Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Statistics and Computing
  3. Article

A quasi-Newton acceleration for high-dimensional optimization algorithms

  • Open access
  • Published: 12 December 2009
  • Volume 21, pages 261–273, (2011)
  • Cite this article

You have full access to this open access article

Download PDF
Statistics and Computing Aims and scope Submit manuscript
A quasi-Newton acceleration for high-dimensional optimization algorithms
Download PDF
  • Hua Zhou1,
  • David Alexander2 &
  • Kenneth Lange3 
  • 3156 Accesses

  • 175 Citations

  • Explore all metrics

Abstract

In many statistical problems, maximum likelihood estimation by an EM or MM algorithm suffers from excruciatingly slow convergence. This tendency limits the application of these algorithms to modern high-dimensional problems in data mining, genomics, and imaging. Unfortunately, most existing acceleration techniques are ill-suited to complicated models involving large numbers of parameters. The squared iterative methods (SQUAREM) recently proposed by Varadhan and Roland constitute one notable exception. This paper presents a new quasi-Newton acceleration scheme that requires only modest increments in computation per iteration and overall storage and rivals or surpasses the performance of SQUAREM on several representative test problems.

Article PDF

Download to read the full article text

Similar content being viewed by others

How Accurate Does Newton Have to Be?

Chapter © 2023

Finding search directions in quasi-Newton methods for minimizing a quadratic function subject to uncertainty

Article Open access 21 February 2025

A residual-based surrogate hyperplane extended Kaczmarz algorithm for large least squares problems

Article 04 August 2024

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Algorithms
  • Continuous Optimization
  • Discrete Optimization
  • Learning algorithms
  • Optimization
  • Particle Acceleration
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Alexander, D.H., Novembre, J., Lange, K.L.: Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009)

    Article  Google Scholar 

  • Becker, M.P., Young, I., Lange, K.L.: EM algorithms without missing data. Stat. Methods Med. Res. 6, 37–53 (1997)

    Google Scholar 

  • de Leeuw, J.: Block relaxation algorithms in statistics. In: Bock, H.H., Lenski, W., Richter, M.M. (eds.) Information Systems and Data Analysis, pp. 308–325. Springer, New York (1994)

    Google Scholar 

  • Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. R. Stat. Soc. Ser. B 39(1), 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  • Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  • Griffiths, D.A.: Maximum likelihood estimation for the beta-binomial distribution and an application to the household distribution of the total number of cases of a disease. Biometrics 29(4), 637–648 (1973)

    Article  Google Scholar 

  • Heiser, W.J.: Convergent computing by iterative majorization: theory and applications in multidimensional data analysis. In: Krzanowski, W.J. (ed.) Recent Advances in Descriptive Multivariate Analysis, pp. 157–189. Clarendon Press, Oxford (1995)

    Google Scholar 

  • Hestenes, M.R., Karush, W.: A method of gradients for the calculation of the characteristic roots and vectors of a real symmetric matrix. J. Res. Natl. Bur. Stand. 47, 45–61 (1951a)

    MathSciNet  Google Scholar 

  • Hestenes, M.R., Karush, W.: Solutions of Ax=λ Bx. J. Res. Natl. Bur. Stand. 47, 471–478 (1951b)

    MathSciNet  Google Scholar 

  • Hotelling, H.: Analysis of a complex of statistical variables onto principal components. J. Educ. Psychol. 24, 417–441 (1933)

    Article  Google Scholar 

  • Hotelling, H.: Relations between two sets of variables. Biometrika 28, 321–377 (1936)

    MATH  Google Scholar 

  • Hunter, D.R., Lange, K.L.: A tutorial on MM algorithms. Am. Stat. 58, 30–37 (2004)

    Article  MathSciNet  Google Scholar 

  • Jamshidian, M., Jennrich, R.I.: Conjugate gradient acceleration of the EM algorithm. J. Am. Stat. Assoc. 88(421), 221–228 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Jamshidian, M., Jennrich, R.I.: Acceleration of the EM algorithm by using quasi-Newton methods. J. R. Stat. Soc. Ser. B 59(3), 569–587 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Jolliffe, I.: Principal Component Analysis. Springer, New York (1986)

    Google Scholar 

  • Kent, J.T., Tyler, D.E., Vardi, Y.: A curious likelihood identity for the multivariate t-distribution. Commun. Stat. Simul. Comput. 23(2), 441–453 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • Lange, K.L., Carson, R.: EM reconstruction algorithms for emission and transmission tomography. J. Comput. Assist. Tomogr. 8(2), 306–316 (1984)

    Google Scholar 

  • Lange, K.L.: A quasi-Newton acceleration of the EM algorithm. Stat. Sin. 5(1), 1–18 (1995)

    MATH  Google Scholar 

  • Lange, K.L.: Numerical Analysis for Statisticians. Springer, New York (1999)

