Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Advertisement

Log in

Synthesis of ZnO aerogels nanopowders in supercritical methanol: effect of sol concentration on structural, morphological and optical properties

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanocrystallines zinc oxide (ZnO) aerogels with different zinc acetate concentrations (0.05, 0.10, 0.15, 0.20, 0.25 and 0.30 mol/L) have been synthesized in supercritical methanol. The as-obtained products were analyzed without any additional heat or chemical treatments. The XRD study reveals that all the prepared nanopowders have good polycrystalline hexagonal wurtzite structure with the high crystalline quality obtained for aerogel prepared with a 0.20 M sol concentration. The lattice parameters are not dependent on the precursor concentration. The particle size has found to be related to the sol concentration. SEM micrographs have shown that the agglomeration state of the as-prepared ZnO nanoparticles is significantly affected by the sol concentration. FTIR measurements have indicated the displacement of the Zn–O vibration band to the higher wave numbers with increasing sol concentration. Raman results have confirmed that E2 bands intensity depends on precursor concentration. TGA measurements show that the aerogels contain only small quantities of volatiles. The optical absorption and room temperature photoluminescence emission are not affected considerably by Zn2+ concentration.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Norton DP, Heo YW, Ivill MP, Pearton SJ, Chosholm MF, Steiner T (2004) ZnO: growth, doping & processing. Mater Today 7(6):34–40

    Article  Google Scholar 

  2. Sahoo S, Bhowmick AK (2007) Influence of ZnO nanoparticles on the cure characteristics and mechanical properties of carboxylated nitrile rubber. J Appl Polym Sci 106:3077–3083

    Article  Google Scholar 

  3. Sun ZP, Liu L, Zhang L, Jia DZ (2006) Rapid synthesis of ZnO nano-rods by one-step, room-temperature, solid-state reaction and their gas-sensing properties. Nanotechnology 17:2266–2270

    Article  Google Scholar 

  4. Nahm CW (2009) Effect of sintering temperature on varistor properties and aging ZnO–V2O5-based varistor ceramics. Ceram Int 35:541–546

    Article  Google Scholar 

  5. Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behavior of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9:479–489

    Article  Google Scholar 

  6. Liu C, Yun F, Morkoc H (2005) Ferromagnetism of ZnO and GaN: a review. J Mater Sci: Mater Electron 16:555–597

    Google Scholar 

  7. Xu WZ, Ye ZZ, Zeng YJ, Zhu LP, Zhao BH, Jiang L, Lu JG, He HP (2006) ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition. Appl Phys Lett 88:173506-3

    Google Scholar 

  8. Sun L, Shao R, Chen Z, Tang L, Dai Y, Ding J (2012) Alkali-dependent synthesis of flower-like ZnO structures with enhanced photocatalytic activity via a facile hydrothermal method. Appl Surf Sci 258:5455–5461

    Article  Google Scholar 

  9. Donkova B, Dimitrov D, Kostadinov M, Mitkova E, Mehandjiev D (2010) Catalytic and photocatalytic activity of lightly doped catalysts M:ZnO (M = Cu, Mn). Mater Chem Phys 123:563–568

    Article  Google Scholar 

  10. Xie J, Wang H, Duan M, Zhang L (2011) Synthesis and photocatalysis properties of ZnO structures with different morphologies via hydrothermal method. Appl Surf Sci 257:6358–6363

    Article  Google Scholar 

  11. Kim SJ, Kim HH, Kwona JB, Lee JG, Beom-Hoan O, Lee SG, Lee EH, Park SG (2010) Novel fabrication of various size ZnO nanorods using hydrothermal method. Microelectron Eng 87(5–8):1534–1536

    Article  Google Scholar 

  12. Xie J, Wang H, Duan M, Zhang L (2011) Synthesis and photocatalysis properties of ZnO structures with different morphologies via hydrothermal method. Appl Surf Sci 257:6358–6363

    Article  Google Scholar 

  13. Li Z, Huang X, Liu J, Li Y, Li G (2008) Morphology control and transition of ZnO nanorod arrays by a simple hydrothermal method. Mater Lett 62:1503–1506

    Article  Google Scholar 

  14. Kim JY, Cho JW, Kim SH (2011) The characteristic of the ZnO nanowire morphology grown by the hydrothermal method on various surface-treated seed layers. Mater Lett 65:1161–1164

    Article  Google Scholar 

  15. Tao Y, Fu M, Zhao A, He D, Wang Y (2010) The effect of seed layer on morphology of ZnO nanorod arrays grown by hydrothermal method. J Alloys Compd 489:99–102

    Article  Google Scholar 

  16. Bacsa R, Kihn Y, Verelst M, Dexpert J, Bacsa W, Serp P (2007) Large scale synthesis of zinc oxide nanorods by homogeneous chemical vapor deposition and their characterization. Surf Coat Technol 201:9200–9204

    Article  Google Scholar 

  17. Guo L, Ji YL, Xu H, Simon P, Wu Z (2002) Regularly shaped, single-crystalline ZnO nanorods with Wurtzite structure. J Am Chem Soc 124:14864–14865

    Article  Google Scholar 

  18. Zhang J, Sun LD, Liao CS, Yan CH (2002) A simple route towards tubular ZnO. Chem Commun 3:262–263

    Article  Google Scholar 

  19. Ozcan S, Can MM, Ceylan A (2010) Single step synthesis of nanocrystalline ZnO via wet-milling. Mater Lett 64:2447–2449

    Article  Google Scholar 

  20. Dev A, Kar S, Chakrabarti S, Chaudhuri S (2006) Optical and field emission properties of ZnO nanorod arrays synthesized on zinc foils by the solvothermal route. Nanotechnology 17:1533–1540

    Article  Google Scholar 

  21. Ohyama M, Kozuka H, Yoko T (1997) Sol–gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution. Thin Solid Films 306:78–85

    Article  Google Scholar 

  22. Djouadi D, Aksas A, Chelouche A (2010) Élaboration et Caractérisations structurale et optique des Nanocristallites toriques de ZnO. Ann Chimie Sci Materiaux 35/5:255–260

    Article  Google Scholar 

  23. Zak AK, Majid WHA, Darroudi M, Yousefi R (2011) Synthesis and characterization of ZnO nanoparticles prepared in gelatin media. Mater Lett 65:70–73

    Article  Google Scholar 

  24. Wang Z, Huang B, Qin X, Zhang X, Wang P, Wei J, Zhan J, Jing X, Liu H, Xu Z, Cheng H, Wang X, Zheng Z (2009) Growth of high transmittance vertical aligned ZnO nanorod arrays with polyvinyl alcohol by hydrothermal method. Mater Lett 63:130–132

    Article  Google Scholar 

  25. Zhou Z, Zhao Y, Cai Z (2010) Low-temperature growth of ZnO nanorods on PET fabrics with two-step hydrothermal method. Appl Surf Sci 256:4724–4728

    Article  Google Scholar 

  26. Lv W, Wei B, Xua L, Zhao Y, Gao H, Liu J (2012) Photocatalytic properties of hierarchical ZnO flowers synthesized by a sucrose-assisted hydrothermal method. Appl Surf Sci 259:557–561

    Article  Google Scholar 

  27. Chen X, Zhou Z, Wang K, Fan X, Hu S, Wang Y, Huang Y (2009) Ferromagnetism in Fe-doped tetra-needle like ZnO whiskers. Mater Res Bull 44:799–802

    Article  Google Scholar 

  28. Angwafor NGN, Riler DJ (2008) Synthesis of ZnO nanorod/nanotube arrays formed by hydrothermal growth at a constant zinc ion concentration. Phys Status Solidi A 205:2351–2354

    Article  Google Scholar 

  29. Gao PX, Ding Y, Mai WJ, Hughes WL, Lao CS, Wang ZL (2005) Conversion of zinc oxide nanobelts into superlattice structured nanohelices. Science 309:1700–1704

    Article  Google Scholar 

  30. Wang Y, Chen X, Zhang J, Sun Z, Li Y, Zhang K, Yang B (2008) Fabrication of surface-patterned and free-standing ZnO nanobowls. Colloids Surf A329:184–189

    Article  Google Scholar 

  31. Chiu WS, Khiew PS, Isa D, Cloke M, Radiman S, Shukor RA, Abdullah MH, Huang NM (2008) Synthesis of two-dimensional ZnO nanopellets by pyrolysis of zinc oleate. Chem Eng J 142:337–343

    Article  Google Scholar 

  32. Li Z, Huang X, Liu J, Li Y, Li G (2008) Morphology control and transition of ZnO nanorod arrays by a simple hydrothermal method. Mater Lett 62:1503–1506

    Article  Google Scholar 

  33. El-Mir L, Amlouk A, Barthou C, Alaya S (2007) Synthesis and luminescence properties of ZnO/Zn2SiO4/SiO2 compositebased on nanosized zinc oxide-confined silica aerogels. Phys B 388:412–417

    Article  Google Scholar 

  34. El-Mir L, El-Ghoul J, Alaya S, Ben Salem M, Barthou C, Von Bardeleben HJ (2008) Synthesis and luminescence properties of vanadium-doped nanosized zinc oxide aerogel. Phys B 403:1770–1774

    Article  Google Scholar 

  35. Ben Ayadi Z, El-Mir L, Djessas K, Alaya S (2008) The properties of aluminum-doped zinc oxide thin films prepared by RF-magnetron sputtering from nanopowder targets. Mater Sci Eng, C 28:613–617

    Article  Google Scholar 

  36. Meddouri M, Djouadi D, Chelouche A, Touam T, Chergui A (2014) Effect of co-solvent on structural and morphological properties of ZnO aerogel prepared by a modified sol–gel process. Eur Phys J Appl Phys 66:10402–10406

    Article  Google Scholar 

  37. Djouadi D, Meddouri M, Chelouche A (2014) Structural and optical characterizations of ZnO aerogel nanopowder synthesized from zinc acetate ethanolic solution. Opt Mater 37:567–571

    Article  Google Scholar 

  38. Dutta M, Mridha S, Basak D (2008) Effect of sol concentration on the properties of ZnO thin films prepared by sol–gel technique. Appl Surf Sci 254:2743–2747

    Article  Google Scholar 

  39. Deenathayalan J, Saroja M, Venkatachalam M, Gowthaman P, Senthil TS (2011) Effect of growth layer solution concentration on the structural and optical properties of hydrothermally grown zinc oxide nanorods. Chalcogenide Lett 8:549–554

    Google Scholar 

  40. Farooq A, Kamran M (2012) Effect of sol concentration on structural and optical behavior of ZnO thin films prepared by sol–gel spin coating. Int J Appl Phys Mater 2(6):430–432

    Google Scholar 

  41. Jeong C, Boo S, Kim HS, Chang DR (2008) Investigation on the texture effect of RF magnetron-sputtered ZnO: al thin films etched by using an ICP etching method for heterojunction SI solar cell applications. J Korean Phys Soc 53(1):431–436

    Google Scholar 

  42. Saleem M, Fang L, Ruan HB, Wu F, Huang QL, Xu CL, Kong CY (2012) Effect of zinc acetate concentration on the structural and optical properties of ZnO thin films deposited by sol–gel method. Int J Phys Sci 7(23):2971–2979

    Article  Google Scholar 

  43. Deschanvres JL, Bochu B, Joubert JC (1994) Elaboration par le procédé pyrosol de couches minces texturées de ZnO pour la réalisation de microcapteurs. J Phys III 4:1243–1251

    Google Scholar 

  44. Nallasamy P, Mohan S (2005) Vibrational spectroscopic characterization of form II poly(vinylidene fluoride). Indian J Pure Appl Phys 43:821–827

    Google Scholar 

  45. Kumar S, Sahare PD (2012) Observation of band gap and surface defects of ZnO nanoparticles synthesized via hydrothermal route at different reaction temperature. Opt Commun 285(24):5210–5216

    Article  Google Scholar 

  46. Xue SW, Zu XT, Shao LX, Yuan ZL, Zheng WG, Jiang XD, Deng H (2008) Effects of annealing on optical properties of Zn-implanted ZnO thin films. J Alloys Compd 458:569–573

    Article  Google Scholar 

  47. Mishra SK, Srivastava RK, Prakash SG, Yadav RS, Pandey AC (2010) Photoluminescence and photoconductive characteristics of hydrothermally synthesized ZnO nanoparticles. Opto-Electron Rev 18:467–473

    Article  Google Scholar 

  48. Fan XM, Lian JS, Zhao L, Liu Y (2005) Single violet luminescence emitted from ZnO films obtained by oxidation of ZnO film on quartz glass. Appl Surf Sci 252:420–424

    Article  Google Scholar 

  49. Liu W, Li W, Hu Z, Tang Z, Tang X (2011) Effect of oxygen defects on ferromagnetic of undoped ZnO. J Appl Phys 110:013901–013905

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Djouadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meddouri, M., Hammiche, L., Djouadi, D. et al. Synthesis of ZnO aerogels nanopowders in supercritical methanol: effect of sol concentration on structural, morphological and optical properties. J Sol-Gel Sci Technol 80, 642–650 (2016). https://doi.org/10.1007/s10971-016-4152-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4152-7

Keywords