and optical properties of rare earth (RE = La, Er, Nd) doped ZnO. J. Alloys Compd. 617, 102–107 (2014)

    Article  Google Scholar 

  23. M. Balestrieri, G. Ferblantier, S. Colis, G. Schmerber, C. Ulhaq-Bouillet, D. Muller, A. Slaoui, A. Dinia, Structural and optical properties of Yb-doped ZnO films deposited by magnetron reactive sputtering for photon conversion. Sol. Energy Mater. Sol. Cells 117, 363–371 (2013)

    Article  Google Scholar 

  24. M. Lluscà, J. López-Vidrier, A. Antony, S. Hernández, B. Garrido, J. Bertomeu, Up-conversion effect of Er- and Yb-doped ZnO thin films. Thin Solid Films 562, 456–461 (2014)

    Article  Google Scholar 

  25. C.F. Jin, X. Yuan, W.W. Ge et al., Synthesis of ZnO nanorods by solid state reaction at room temperature. Nanotechnology 14, 667 (2003)

    Article  Google Scholar 

  26. R. John, R. Rajakumari, Synthesis and characterization of rare earth ion doped nano ZnO. Nano-Micro Lett. 4(2), 65–72 (2012)

    Article  Google Scholar 

  27. I. Soumahoro, G. Schmerber, A. Douayar, S. Colis, M. Abd-Lefdil, N. Hassanain, A. Berrada, D. Muller, A. Slaoui, H. Rinnert, A. Dinia, Structural, optical, and electrical properties of Yb-doped ZnO thin films prepared by spray pyrolysis method. J. Appl. Phys. 109, 033708 (2011)

    Article  Google Scholar 

  28. J. Lang, J. Wang, Q. Zhang, S. Xu, D. Han, J. Yang, Q. Han, L. Yang, Y. Sui, X. Li, X. Liu, Synthesis and photoluminescence characterizations of the Er3+ doped ZnO nanosheets with irregular porous microstructure. Mater. Sci. Semicond. Process. 41, 32–37 (2016)

    Article  Google Scholar 

  29. Y. Sun, Y. Chen, L. Tian, Y. Yu, X. Kong, Q. Zeng, Y. Zhang, H. Zhang, Morphology-dependent upconversion luminescence of ZnO:Er3+ nanocrystals. J. Lumin. 128, 15–21 (2008)

    Article  Google Scholar 

  30. C.Y. Chen, Y.C. Chao, C.A. Lin, J.W. Lo, J.H. He, Characterization of Er-doped ZnO nanorod arrays for broadband antireflection. in Nanoelectronics Conference (INEC), 2010 3rd International, Hong Kong (2010), pp. 1339–1340

  31. R. Jenkins, J.L. de Vries, Worked Examples in X-Ray Analysis, 2nd edn. (Philips Technical Library, Macmillan, 1978)

    Book  Google Scholar 

  32. M. Gaudon, O. Toulemonde, A. Demourgues, Green coloration of co-doped ZnO explained from structural refinement and bond considerations. Inorg. Chem. 46(1002), 10996–11002 (2007)

    Article  Google Scholar 

  33. A.F. da Silva, N. Veissid, C.Y. An, I. Pepe, N.B. de Oliveira, A.V.B. da Silva, Optical determination of the direct bandgap energy of lead iodide crystals. Appl. Phys. Lett. 69, 1930 (1996)

    Article  Google Scholar 

  34. L.C. Chao, C.C. Liau, W.C. Chang, On the electrical and photoluminescence properties of erbium doped ZNO thin film. in Materials Research Society Symposia Proceedings, vol. 1471 (2012)

  35. J.G. Lu, Z.Z. Ye, Y.J. Zeng, L.P. Zhu, L. Wang, J. Yuan, B.H. Zhao, Q.L. Liang, Structural, optical, and electrical properties of (Zn, Al)O films over a wide range of compositions. J. Appl. Phys. 100, 073714 (2006)

    Article  Google Scholar 

  36. A.K. Pradhan, L. Douglas, H. Mustafa, R. Mundle, D. Hunter, C.E. Bonner, Pulsed-laser deposited Er:ZnO films for 1.54 μm emission. Appl. Phys. Lett. 90, 072108 (2007)

    Article  Google Scholar 

  37. C. Fournier, O. Bamiduro, H. Mustafa, R. Mundle, R.B. Konda, F. Williams, A.K. Pradhan, Effects of substrate temperature on the optical and electrical properties of Al:ZnO films. Semicond. Sci. Technol. 23, 085019 (2008)

    Article  Google Scholar 

  38. K. Lord, T.M. Williams, D. Hunter, K. Zhang, J. Dadson, A.K. Pradhan, Effects of As and Mn doping on microstructure and electrical conduction in ZnO films. Appl. Phys. Lett. 88, 262105 (2006)

    Article  Google Scholar 

  39. V. Bhosle, A. Tiwari, J. Narayan, Metallic conductivity and metal-semiconductor transition in Ga-doped ZnO. Appl. Phys. Lett. 88, 032106 (2006)

    Article  Google Scholar 

  40. N.F. Mott, Metal-Insulator Transition (Taylor and Francis, London, 1974)

    Google Scholar 

Download references

Acknowledgments

This research has been supported by the Abant İzzet Baysal University Scientific Research Projects under the Project No: BAP- 2015.03.03.897.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Senol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senol, S.D. Hydrothermal derived nanostructure rare earth (Er, Yb)-doped ZnO: structural, optical and electrical properties. J Mater Sci: Mater Electron 27, 7767–7775 (2016). https://doi.org/10.1007/s10854-016-4765-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4765-1

Keywords