    MATH  Google Scholar 

  • Lange, K.L.: Optimization transfer using surrogate objective functions. J. Comput. Statist. 9, 1–59 (2000)

    Article  Google Scholar 

  • Lange, K.L.: Optimization. Springer, New York (2004)

    MATH  Google Scholar 

  • Lange, K.L., Little, R.J.A., Taylor, J.M.G.: Robust statistical modeling using the t distribution. J. Am. Stat. Assoc. 84(408), 881–896 (1989)

    Article  MathSciNet  Google Scholar 

  • Lidwell, O.M., Somerville, T.: Observations on the incidence and distribution of the common cold in a rural community during 1948 and 1949. J. Hyg. Camb. 49, 365–381 (1951)

    Article  Google Scholar 

  • Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data, 2nd edn. Wiley-Interscience, New York (2002)

    MATH  Google Scholar 

  • Liu, C., Rubin, D.B.: The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence. Biometrika 81(4), 633–648 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, C., Rubin, D.B., Wu, Y.N.: Parameter expansion to accelerate EM: the PX-EM algorithm. Biometrika 85(4), 755–770 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Louis, T.A.: Finding the observed information matrix when using the EM algorithm. J. R. Stat. Soc. Ser. B 44(2), 226–233 (1982)

    MATH  MathSciNet  Google Scholar 

  • McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions, 2nd edn. Wiley-Interscience, New York (2008)

    Book  MATH  Google Scholar 

  • Meng, X.L., Rubin, D.B.: Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80(2), 267–278 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Meng, X.L., van Dyk, D.: The EM algorithm—an old folk-song sung to a fast new tune (with discussion). J. R. Stat. Soc. Ser. B 59(3), 511–567 (1997)

    Article  MATH  Google Scholar 

  • Mitchell, M., Gregersen, P., Johnson, S., Parsons, R., Vlahov, D.: The New York Cancer Project: rationale, organization, design, and baseline characteristics. J. Urban Health 61, 301–310 (2004)

    Google Scholar 

  • Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  • Saad, Y.: Numerical Methods for Large Eigenvalue Problems. Halstead [Wiley], New York (1992)

    MATH  Google Scholar 

  • Titterington, D.M., Smith, A.F.M., Makov, U.E.: Statistical Analysis of Finite Mixture Distributions. Wiley, New York (1985)

    MATH  Google Scholar 

  • Ueda, N., Nakano, R.: Deterministic annealing EM algorithm. Neural Netw. 11, 271–282 (1998)

    Article  Google Scholar 

  • Varadhan, R., Roland, C.: Squared extrapolation methods (squarem): a new class of simple and efficient numerical schemes for accelerating the convergence of the EM algorithm. Johns Hopkins University, Department of Biostatistics Working Papers (Paper 63) (2004)

  • Varadhan, R., Roland, C.: Simple and globally convergent methods for accelerating the convergence of any EM algorithm. Scand. J. Statist. 35(2), 335–353 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Vardi, Y., Shepp, L.A., Kaufman, L.: A statistical model for positron emission tomography (with discussion). J. Am. Stat. Assoc. 80(389), 8–37 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  • Wu, T.T., Lange, K.L.: The MM alternatives to EM. Stat. Sci. (2009, in press)

  • Zhou, H., Lange, K.L.: Rating movies and rating the raters who rate them. Am. Stat. 63(4), 297–307 (2009)

    Article  Google Scholar 

  • Zhou, H., Lange, K.L.: MM algorithms for some discrete multivariate distributions. J. Comput. Graph. Stat. (2009b, to appear)

  • Zhou, H., Lange, K.L.: On the bumpy road to the dominant mode. Scand. J. Stat. (2009c, to appear)

Download references

Author information

Authors and Affiliations

  1. Department of Human Genetics, University of California, Los Angeles, CA, USA, 90095

    Hua Zhou

  2. Department of Biomathematics, University of California, Los Angeles, CA, USA

    David Alexander

  3. Departments of Biomathematics, Human Genetics, and Statistics, University of California, Los Angeles, CA, USA

    Kenneth Lange

Authors
  1. Hua Zhou
    View author publications

    Search author on:PubMed Google Scholar

  2. David Alexander
    View author publications

    Search author on:PubMed Google Scholar

  3. Kenneth Lange
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Hua Zhou.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Zhou, H., Alexander, D. & Lange, K. A quasi-Newton acceleration for high-dimensional optimization algorithms. Stat Comput 21, 261–273 (2011). https://doi.org/10.1007/s11222-009-9166-3

Download citation

  • Received: 02 June 2009

  • Accepted: 30 November 2009

  • Published: 12 December 2009

  • Issue date: April 2011

  • DOI: https://doi.org/10.1007/s11222-009-9166-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Maximum likelihood
  • Multivariate t
  • Admixture models
  • Imaging
  • Generalized eigenvalues
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature