Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Preservation characteristics of biosignatures in sulfates and their implications for the search for life on Mars

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Sulfate minerals are widely distributed across various geological settings on Earth and provide critical insights into a range of geochemical processes and environmental evolution. Both modern and ancient sulfates possess exceptional potential for preserving biosignatures. Recent studies utilizing remote sensing and in situ exploration techniques have identified extensive sulfate-bearing deposits on the Martian surface. Investigating the habitability and the potential for biosignature preservation in these regions is a key focus in the search for life on Mars. Therefore, this review synthesizes the types, distribution, and formation environments of terrestrial sulfate minerals and summarizes the occurrence and preservation characteristics of biosignatures within both modern and ancient terrestrial sulfates. In light of the current understanding of the occurrence of Martian sulfates, the study further explores the potential for biosignature preservation within Martian sulfate deposits. Finally, drawing on results from current in situ life-detection missions and the objectives of forthcoming Mars sample return missions, this paper provides scientific recommendations for biosignature detection strategies and landing site selection in future Mars exploration missions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acuna M H, Connerney J E P, Wasilewski P, Lin R P, Anderson K A, Carlson C W, McFadden J, Curtis D W, Mitchell D, Reme H, Mazelle C, Sauvaud J A, d’Uston C, Cros A, Medale J L, Bauer S J, Cloutier P, Mayhew M, Winterhalter D, Ness N F. 1998. Magnetic field and plasma observations at Mars: Initial results of the Mars global surveyor mission. Science, 279: 1676–1680

    Article  CAS  Google Scholar 

  • Africano F, Bernard A. 2000. Acid alteration in the fumarolic environment of Usu volcano, Hokkaido, Japan. J Volcanol Geotherm Res, 97: 475–495

    Article  CAS  Google Scholar 

  • Akcil A, Koldas S. 2006. Acid Mine Drainage (AMD): Causes, treatment and case studies. J Clean Prod, 14: 1139–1145

    Article  Google Scholar 

  • Alberini A, Fornaro T, García-Florentino C, Biczysko M, Poblacion I, Aramendia J, Madariaga J M, Poggiali G, Vicente-Retortillo Á, Benison K C, Siljeström S, Biancalani S, Lorenz C, Cloutis E A, Applin D M, Gómez F, Steele A, Wiens R C, Hand K P, Brucato J R. 2024. Investigating the stability of aromatic carboxylic acids in hydrated magnesium sulfate under UV irradiation to assist detection of organics on Mars. Sci Rep, 14: 15945

    Article  CAS  Google Scholar 

  • Allwood A C, Burch I W, Rouchy J M, Coleman M. 2013. Morphological biosignatures in gypsum: Diverse formation processes of Messinian (∼6.0 Ma) gypsum stromatolites. Astrobiology, 13: 870–886

    Article  CAS  Google Scholar 

  • Alpers C N, Jambor J L, Nordstrom D. 2018. Sulfate Minerals. In: Crystallography, Geochemistry, and Environmental Significance. Berlin: Walter de Gruyter GmbH & Co KG

    Google Scholar 

  • Alpers C N, Maenz C, Nordstrom D, Erd R, Thompson J. 1991. Storage of metals and acidity by iron-sulfate minerals associated with extremely acidic mine waters, Iron Mountain, California. Geol Soc Am Ann Mtg A, 382

  • Altheide T, Chevrier V, Nicholson C, Denson J. 2009. Experimental investigation of the stability and evaporation of sulfate and chloride brines on Mars. Earth Planet Sci Lett, 282: 69–78

    Article  CAS  Google Scholar 

  • Amils R. 2016. Lessons learned from thirty years of geomicrobiological studies of Río Tinto. Res Microbiol, 167: 539–545

    Article  Google Scholar 

  • Amils R, Escudero C, Oggerin M, Puente Sánchez F, Arce Rodríguez A, Fernández Remolar D, Rodríguez N, García Villadangos M, Sanz J L, Briones C, Sánchez-Román M, Gómez F, Leandro T, Moreno-Paz M, Prieto-Ballesteros O, Molina A, Tornos F, Sánchez-Andrea I, Timmis K, Pieper D H, Parro V. 2023. Coupled C, H, N, S and Fe biogeochemical cycles operating in the continental deep subsurface of the Iberian Pyrite Belt. Environ Microbiol, 25: 428–453

    Article  CAS  Google Scholar 

  • Amils R, Fernández-Remolar D, The IPBSL Team D. 2014. Rio Tinto: A geochemical and mineralogical terrestrial analogue of Mars. Life, 4: 511–534

    Article  Google Scholar 

  • Amils R, González-Toril E, Fernández-Remolar D, Gómez F, Aguilera Á, Rodríguez N, Malki M, García-Moyano A, Fairén A G, de la Fuente V, Luis Sanz J. 2007. Extreme environments as Mars terrestrial analogs: The Rio Tinto case. Planet Space Sci, 55: 370–381

    Article  CAS  Google Scholar 

  • Ansari A H. 2023. Detection of organic matter on Mars, results from various Mars missions, challenges, and future strategy: A review. Front Astron Space Sci, 10: 1075052

    Article  Google Scholar 

  • Aref M A M. 1998. Holocene stromatolites and microbial laminites associated with lenticular gypsum in a marine-dominated environment, Ras El Shetan area, Gulf of Aqaba, Egypt. Sedimentology, 45: 245–262

    Article  CAS  Google Scholar 

  • Arvidson R E, Ruff S W, Morris R V, Ming D W, Crumpler L S, Yen A S, Squyres S W, Sullivan R J, Bell III J F, Cabrol N A, Clark B C, Farrand W H, Gellert R, Greenberger R, Grant J A, Guinness E A, Herkenhoff K E, Hurowitz J A, Johnson J R, Klingelhöfer G, Lewis K W, Li R, McCoy T J, Moersch J, McSween H Y, Murchie S L, Schmidt M, Schröder C, Wang A, Wiseman S, Madsen M B, Goetz W, McLennan S M. 2008. Spirit Mars rover mission to the Columbia Hills, Gusev Crater: Mission overview and selected results from the Cumberland Ridge to Home Plate. J Geophys Res-Planet, 113: 2008JE003183

    Article  Google Scholar 

  • Arvidson R E, Squyres S W, Anderson R C, Bell III J F, Blaney D, Brückner J, Cabrol N A, Calvin W M, Carr M H, Christensen P R, Clark B C, Crumpler L, Des Marais D J, de Souza Jr. P A, d’Uston C, Economou T, Farmer J, Farrand W H, Folkner W, Golombek M, Gorevan S, Grant J A, Greeley R, Grotzinger J, Guinness E, Hahn B C, Haskin L, Herkenhoff K E, Hurowitz J A, Hviid S, Johnson J R, Klingelhöfer G, Knoll A H, Landis G, Leff C, Lemmon M, Li R, Madsen M B, Malin M C, McLennan S M, McSween H Y, Ming D W, Moersch J, Morris R V, Parker T, Rice Jr. J W, Richter L, Rieder R, Rodionov D S, Schröder C, Sims M, Smith M, Smith P, Soderblom L A, Sullivan R, Thompson S D, Tosca N J, Wang A, Wänke H, Ward J, Wdowiak T, Wolff M, Yen A. 2006. Overview of the Spirit Mars exploration rover mission to Gusev Crater: Landing site to backstay rock in the Columbia Hills. J Geophys Res-Planet, 111: 2005JE002499

    Article  Google Scholar 

  • Arvidson R E, Squyres S W, Bell III J F, Catalano J G, Clark B C, Crumpler L S, de Souza Jr. P A, Fairén A G, Farrand W H, Fox V K, Gellert R, Ghosh A, Golombek M P, Grotzinger J P, Guinness E A, Herkenhoff K E, Jolliff B L, Knoll A H, Li R, McLennan S M, Ming D W, Mittlefehldt D W, Moore J M, Morris R V, Murchie S L, Parker T J, Paulsen G, Rice J W, Ruff S W, Smith M D, Wolff M J. 2014. Ancient aqueous environments at Endeavour Crater, Mars. Science, 343: 1248097

    Article  CAS  Google Scholar 

  • Aubrey A, Cleaves H J, Chalmers J H, Skelley A M, Mathies R A, Grunthaner F J, Ehrenfreund P, Bada J L. 2006. Sulfate minerals and organic compounds on Mars. Geology, 34: 357–360

    Article  CAS  Google Scholar 

  • Baccolo G, Delmonte B, Niles P B, Cibin G, Di Stefano E, Hampai D, Keller L, Maggi V, Marcelli A, Michalski J, Snead C, Frezzotti M. 2021. Jarosite formation in deep Antarctic ice provides a window into acidic, water-limited weathering on Mars. Nat Commun, 12: 436

    Article  CAS  Google Scholar 

  • Baird A K, Toulmin III P, Clark B C, Rose Jr. H J, Keil K, Christian R P, Gooding J L. 1976. Mineralogic and petrologic implications of Viking geochemical results from Mars: Interim report. Science, 194: 1288–1293

    Article  CAS  Google Scholar 

  • Bandfield J L. 2002. Global mineral distributions on Mars. J Geophys Res-Planet, 107: 9–1

    Article  Google Scholar 

  • Bao H, Jenkins K A, Khachaturyan M, Diaz G C. 2004. Different sulfate sources and their post-depositional migration in Atacama soils. Earth Planet Sci Lett, 224: 577–587

    Article  CAS  Google Scholar 

  • Barbieri R, Stivaletta N, Marinangeli L, Ori G G. 2006. Microbial signatures in sabkha evaporite deposits of Chott el Gharsa (Tunisia) and their astrobiological implications. Planet Space Sci, 54: 726–736

    Article  Google Scholar 

  • Benavente D, Del Cura M a G, Garcıa-Guinea J, Sánchez-Moral S, Ordóñez S. 2004. Role of pore structure in salt crystallisation in unsaturated porous stone. J Cryst Growth, 260: 532–544

    Article  CAS  Google Scholar 

  • Benison K C. 2019. How to search for life in Martian chemical sediments and their fluid and solid inclusions using petrographic and spectroscopic methods. Front Environ Sci, 7: 108

    Article  Google Scholar 

  • Benison K C, Jagniecki E A, Edwards T B, Mormile M R, Storrie-Lombardi M C. 2008. “Hairy blobs”: Microbial suspects preserved in modern and ancient extremely acid lake evaporites. Astrobiology, 8: 807–821

    Article  CAS  Google Scholar 

  • Benison K C, Karmanocky F J. 2014. Could microorganisms be preserved in Mars gypsum? Insights from terrestrial examples. Geology, 42: 615–618

    Article  Google Scholar 

  • Benner S A, Devine K G, Matveeva L N, Powell D H. 2000. The missing organic molecules on Mars. Proc Natl Acad Sci USA, 97: 2425–2430

    Article  CAS  Google Scholar 

  • Berger I A, Cooke R U. 1997. The origin and distribution of salts on alluvial fans in the Atacama Desert, northern Chile. Earth Surf Proc Land, 22: 581–600

    Article  CAS  Google Scholar 

  • Bibring J P, Langevin Y, Gendrin A, Gondet B, Poulet F, Berthe M, Soufflot A, Arvidson R, Mangold N, Mustard J, Drossart P. 2005. Mars surface diversity as revealed by the OMEGA/Mars express observations. Science, 307: 1576–1581

    Article  CAS  Google Scholar 

  • Bibring J P, Langevin Y, Mustard J F, Poulet F, Arvidson R, Gendrin A, Gondet B, Mangold N, Pinet P, Forget F, Berthe M, Bibring J P, Gendrin A, Gomez C, Gondet B, Jouglet D, Poulet F, Soufflot A, Vincendon M, Combes M, Drossart P, Encrenaz T, Fouchet T, Merchiorri R, Belluci G C, Altieri F, Formisano V, Capaccioni F, Cerroni P, Coradini A, Fonti S, Korablev O, Kottsov V, Ignatiev N, Moroz V, Titov D, Zasova L, Loiseau D, Mangold N, Pinet P, Doute S, Schmitt B, Sotin C, Hauber E, Hoffmann H, Jaumann R, Keller U, Arvidson R, Mustard J F, Duxbury T, Forget F, Neukum G. 2006. Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science, 312: 400–404

    Article  CAS  Google Scholar 

  • Bishop J L, Dobrea E Z N, McKeown N K, Parente M, Ehlmann B L, Michalski J R, Milliken R E, Poulet F, Swayze G A, Mustard J F, Murchie S L, Bibring J P. 2008. Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars. Science, 321: 830–833

    Article  CAS  Google Scholar 

  • Bishop J L, Gruendler K E, Parente M, Saranathan A, Gross C. 2023. Investigating the diversity of phyllosilicates and sulfates at Mawrth Vallis, Mars and the implications for changing environmental conditions. AAS/Division Planet Sci Meet Abstract, 55: 217–206

    Google Scholar 

  • Burns R G, Fisher D S. 1990. Iron-sulfur mineralogy of Mars: Magmatic evolution and chemical weathering products. J. Geophys. Res. Solid Earth, 95: 14415–14421

    Google Scholar 

  • Boison G, Mergel A, Jolkver H, Bothe H. 2004. Bacterial life and dinitrogen fixation at a gypsum rock. Appl Environ Microbiol, 70: 7070–7077

    Article  CAS  Google Scholar 

  • Borzenko S V. 2021. The main formation processes for different types of salt lakes: Evidence from isotopic composition with case studies of lakes in Transbaikalia, Russia. Sci Total Environ, 782: 146782

    Article  CAS  Google Scholar 

  • Borzenko S V, Zamana L V, Usmanova L I. 2017. Basic formation mechanisms of Lake Doroninskoye soda water, East Siberia, Russia. Acta Geochim, 37: 546–558

    Article  Google Scholar 

  • Bosbach D, Rammensee W. 1994. In situ investigation of growth and dissolution on the (010) surface of gypsum by Scanning Force Microscopy. Geochim Cosmochim Acta, 58: 843–849

    Article  CAS  Google Scholar 

  • Bourrié G. 2021. Salts in Deserts. In: Joly F, Bourrié G, eds. Mankind and Deserts 2. Hoboken: Wiley. 121–137

    Chapter  Google Scholar 

  • Brack A. 2013. Clay Minerals and the Origin of Life. In: Bergaya F, Lagaly G, eds. Developments in Clay Science. Amsterdam: Elsevier. 5: 507–521

    Google Scholar 

  • Brocks J J, Love G D, Summons R E, Knoll A H, Logan G A, Bowden S A. 2005. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature, 437: 866–870

    Article  CAS  Google Scholar 

  • Brocks J J, Schaeffer P. 2008. Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1640Ma Barney Creek Formation. Geochim Cosmochim Acta, 72: 1396–1414

    Article  CAS  Google Scholar 

  • Brown A D. 1990. Microbial water stress physiology. In: Principles and Perspectives. Hoboken: John Wiley & Sons

    Google Scholar 

  • Buckby T, Black S, Coleman M L, Hodson M E. 2003. Fe-sulphate-rich evaporative mineral precipitates from the Río Tinto, southwest Spain. Mineral Mag, 67: 263–278

    Article  CAS  Google Scholar 

  • Burnie T M, Power I M, Paulo C, Alçiçek H, Falcón L I, Lin Y, Wilson S. 2023. Environmental and mineralogical controls on biosignature preservation in magnesium carbonate systems analogous to Jezero crater, Mars. Astrobiology, 23: 513–535

    Article  Google Scholar 

  • Cámara B, Souza-Egipsy V, Ascaso C, Artieda O, De Los Ríos A, Wierzchos J. 2016. Biosignatures and microbial fossils in endolithic microbial communities colonizing Ca-sulfate crusts in the Atacama Desert. Chem Geol, 443: 22–31

    Article  Google Scholar 

  • Campbell K A, Lynne B Y, Handley K M, Jordan S, Farmer J D, Guido D M, Foucher F, Turner S, Perry R S. 2015. Tracing biosignature preservation of geothermally silicified microbial textures into the geological record. Astrobiology, 15: 858–882

    Article  CAS  Google Scholar 

  • Cane H V, Richardson I G, Von Rosenvinge T T. 2010. The properties of cycle 23 solar energetic proton events. Amer Inst Phys, 1216: 687–690

    CAS  Google Scholar 

  • Canfora L, Vendramin E, Vittori Antisari L, Lo Papa G, Dazzi C, Benedetti A, Iavazzo P, Adamo P, Jungblut A D, Pinzari F, Stams A. 2016. Compartmentalization of gypsum and halite associated with cyanobacteria in saline soil crusts. FEMS Microbiol Ecol, 92: fiw080

    Article  Google Scholar 

  • Carn S A, Fioletov V E, McLinden C A, Li C, Krotkov N A. 2017. A decade of global volcanic SO2 emissions measured from space. Sci Rep, 7: 44095

    Article  CAS  Google Scholar 

  • Casero M C, Meslier V, DiRuggiero J, Quesada A, Ascaso C, Artieda O, Kowaluk T, Wierzchos J. 2021. The composition of endolithic communities in gypcrete is determined by the specific microhabitat architecture. Biogeosciences, 18: 993–1007

    Article  CAS  Google Scholar 

  • Chaddha A S, Sharma A, Singh N K, Shamsad A, Banerjee M. 2024. Biotic-abiotic mingle in rock varnish formation: A new perspective. Chem Geol, 648: 121961

    Article  CAS  Google Scholar 

  • Chevrier V, Mathé P E. 2007. Mineralogy and evolution of the surface of Mars: A review. Planet Space Sci, 55: 289–314

    Article  CAS  Google Scholar 

  • Chevrier V F, Altheide T S. 2008. Low temperature aqueous ferric sulfate solutions on the surface of Mars. Geophys Res Lett, 35: 2008GL035489

    Article  Google Scholar 

  • Chipera S J, Vaniman D T, Rampe E B, Bristow T F, Martínez G, Tu V M, Peretyazhko T S, Yen A S, Gellert R, Berger J A, Rapin W, Morris R V, Ming D W, Thompson L M, Simpson S, Achilles C N, Tutolo B, Downs R T, Fraeman A A, Fischer E, Blake D F, Treiman A H, Morrison S M, Thorpe M T, Gupta S, Dietrich W E, Downs G, Castle N, Craig P I, Marais D J D, Hazen R M, Vasavada A R, Hausrath E, Sarrazin P, Grotzinger J P. 2023. Mineralogical investigation of Mg-sulfate at the Canaima drill site, Gale Crater, Mars. J Geophys Res-Planet, 128: e2023JE008041

    Article  CAS  Google Scholar 

  • Christensen P R, Wyatt M B, Glotch T D, Rogers A D, Anwar S, Arvidson R E, Bandfield J L, Blaney D L, Budney C, Calvin W M, Fallacaro A, Fergason R L, Gorelick N, Graff T G, Hamilton V E, Hayes A G, Johnson J R, Knudson A T, McSween Jr. H Y, Mehall G L, Mehall L K, Moersch J E, Morris R V, Smith M D, Squyres S W, Ruff S W, Wolff M J. 2004. Mineralogy at Meridiani planum from the Mini-TES experiment on the Opportunity Rover. Science, 306: 1733–1739

    Article  CAS  Google Scholar 

  • Christensen P R, Bandfield J L, Smith M D, Hamilton V E, Clark R N. 2000. Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data. J Geophys Res-Planet, 105: 9609–9621

    Article  CAS  Google Scholar 

  • Clark B C, Baird A K, Rose Jr. H J, Toulmin III P, Keil K, Castro A J, Kelliher W C, Rowe C D, Evans P H. 1976. Inorganic analyses of Martian surface samples at the Viking landing sites. Science, 194: 1283–1288

    Article  CAS  Google Scholar 

  • Cockell C, Catling D C, Davis W L, Snook K, Kepner R L, Lee P, Mckay C P. 2000. The ultraviolet environment of Mars: Biological implications past, present, and future. Icarus, 146: 343–359

    Article  CAS  Google Scholar 

  • Cockell C S, McKay C P, Warren-Rhodes K, Horneck G. 2008. Ultraviolet radiation-induced limitation to epilithic microbial growth in arid deserts—Dosimetric experiments in the hyperarid core of the Atacama Desert. J PhotoChem PhotoBiol B-Biol, 90: 79–87

    Article  CAS  Google Scholar 

  • Cockell C S, Osinski G R, Banerjee N R, Howard K T, Gilmour I, Watson J S. 2010. The microbe-mineral environment and gypsum neogenesis in a weathered polar evaporite. Geobiology, 8: 293–308

    Article  CAS  Google Scholar 

  • Coleine C, Delgado-Baquerizo M, Zerboni A, Turchetti B, Buzzini P, Franceschi P, Selbmann L. 2023. Rock traits drive complex microbial communities at the edge of life. Astrobiology, 23: 395–406

    Article  Google Scholar 

  • Cravotta III C A, Kirby C S. 2004. Acidity and alkalinity in mine drainage: Practical considerations. In: 2004 National Meeting of the American Society of Mining and Reclamation and the 25th West Virginia Surface Mine Drainage Task Force. Morgantown. 334–365

    Google Scholar 

  • Crits-Christoph A, Robinson C K, Ma B, Ravel J, Wierzchos J, Ascaso C, Artieda O, Souza-Egipsy V, Casero M C, DiRuggiero J. 2016. Phylogenetic and functional substrate specificity for endolithic microbial communities in hyper-arid environments. Front Microbiol, 7: 301

    Article  Google Scholar 

  • Cuif J P, Dauphin Y, Doucet J, Salome M, Susini J. 2003. XANES mapping of organic sulfate in three scleractinian coral skeletons. Geochim Cosmochim Acta, 67: 75–83

    Article  CAS  Google Scholar 

  • Cuif J P, Dauphin Y, Farre B, Nehrke G, Nouet J, Salomé M. 2008. Distribution of sulphated polysaccharides within calcareous biominerals suggests a widely shared two-step crystallization process for the microstructural growth units. Mineral Mag, 72: 233–237

    Article  CAS  Google Scholar 

  • David G, Dehouck E, Meslin P-, Rapin W, Cousin A, Forni O, Gasnault O, Lasue J, Mangold N, Beck P, Maurice S, Wiens R C, Berger G, Fabre S, Pinet P, Clark B C, Smith J R, Lanza N L. 2022. Evidence for amorphous sulfates as the main carrier of soil hydration in Gale Crater, Mars. Geophys Res Lett, 49: e2022GL098755

    Article  CAS  Google Scholar 

  • Davis R A, Welty A T, Borrego J, Morales J A, Pendon J G, Ryan J G. 2000. Rio Tinto estuary (Spain): 5000 years of pollution. Environ Geol, 39: 1107–1116

    Article  CAS  Google Scholar 

  • Dehouck E, Chevrier V, Gaudin A, Mangold N, Mathé P E, Rochette P. 2012. Evaluating the role of sulfide-weathering in the formation of sulfates or carbonates on Mars. Geochim Cosmochim Acta, 90: 47–63

    Article  CAS  Google Scholar 

  • Dela Pierre F, Natalicchio M, Ferrando S, Giustetto R, Birgel D, Carnevale G, Gier S, Lozar F, Marabello D, Peckmann J. 2015. Are the large filamentous microfossils preserved in Messinian gypsum colorless sulfide-oxidizing bacteria? Geology, 43: 855–858

    Article  CAS  Google Scholar 

  • Diloreto Z, Ahmad M S, Al Saad Al-Kuwari H, Sadooni F, Bontognali T R R, Dittrich M. 2023. Raman spectroscopic and microbial study of biofilms hosted gypsum deposits in the hypersaline wetlands: Astrobiological perspective. Astrobiology, 23: 991–1005

    Article  CAS  Google Scholar 

  • Dong H, Huang L, Zhao L, Zeng Q, Liu X, Sheng Y, Shi L, Wu G, Jiang H, Li F, Zhang L, Guo D, Li G, Hou W, Chen H. 2022. A critical review of mineral-microbe interaction and co-evolution: Mechanisms and applications. Natl Sci Rev, 9: nwac128

    Article  CAS  Google Scholar 

  • Dong H, Rech J A, Jiang H, Sun H, Buck B J. 2007. Endolithic cyanobacteria in soil gypsum: Occurrences in Atacama (Chile), Mojave (United States), and Al-Jafr Basin (Jordan) Deserts. J Geophys Res. Biogeo, 112: 2006JG000385

    Article  Google Scholar 

  • Douglas S. 2004. Microbial biosignatures in evaporite deposits: Evidence from Death Valley, California. Planet Space Sci, 52: 223–227

    Article  CAS  Google Scholar 

  • Ehlmann B L, Edwards C S. 2014. Mineralogy of the Martian surface. Annu Rev Earth Planet Sci, 42: 291–315

    Article  CAS  Google Scholar 

  • Ehlmann B L, Mustard J F, Murchie S L, Bibring J P, Meunier A, Fraeman A A, Langevin Y. 2011. Subsurface water and clay mineral formation during the early history of Mars. Nature, 479: 53–60

    Article  CAS  Google Scholar 

  • Eigenbrode J L, Summons R E, Steele A, Freissinet C, Millan M, Navarro-González R, Sutter B, McAdam A C, Franz H B, Glavin D P, Archer Jr. P D, Mahaffy P R, Conrad P G, Hurowitz J A, Grotzinger J P, Gupta S, Ming D W, Sumner D Y, Szopa C, Malespin C, Buch A, Coll P. 2018. Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars. Science, 360: 1096–1101

    Article  CAS  Google Scholar 

  • Ellery A, Wynn-Williams D. 2003. Why Raman spectroscopy on Mars?— A case of the right tool for the right job. Astrobiology, 3: 565–579

    Article  CAS  Google Scholar 

  • Ericksen G E. 1983. The Chilean nitrate deposits: The origin of the Chilean nitrate deposits, which contain a unique group of saline minerals, has provoked lively discussion for more than 100 years. Am Sci, 71: 366–374

    Google Scholar 

  • Farrand W H, Glotch T D, Horgan B. 2014. Detection of copiapite in the northern Mawrth Vallis region of Mars: Evidence of acid sulfate alteration. Icarus, 241: 346–357

    Article  CAS  Google Scholar 

  • Farrand W H, Glotch T D, Rice Jr. J W, Hurowitz J A, Swayze G A. 2009. Discovery of jarosite within the Mawrth Vallis region of Mars: Implications for the geologic history of the region. Icarus, 204: 478–488

    Article  CAS  Google Scholar 

  • Fernández-Remolar D C, Carrizo D, Harir M, Huang T, Amils R, Schmitt-Kopplin P, Sánchez-García L, Gomez-Ortiz D, Malmberg P. 2021a. Unveiling microbial preservation under hyperacidic and oxidizing conditions in the Oligocene Rio Tinto deposit. Sci Rep, 11: 21543

    Article  Google Scholar 

  • Fernández-Remolar D C, Gomez-Ortiz D, Huang T, Anglés A, Shen Y, Hu Q, Amils R, Rodríguez N, Escudero C, Banerjee N R. 2021b. The molecular record of metabolic activity in the subsurface of the Río Tinto Mars analog. Astrobiology, 21: 1387–1405

    Article  Google Scholar 

  • Fernández-Remolar D C, Gómez-Ortiz D, Malmberg P, Huang T, Shen Y, Anglés A, Amils R. 2021c. Preservation of underground microbial diversity in ancient subsurface deposits (>6 Ma) of the Rio Tinto basement. Microorganisms, 9: 1592

    Article  Google Scholar 

  • Fernández-Remolar D C, Morris R V, Gruener J E, Amils R, Knoll A H. 2005. The Rio Tinto Basin, Spain: Mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars. Earth Planet Sci Lett, 240: 149–167

    Article  Google Scholar 

  • Fernández-Remolar D C, Rodriguez N, Gómez F, Amils R. 2003. Geological record of an acidic environment driven by iron hydrochemistry: The Tinto River system. J Geophys Res-Planet, 108: 2002JE001918

    Article  Google Scholar 

  • Fishbaugh K E, Poulet F, Chevrier V, Langevin Y, Bibring J P. 2007. On the origin of gypsum in the Mars north polar region. J Geophys Res-Planet, 112: 2006JE002862

    Article  Google Scholar 

  • Flahaut J, Quantin C, Allemand P, Thomas P, Le Deit L. 2010. Identification, distribution and possible origins of sulfates in Capri Chasma (Mars), inferred from CRISM data. J Geophys Res-Planet, 115: 2009JE003566

    Article  Google Scholar 

  • Fliermans C B, Brock T D. 1972. Ecology of sulfur-oxidizing bacteria in hot acid soils. J Bacteriol, 111: 343–350

    Article  CAS  Google Scholar 

  • François P, Szopa C, Buch A, Coll P, McAdam A C, Mahaffy P R, Freissinet C, Glavin D P, Navarro-Gonzalez R, Cabane M. 2016. Magnesium sulfate as a key mineral for the detection of organic molecules on Mars using pyrolysis. J Geophys Res-Planet, 121: 61–74

    Article  Google Scholar 

  • Franks F. 1973. Water a Comprehensive Treatise: Volume 3. New York: Plenum Press

    Google Scholar 

  • Freissinet C, Glavin D P, Archer Jr. P D, Teinturier S, Buch A, Szopa C, Lewis J M T, Williams A J, Navarro-Gonzalez R, Dworkin J P, Franz H B, Millan M, Eigenbrode J L, Summons R E, House C H, Williams R H, Steele A, McIntosh O, Gómez F, Prats B, Malespin C A, Mahaffy P R. 2025. Long-chain alkanes preserved in a Martian mudstone. Proc Natl Acad Sci USA, 122: e2420580122

    Article  CAS  Google Scholar 

  • Freissinet C, Glavin D P, Mahaffy P R, Miller K E, Eigenbrode J L, Summons R E, Brunner A E, Buch A, Szopa C, Archer Jr. P D, Franz H B, Atreya S K, Brinckerhoff W B, Cabane M, Coll P, Conrad P G, Des Marais D J, Dworkin J P, Fairén A G, François P, Grotzinger J P, Kashyap S, ten Kate I L, Leshin L A, Malespin C A, Martin M G, Martin-Torres F J, McAdam A C, Ming D W, Navarro-González R, Pavlov A A, Prats B D, Squyres S W, Steele A, Stern J C, Sumner D Y, Sutter B, Zorzano M-P. 2015. Organic molecules in the Sheepbed mudstone, Gale Crater, Mars. J Geophys Res-Planet, 120: 495–514

    Article  CAS  Google Scholar 

  • Friedmann E I, Ocampo-Friedmann R. 1984. The antarctic cryptoendolithic ecosystem: Relevance to exobiology. Origins Life Evol Biosphere, 14: 771–776

    Article  CAS  Google Scholar 

  • Gendrin A, Mangold N, Bibring J P, Langevin Y, Gondet B, Poulet F, Bonello G, Quantin C, Mustard J, Arvidson R, LeMouelic S. 2005. Sulfates in Martian layered terrains: The OMEGA/Mars express view. Science, 307: 1587–1591

    Article  CAS  Google Scholar 

  • Gill K K, Jagniecki E A, Benison K C, Gibson M E. 2023. A Mars-analog sulfate mineral, mirabilite, preserves biosignatures. Geology, 51: 818–822

    Article  CAS  Google Scholar 

  • Gillmann C, Hakim K, Lourenço D, Quanz S P, Sossi P A. 2024. Interior controls on the habitability of rocky planets. Space Sci Technol, 4: 0075

    Article  CAS  Google Scholar 

  • Glavin D P, Bada J L, Brinton K L F, McDonald G D. 1999. Amino acids in the Martian meteorite Nakhla. Proc Natl Acad Sci USA, 96: 8835–8838

    Article  CAS  Google Scholar 

  • Glavin D P, Freissinet C, Miller K E, Eigenbrode J L, Brunner A E, Buch A, Sutter B, Archer Jr. P D, Atreya S K, Brinckerhoff W B, Cabane M, Coll P, Conrad P G, Coscia D, Dworkin J P, Franz H B, Grotzinger J P, Leshin L A, Martin M G, McKay C, Ming D W, Navarro-González R, Pavlov A, Steele A, Summons R E, Szopa C, Teinturier S, Mahaffy P R. 2013. Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. J Geophys Res-Planet, 118: 1955–1973

    Article  CAS  Google Scholar 

  • Gómez-Ortiz D, Fernández-Remolar D C, Granda Á, Quesada C, Granda T, Prieto-Ballesteros O, Molina A, Amils R. 2014. Identification of the subsurface sulfide bodies responsible for acidity in Río Tinto source water, Spain. Earth Planet Sci Lett, 391: 36–41

    Article  Google Scholar 

  • Greenspan L. 1977. Humidity fixed points of binary saturated aqueous solutions. J Res Natl Bur Stand A Phys Chem, 81A: 89

    Article  Google Scholar 

  • Grott M, Baratoux D, Hauber E, Sautter V, Mustard J, Gasnault O, Ruff S W, Karato S I, Debaille V, Knapmeyer M, Sohl F, Van Hoolst T, Breuer D, Morschhauser A, Toplis M J. 2013. Long-term evolution of the Martian crust-mantle system. Space Sci Rev, 174: 49–111

    Article  CAS  Google Scholar 

  • Guendouzi M E, Mounir A, Dinane A. 2003. Water activity, osmotic and activity coefficients of aqueous solutions of Li2SO4, Na2SO4, K2SO4, (NH4)2SO4, MgSO4, MnSO4, NiSO4, CuSO4, and ZnSO4 at T=298.15 K. J Chem ThermoDyn, 35: 209–220

    Article  Google Scholar 

  • Guo Q, Liu M, Li J, Zhang X, Wang Y. 2014. Acid hot springs discharged from the Rehai hydrothermal system of the Tengchong volcanic area (China): Formed via magmatic fluid absorption or geothermal steam heating? Bull Volcanol, 76: 868

    Article  Google Scholar 

  • Harder H, Christensen U R. 1996. A one-plume model of martian mantle convection. Nature, 380: 507–509

    Article  CAS  Google Scholar 

  • Hardie L A, Eugster H P. 1971. The depositional environment of marine evaporites: A case for shallow, clastic accumulation. Sedimentology, 16: 187–220

    Article  CAS  Google Scholar 

  • Hartmann W K, Neukum G. 2001. Cratering chronology and the evolution of Mars. Space Sci Rev, 96: 165–194

    Article  Google Scholar 

  • Hassler D M, Zeitlin C, Wimmer-Schweingruber R F, Ehresmann B, Rafkin S, Eigenbrode J L, Brinza D E, Weigle G, Böttcher S, Böhm E, et al. 2014. Mars’ surface radiation environment measured with the Mars science laboratory’s Curiosity rover. Science, 343: 1244797

    Article  Google Scholar 

  • Hazen R M, Downs R T, Morrison S M, Tutolo B M, Blake D F, Bristow T F, Chipera S J, McSween H Y, Ming D, Morris R V, Rampe E B, Thorpe M T, Treiman A H, Tu V M, Vaniman D T. 2023. On the diversity and formation modes of Martian minerals. J Geophys Res-Planet, 128: e2023JE007865

    Article  CAS  Google Scholar 

  • Hinman N W, Bishop J L, Gulick V C, Dettmann J M K, Morkner P, Berlanga G, Henneberger R M, Bergquist P, Richardson C D, Walter M R, MacKenzie L A, Anitori R P, Scott J R. 2021. Targeting mixtures of jarosite and clay minerals for Mars exploration. Am Mineral, 106: 1237–1254

    Article  Google Scholar 

  • Hu S, Gao Y, Zhou Z, Gao L, Lin Y. 2024. Water and other volatiles on Mars. Natl Sci Rev, 11: nwae094

    Article  Google Scholar 

  • Huang T. 2018. Life preserved in the extreme environment and their astrobiological implications: Dalangtan and Rio Tinto as case studies (in Chinese). Doctoral Dissertation. Wuhan: China University of Geosciences. 1–122

    Google Scholar 

  • Huang W, Ertekin E, Wang T, Cruz L, Dailey M, DiRuggiero J, Kisailus D. 2020a. Mechanism of water extraction from gypsum rock by desert colonizing microorganisms. Proc Natl Acad Sci USA, 117: 10681–10687

    Article  CAS  Google Scholar 

  • Huang W, Ertekin E, Wang T, Cruz L, Dailey M, DiRuggiero J, Kisailus D. 2020b. Reply to Wierzchos et al.: Microorganism-induced gypsum to anhydrite phase transformation. Proc Natl Acad Sci USA, 117: 27788–27790

    Article  CAS  Google Scholar 

  • Hughes K A, Lawley B. 2003. A novel Antarctic microbial endolithic community within gypsum crusts. Environ Microbiol, 5: 555–565

    Article  Google Scholar 

  • Hurowitz J A, McLennan S M, Tosca N J, Arvidson R E, Michalski J R, Ming D W, Schröder C, Squyres S W. 2006. In situ and experimental evidence for acidic weathering of rocks and soils on Mars. J Geophys Res-Planet, 111: 2005JE002515

    Article  Google Scholar 

  • Hynek B M, McCollom T M, Marcucci E C, Brugman K, Rogers K L. 2013. Assessment of environmental controls on acid-sulfate alteration at active volcanoes in Nicaragua: Applications to relic hydrothermal systems on Mars. J Geophys Res-Planet, 118: 2083–2104

    Article  CAS  Google Scholar 

  • Jagniecki E A, Benison K C. 2010. Criteria for the recognition of acid-precipitated halite. Sedimentology, 57: 273–292

    Article  CAS  Google Scholar 

  • Jehlička J, Culka A, Mareš J. 2019. Raman spectroscopic screening of cyanobacterial chasmoliths from crystalline gypsum—The Messinian crisis sediments from Southern Sicily. J Raman Spectr, 51: 1802–1812

    Article  Google Scholar 

  • Jia C, Wu L, Fulton J L, Liang X, De Yoreo J J, Guan B. 2021. Structural characteristics of amorphous calcium sulfate: Evidence to the role of water molecules. J Phys Chem C, 125: 3415–3420

    Article  CAS  Google Scholar 

  • Jones E G. 2018. Shallow transient liquid water environments on present-day mars, and their implications for life. Acta Astronaut, 146: 144–150

    Article  Google Scholar 

  • Kaplan H H, Milliken R E, Fernández-Remolar D, Amils R, Robertson K, Knoll A H. 2016. Orbital evidence for clay and acidic sulfate assemblages on Mars based on mineralogical analogs from Rio Tinto, Spain. Icarus, 275: 45–64

    Article  CAS  Google Scholar 

  • King P L, McLennan S M. 2010. Sulfur on Mars. Elements, 6: 107–112

    Article  CAS  Google Scholar 

  • King P L, McSween Jr. H Y. 2005. Effects of H2 O, pH, and oxidation state on the stability of Fe minerals on Mars. J Geophys Res-Planet, 110: 2005JE002482

    Article  Google Scholar 

  • Klingelhofer G, Morris R V, Bernhardt B, Schroder C, Rodionov D S, de Souza Jr. P A, Yen A, Gellert R, Evlanov E N, Zubkov B, Foh J, Bonnes U, Kankeleit E, Gutlich P, Ming D W, Renz F, Wdowiak T, Squyres S W, Arvidson R E. 2004. Jarosite and hematite at Meridiani planum from Opportunity’s Mossbauer spectrometer. Science, 306: 1740–1745

    Article  CAS  Google Scholar 

  • Kloprogge J T T, Hartman H. 2022. Clays and the origin of life: The experiments. Life, 12: 259

    Article  CAS  Google Scholar 

  • Kminek G, Bada J L, Pogliano K, Ward J F. 2003. Radiation-dependent limit for the viability of bacterial spores in halite fluid inclusions and on Mars. Radiat Res, 159: 722–729

    Article  CAS  Google Scholar 

  • Koeppen W C, Hamilton V E. 2008. Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data. J Geophys Res-Planet, 113: 2007JE002984

    Article  Google Scholar 

  • Langevin Y, Poulet F, Bibring J P, Gondet B. 2005. Sulfates in the north polar region of Mars detected by OMEGA/Mars express. Science, 307: 1584–1586

    Article  CAS  Google Scholar 

  • Leshin L A, Mahaffy P R, Webster C R, Cabane M, Coll P, Conrad P G, Archer Jr. P D, Atreya S K, Brunner A E, Buch A, et al. 2013. Volatile, isotope, and organic analysis of Martian fines with the Mars Curiosity rover. Science, 341: 1238937

    Article  CAS  Google Scholar 

  • Levin Z, Ganor E, Gladstein V. 1996. The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean. J Appl Meteorol Climatol, 35: 1511–1523

    Article  Google Scholar 

  • Li J, Wang F, Michalski G, Wilkins B. 2019. Atmospheric deposition across the Atacama Desert, Chile: Compositions, source distributions, and interannual comparisons. Chem Geol, 525: 435–446

    Article  CAS  Google Scholar 

  • Lichtenberg K A, Arvidson R E, Morris R V, Murchie S L, Bishop J L, Fernandez Remolar D, Glotch T D, Noe Dobrea E, Mustard J F, Andrews-Hanna J, Roach L H. 2010. Stratigraphy of hydrated sulfates in the sedimentary deposits of Aram Chaos, Mars. J Geophys Res-Planet, 115: 2009JE003353

    Article  Google Scholar 

  • Lin H, Lin Y, Wei Y, Gou S, Zhang C, Ruan R, Pan Y. 2023. Mineralogical evidence of water activity in the northern lowlands of Mars based on inflight-calibrated spectra from the Zhurong rover. Sci China Earth Sci, 66: 2463–2472

    Article  CAS  Google Scholar 

  • Ling Z C, Ju E M. 2024. Research progress in the detection and investigation of sulfates on the Martian surface (in Chinese). J Space Sci Exp, 1: 40–53

    Google Scholar 

  • Ling Z C, Wang A. 2010. A systematic spectroscopic study of eight hydrous ferric sulfates relevant to Mars. Icarus, 209: 422–433

    Article  Google Scholar 

  • Liu J, Michalski J R, Gao W, Schröder C, Li Y L. 2024. Freeze-thaw cycles drove chemical weathering and enriched sulfates in the Burns formation at Meridiani, Mars. Sci Adv, 10: eadi1805

    Article  CAS  Google Scholar 

  • Liu Y, Wu X, Zhao Y Y S, Pan L, Wang C, Liu J, Zhao Z, Zhou X, Zhang C, Wu Y, Wan W, Zou Y. 2022. Zhurong reveals recent aqueous activities in Utopia Planitia, Mars. Sci Adv, 8: eabn8555

    Article  CAS  Google Scholar 

  • Loizeau D, Mangold N, Poulet F, Bibring J P, Gendrin A, Ansan V, Gomez C, Gondet B, Langevin Y, Masson P, Neukum G. 2007. Phyllosilicates in the Mawrth Vallis region of Mars. J Geophys Res-Planet, 112: 2006JE002877

    Article  Google Scholar 

  • Lowenstein T K, Schubert B A, Timofeeff M N. 2011. Microbial communities in fluid inclusions and long-term survival in halite. GSA Today, 21: 4–9

    Article  Google Scholar 

  • Luo L, Wen H, Zheng R, Liu R, Li Y, Luo X, You Y. 2019. Subaerial sulfate mineral formation related to acid aerosols at the Zhenzhu Spring, Tengchong, China. MinMag, 83: 381–392

    Article  CAS  Google Scholar 

  • Manzoni S, Schaeffer S M, Katul G, Porporato A, Schimel J P. 2014. A theoretical analysis of microbial eco-physiological and diffusion limitations to carbon cycling in drying soils. Soil Biol Biochem, 73: 69–83

    Article  CAS  Google Scholar 

  • Marion G M, Farren R E. 1999. Mineral solubilities in the Na-K-Mg-Ca-Cl-SO4-H2O system: A re-evaluation of the sulfate chemistry in the Spencer-Møller-Weare model. Geochim Cosmochim Acta, 63: 1305–1318

    Article  CAS  Google Scholar 

  • Marshall C P, Olcott Marshall A. 2010. The potential of Raman spectroscopy for the analysis of diagenetically transformed carotenoids. Phil Trans R Soc A, 368: 3137–3144

    Article  CAS  Google Scholar 

  • Martínez G M, Renno N O. 2013. Water and brines on Mars: Current evidence and implications for MSL. Space Sci Rev, 175: 29–51

    Article  Google Scholar 

  • Massé M, Bourgeois O, Le Mouélic S, Verpoorter C, Spiga A, Le Deit L. 2012. Wide distribution and glacial origin of polar gypsum on Mars. Earth Planet Sci Lett, 317–318: 44–55

    Article  Google Scholar 

  • McCanta M C, Dyar M D, Treiman A H. 2014. Alteration of Hawaiian basalts under sulfur-rich conditions: Applications to understanding surface-atmosphere interactions on Mars and Venus. Am Mineral, 99: 291–302

    Article  CAS  Google Scholar 

  • McCollom T M. 2018. Geochemical trends in the burns formation layered sulfate deposits at Meridiani planum, Mars, and implications for their origin. J Geophys Res-Planet, 123: 2393–2429

    Article  CAS  Google Scholar 

  • McCollom T M, Hynek B M. 2005. A volcanic environment for bedrock diagenesis at Meridiani Planum on Mars. Nature, 438: 1129–1131

    Article  CAS  Google Scholar 

  • McCollom T M, Robbins M, Moskowitz B, Berquó T S, Jöns N, Hynek B M. 2013. Experimental study of acid-sulfate alteration of basalt and implications for sulfate deposits on Mars. J Geophys Res-Planet, 118: 577–614

    Article  CAS  Google Scholar 

  • McHenry L J, Carson G L, Dixon D T, Vickery C L. 2017. Secondary minerals associated with Lassen fumaroles and hot springs: Implications for martian hydrothermal deposits. Am Mineral, 102: 1418–1434

    Article  Google Scholar 

  • Meslier V, Casero M C, Dailey M, Wierzchos J, Ascaso C, Artieda O, McCullough P R, DiRuggiero J. 2018. Fundamental drivers for endolithic microbial community assemblies in the hyperarid Atacama Desert. Environ Microbiol, 20: 1765–1781

    Article  Google Scholar 

  • Ming D W, Mittlefehldt D W, Morris R V, Golden D C, Gellert R, Yen A, Clark B C, Squyres S W, Farrand W H, Ruff S W, Arvidson R E, Klingelhöfer G, McSween H Y, Rodionov D S, Schröder C, de Souza Jr. P A, Wang A. 2006. Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars. J Geophys Res-Planet, 111: 2005JE002560

    Article  Google Scholar 

  • Mißbach H, Duda J P, van den Kerkhof A M, Lüders V, Pack A, Reitner J, Thiel V. 2021. Ingredients for microbial life preserved in 3.5 billion-year-old fluid inclusions. Nat Commun, 12: 1101

    Article  Google Scholar 

  • Moreras-Marti A, Fox-Powell M, Toney J, McAdam A C, Slaymark C, Knudson C A, Lewis J M T, Salik M A, Cousins C R. 2024. Molecular biosignatures in planetary analogue salts: Implications for transport of organics in sulfate-rich brines beyond Earth. Geochem Persp Let, 32: 1–6

    Article  Google Scholar 

  • Morris R, Rampe E, Graff T, Archer Jr P, Le L, Ming D, Sutter B. 2015. Transmission X-ray Diffraction (XRD) Patterns Relevant to The MSL CheMin Amorphous Component: Sulfates and Silicates. In: Lunar and planetary science Conference. Woodlands. (No. JSC-CN-32826)

    Google Scholar 

  • Mosser J L, Mosser A G, Brock T D. 1973. Bacterial origin of sulfuric acid in geothermal habitats. Science, 179: 1323–1324

    Article  CAS  Google Scholar 

  • National Natural Science Foundation of China, Chinese Academy of Sciences. 2022. China’s Disciplinary Development Strategy: Microbiology in Extreme Environments (in Chinese). Beijing: Science Press. 356

    Google Scholar 

  • Navarro-González R, Vargas E, de la Rosa J, Raga A C, McKay C P. 2011. Correction to “Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars”. J Geophys Res-Planet, 116: E08011

    Google Scholar 

  • Němečková K, Culka A, Němec I, Edwards H G M, Mareš J, Jehlička J. 2021. Raman spectroscopic search for scytonemin and gloeocapsin in endolithic colonizations in large gypsum crystals. J Raman Spectr, 52: 2633–2647

    Article  Google Scholar 

  • Němečková K, Mareš J, Procházková L, Culka A, Košek F, Wierzchos J, Nedbalová L, Dudák J, Tymlová V, Žemlička J, Kust A, Zima J, Nováková E, Jehlička J. 2023. Gypsum endolithic phototrophs under moderate climate (Southern Sicily): Their diversity and pigment composition. Front Microbiol, 14: 1175066

    Article  Google Scholar 

  • Niles P B, Michalski J. 2009. Meridiani Planum sediments on Mars formed through weathering in massive ice deposits. Nat Geosci, 2: 215–220

    Article  CAS  Google Scholar 

  • Niles P B, Michalski J, Ming D W, Golden D C. 2017. Elevated olivine weathering rates and sulfate formation at cryogenic temperatures on Mars. Nat Commun, 8: 998

    Article  Google Scholar 

  • Noe Dobrea E Z, Bishop J L, McKeown N K, Fu R, Rossi C M, Michalski J R, Heinlein C, Hanus V, Poulet F, Mustard R J F, Murchie S, McEwen A S, Swayze G, Bibring J P, Malaret E, Hash C. 2010. Mineralogy and stratigraphy of phyllosilicate-bearing and dark mantling units in the greater Mawrth Vallis/west Arabia Terra area: Constraints on geological origin. J Geophys Res-Planet, 115: 2009JE003351

    Article  Google Scholar 

  • O’Donnell A E, Muirhead D K, Brasier A T, Capezzuoli E. 2024. Searching for life in hot spring carbonate systems: Investigating Raman spectra of carotenoid-bearing organic carbonaceous inclusions from travertines of Italy. Astrobiology, 24: 163–176

    Article  Google Scholar 

  • O’Neill P M. 2010. Badhwar-O’Neill 2010 galactic cosmic ray flux model—Revised. IEEE Trans Nucl Sci, 57: 3148

    Google Scholar 

  • Omelon C R. 2008. Endolithic microbial communities in polar desert habitats. GeoMicrobiol J, 25: 404–414

    Article  Google Scholar 

  • Oppenheimer C, Scaillet B, Martin R S. 2011. Sulfur degassing from volcanoes: Source conditions, surveillance, plume chemistry and earth system impacts. Rev Mineral Geochem, 73: 363–421

    Article  CAS  Google Scholar 

  • Panieri G, Lugli S, Manzi V, Palinska K A, Roveri M. 2008. Microbial communities in Messinian evaporite deposits of the Vena del Gesso (northern Apennines, Italy). Stratigraphy, 5: 343–352

    Article  Google Scholar 

  • Panieri G, Lugli S, Manzi V, Roveri M, Schreiber B C, Palinska K A. 2010. Ribosomal RNA gene fragments from fossilized cyanobacteria identified in primary gypsum from the late Miocene, Italy. Geobiology, 8: 101–111

    Article  CAS  Google Scholar 

  • Parnell J, Lee P, Cockell C S, Osinski G R. 2004. Microbial colonization in impact-generated hydrothermal sulphate deposits, Haughton impact structure, and implications for sulphates on Mars. Int J AstroBiol, 3: 247–256

    Article  CAS  Google Scholar 

  • Pellegrino L, Natalicchio M, Abe K, Jordan R W, Longo S E F, Ferrando S, Carnevale G, Pierre F D. 2021. Tiny, glassy, and rapidly trapped: The nano-sized planktic diatoms in Messinian (late Miocene) gypsum. Geology, 49: 1369–1374

    Article  CAS  Google Scholar 

  • Pérez-Fodich A, Reich M, Álvarez F, Snyder G T, Schoenberg R, Vargas G, Muramatsu Y, Fehn U. 2014. Climate change and tectonic uplift triggered the formation of the Atacama Desert’s giant nitrate deposits. Geology, 42: 251–254

    Article  Google Scholar 

  • Picard A, Gartman A, Girguis P R. 2021. Interactions between iron sulfide minerals and organic carbon: Implications for biosignature preservation and detection. Astrobiology, 21: 587–604

    Article  CAS  Google Scholar 

  • Pillay V, Gärtner R S, Himawan C, Seckler M M, Lewis A E, Witkamp G J. 2005. MgSO4+H2O System at Eutectic Conditions and Thermodynamic Solubility Products of MgSO4·12H2O(s) and MgSO4·7H2O(s). J Chem Eng Data, 50: 551–555

    Article  CAS  Google Scholar 

  • Piochi M, Mormone A, Balassone G. 2019. Hydrothermal alteration environments and recent dynamics of the Ischia volcanic island (southern Italy): Insights from repeated field, mineralogical and geochemical surveys before and after the 2017 Casamicciola earthquake. J Volcanol Geotherm Res, 376: 104–124

    Article  CAS  Google Scholar 

  • Pitman K M, Noe Dobrea E Z, Jamieson C S, Dalton J B, Abbey W J, Joseph E C S. 2014. Reflectance spectroscopy and optical functions for hydrated Fe-sulfates. Am Mineral, 99: 1593–1603

    Article  Google Scholar 

  • Pointing S B, Belnap J. 2012. Microbial colonization and controls in dryland systems. Nat Rev Microbiol, 10: 551–562

    Article  CAS  Google Scholar 

  • Ponnamperuma C, Shimoyama A, Friebele E. 1982. Clay and the origin of life. Origins Life Evol Biosphere, 12: 9–40

    Article  CAS  Google Scholar 

  • Post F J. 1977. The microbial ecology of the Great Salt Lake. Microb Ecol, 3: 143–165

    Article  CAS  Google Scholar 

  • Qin X, Ren X, Wang X, Liu J, Wu H, Zeng X, Sun Y, Chen Z, Zhang S, Zhang Y, Chen W, Liu B, Liu D, Guo L, Li K, Zeng X, Huang H, Zhang Q, Yu S, Li C, Guo Z. 2023. Modern water at low latitudes on Mars: Potential evidence from dune surfaces. Sci Adv, 9: eadd8868

    Article  CAS  Google Scholar 

  • Rampe E B, Bristow T F, Morris R V, Morrison S M, Achilles C N, Ming D W, Vaniman D T, Blake D F, Tu V M, Chipera S J, Yen A S, Peretyazhko T S, Downs R T, Hazen R M, Treiman A H, Grotzinger J P, Castle N, Craig P I, Des Marais D J, Thorpe M T, Walroth R C, Downs G W, Fraeman A A, Siebach K L, Gellert R, Lafuente B, McAdam A C, Meslin P Y, Sutter B, Salvatore M R. 2020. Mineralogy of vera Rubin Ridge from the Mars science laboratory CheMin instrument. J Geophys Res-Planet, 125: e2019JE006306

    Article  CAS  Google Scholar 

  • Ramirez R M, Craddock R A. 2018. The geological and climatological case for a warmer and wetter early Mars. Nat Geosci, 11: 230–237

    Article  CAS  Google Scholar 

  • Randall S P, Vera M K. 2004. Biological and organic constituents of desert varnish: Review and new hypotheses. In: Instruments, Methods, and Missions for Astrobiology VII. San Diego. 202–217

    Google Scholar 

  • Rech J A, Quade J, Hart W S. 2003. Isotopic evidence for the source of Ca and S in soil gypsum, anhydrite and calcite in the Atacama Desert, Chile. Geochim Cosmochim Acta, 67: 575–586

    Article  CAS  Google Scholar 

  • Rieder R, Gellert R, Anderson R C, Bruckner J, Clark B C, Dreibus G, Economou T, Klingelhofer G, Lugmair G W, Ming D W, Squyres S W, d’Uston C, Wanke H, Yen A, Zipfel J. 2004. Chemistry of rocks and soils at Meridiani planum from the alpha particle X-ray spectrometer. Science, 306: 1746–1749

    Article  CAS  Google Scholar 

  • Röling W F M, Aerts J W, Patty C H L, ten Kate I L, Ehrenfreund P, Direito S O L. 2015. The significance of microbe-mineral-biomarker interactions in the detection of life on Mars and beyond. Astrobiology, 15: 492–507

    Article  Google Scholar 

  • Rose C V, Webb S M, Newville M, Lanzirotti A, Richardson J A, Tosca N J, Catalano J G, Bradley A S, Fike D A. 2019. Insights into past ocean proxies from micron-scale mapping of sulfur species in carbonates. Geology, 47: 833–837

    Article  CAS  Google Scholar 

  • Rouchy J, Monty C. 2000. Gypsum Microbial Sediments: Neogene and Modern Examples. In: Microbial sediments. Berlin Heidelberg: Springer. 209–216

    Chapter  Google Scholar 

  • Ruff S W, Christensen P R. 2002. Bright and dark regions on Mars: Particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. J Geophys Res-Planet, 107: 2–1

    Article  Google Scholar 

  • Scheller E, Razzell Hollis J, Cardarelli E, Steele A, Beegle L, Bhartia R, Conrad P, Uckert K, Sharma S, Ehlmann B. 2022. First-Results from the Perseverance SHERLOC Investigation: Aqueous Alteration Processes and Implications for Organic Geochemistry in Jezero Crater, Mars. LPI Contributions, 2678: 1652

    Google Scholar 

  • Schiffman P, Zierenberg R, Marks N, Bishop J L, Dyar M D. 2006. Acid-fog deposition at Kilauea volcano: A possible mechanism for the formation of siliceous-sulfate rock coatings on Mars. Geology, 34: 921–924

    Article  CAS  Google Scholar 

  • Schopf J W, Farmer J D, Foster I S, Kudryavtsev A B, Gallardo V A, Espinoza C. 2012. Gypsum-permineralized microfossils and their relevance to the search for life on Mars. Astrobiology, 12: 619–633

    Article  CAS  Google Scholar 

  • Schreder-Gomes S I, Benison K C, Bernau J A. 2022. 830-million-year-old microorganisms in primary fluid inclusions in halite. Geology, 50: 918–922

    Article  CAS  Google Scholar 

  • Schulze-Makuch D, Dohm J, Fan C, Fairen A, Rodriguez J, Baker V, Fink W. 2007. Exploration of hydrothermal targets on Mars. Icarus, 189: 308–324

    Article  Google Scholar 

  • Seeger C H, Grotzinger J P. 2024. Diagenesis of the clay-sulfate stratigraphic transition, mount sharp group, Gale Crater, Mars. J Geophys Res-Planet, 129: e2024JE008531

    Article  CAS  Google Scholar 

  • Settle M. 1979. Formation and deposition of volcanic sulfate aerosols on Mars. J Geophys Res. Solid Earth, 84: 8343–8354

    CAS  Google Scholar 

  • Shen J X, Chen Y, Sun Y, Liu L, Pan Y X, Lin W. 2022. Detection of biosignatures in terrestrial Mars analogs: Strategical and technical assessments. Earth Planet Phys, 6: 0

    Article  Google Scholar 

  • Sheppard R Y, Thorpe M T, Fraeman A A, Fox V K, Milliken R E. 2021. Merging perspectives on secondary minerals on Mars: A review of ancient water-rock interactions in Gale Crater inferred from orbital and in-situ observations. Minerals, 11: 986

    Article  CAS  Google Scholar 

  • Sholes S F, Dickeson Z I, Montgomery D R, Catling D C. 2021. Where are Mars’ hypothesized ocean shorelines? Large lateral and topographic offsets between different versions of paleoshoreline maps. J Geophys Res-Planets, 126: e2020JE006486

    Article  Google Scholar 

  • Simpson J A. 1983. Elemental and isotopic composition of the galactic cosmic rays. Annu Rev Nucl Part Sci, 33: 323–382

    Article  CAS  Google Scholar 

  • Sklute E C, Rogers A D, Gregerson J C, Jensen H B, Reeder R J, Dyar M D. 2018. Amorphous salts formed from rapid dehydration of multi-component chloride and ferric sulfate brines: Implications for Mars. Icarus, 302: 285–295

    Article  CAS  Google Scholar 

  • Skousen J G, Ziemkiewicz P F, McDonald L M. 2019. Acid mine drainage formation, control and treatment: Approaches and strategies. Extractive Industries Soc, 6: 241–249

    Article  Google Scholar 

  • Squyres S W, Arvidson R E, Bell III J F, Bruckner J, Cabrol N A, Calvin W, Carr M H, Christensen P R, Clark B C, Crumpler L, Marais D J D, d’Uston C, Economou T, Farmer J, Farrand W, Folkner W, Golombek M, Gorevan S, Grant J A, Greeley R, Grotzinger J, Haskin L, Herkenhoff K E, Hviid S, Johnson J, Klingelhofer G, Knoll A H, Landis G, Lemmon M, Li R, Madsen M B, Malin M C, McLennan S M, McSween H Y, Ming D W, Moersch J, Morris R V, Parker T, Rice Jr. J W, Richter L, Rieder R, Sims M, Smith M, Smith P, Soderblom L A, Sullivan R, Wanke H, Wdowiak T, Wolff M, Yen A. 2004a. The opportunity rover’s Athena science investigation at Meridiani planum, Mars. Science, 306: 1698–1703

    Article  CAS  Google Scholar 

  • Squyres S W, Grotzinger J P, Arvidson R E, Bell III J F, Calvin W, Christensen P R, Clark B C, Crisp J A, Farrand W H, Herkenhoff K E, Johnson J R, Klingelhofer G, Knoll A H, McLennan S M, McSween Jr. H Y, Morris R V, Rice Jr. J W, Rieder R, Soderblom L A. 2004b. In situ evidence for an ancient aqueous environment at Meridiani planum, Mars. Science, 306: 1709–1714

    Article  CAS  Google Scholar 

  • Squyres S W, Knoll A H. 2005. Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars. Earth Planet Sci Lett, 240: 1–10

    Article  CAS  Google Scholar 

  • Steele A, Benning L G, Wirth R, Siljeström S, Fries M D, Hauri E, Conrad P G, Rogers K, Eigenbrode J, Schreiber A, Needham A, Wang J H, McCubbin F M, Kilcoyne D, Rodriguez Blanco J D. 2018. Organic synthesis on Mars by electrochemical reduction of CO2. Sci Adv, 4: eaat5118

    Article  CAS  Google Scholar 

  • Stern J C, Malespin C A, Eigenbrode J L, Webster C R, Flesch G, Franz H B, Graham H V, House C H, Sutter B, Archer Jr. P D, Hofmann A E, McAdam A C, Ming D W, Navarro-Gonzalez R, Steele A, Freissinet C, Mahaffy P R. 2022. Organic carbon concentrations in 3.5-billion-year-old lacustrine mudstones of Mars. Proc Natl Acad Sci USA, 119: e2201139119

    Article  CAS  Google Scholar 

  • Stevenson A, Cray J A, Williams J P, Santos R, Sahay R, Neuenkirchen N, Mcclure C D, Grant I R, Houghton J D R, Quinn J P, Timson D J, Patil S V, Singhal R S, Antón J, Dijksterhuis J, Hocking A D, Lievens B, Rangel D E N, Voytek M A, Gunde-Cimerman N, Oren A, Timmis K N, Mcgenity T J, Hallsworth J E. 2015. Is there a common water-activity limit for the three domains of life? ISME J, 9: 1333–1351

    Article  CAS  Google Scholar 

  • Stevenson A, Hamill P G, O’Kane C J, Kminek G, Rummel J D, Voytek M A, Dijksterhuis J, Hallsworth J E. 2017. Aspergillus penicillioides differentiation and cell division at 0.585 water activity. Environ Microbiol, 19: 687–697

    Article  CAS  Google Scholar 

  • Stivaletta N, López-García P, Boihem L, Millie D F, Barbieri R. 2010. Biomarkers of endolithic communities within gypsum crusts (southern Tunisia). GeoMicrobiol J, 27: 101–110

    Article  CAS  Google Scholar 

  • Summons R E, Sessions A L, Allwood A C, Barton H A, Beaty D W, Blakkolb B, Canham J, Clark B C, Dworkin J P, Lin Y, Mathies R, Milkovich S M, Steele A. 2014. Planning considerations related to the organic contamination of Martian samples and implications for the Mars 2020 rover. Astrobiology, 14: 969–1027

    Article  CAS  Google Scholar 

  • Sun Y, Li Y, Li L, He H. 2019. Preservation of cyanobacterial UVR-shielding pigment scytonemin in carbonate ooids formed in Pleistocene salt lakes in the Qaidam basin, Tibetan Plateau. Geophys Res Lett, 46: 10375–10383

    Article  Google Scholar 

  • Szopa C, Freissinet C, Glavin D P, Millan M, Buch A, Franz H B, Summons R E, Sumner D Y, Sutter B, Eigenbrode J L, Williams R H, Navarro-González R, Guzman M, Malespin C, Teinturier S, Mahaffy P R, Cabane M. 2020. First detections of dichlorobenzene isomers and trichloromethylpropane from organic matter indigenous to Mars mudstone in Gale crater, Mars: Results from the sample analysis at Mars instrument onboard the Curiosity rover. Astrobiology, 20: 292–306

    Article  CAS  Google Scholar 

  • Tamenori Y, Yoshimura T, Luan N T, Hasegawa H, Suzuki A, Kawahata H, Iwasaki N. 2014. Identification of the chemical form of sulfur compounds in the Japanese pink coral (Corallium elatius) skeleton using μ-XRF/XAS speciation mapping. J Struct Biol, 186: 214–223

    Article  CAS  Google Scholar 

  • Tanaka K L. 1986. The stratigraphy of Mars. J Geophys Res. Solid Earth, 91: E139–E158

    Google Scholar 

  • Tang M, Ehreiser A, Li Y L. 2014. Gypsum in modern Kamchatka volcanic hot springs and the Lower Cambrian black shale: Applied to the microbial-mediated precipitation of sulfates on Mars. Am Mineral, 99: 2126–2137

    Article  Google Scholar 

  • Tang M, Li Y L. 2020. A complex assemblage of crystal habits of pyrite in the volcanic hot springs from Kamchatka, Russia: Implications for the mineral signature of life on Mars. Crystals, 10: 535

    Article  CAS  Google Scholar 

  • Thompson J B, Ferris F G. 1990. Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology, 18: 995–998

    Article  CAS  Google Scholar 

  • Tosca N J, McLennan S M, Lindsley D H, Schoonen M A A. 2004. Acid-sulfate weathering of synthetic Martian basalt: The acid fog model revisited. J Geophys Res-Planet, 109: 2003JE002218

    Article  Google Scholar 

  • Trong Nguyen L, Rahman M A, Maki T, Tamenori Y, Yoshimura T, Suzuki A, Iwasaki N, Hasegawa H. 2014. Distribution of trace element in Japanese red coral Paracorallium japonicum by μ-XRF and sulfur speciation by XANES: Linkage between trace element distribution and growth ring formation. Geochim Cosmochim Acta, 127: 1–9

    Article  CAS  Google Scholar 

  • Vai G B, Lucchi F. 1976. The vena del gesso in northern Apennines: Growth and mechanical breakdown of gypsified algal crusts. Mem Soc Geol It., 16: 217–249

    Google Scholar 

  • Vaniman D T, Bish D L, Chipera S J, Fialips C I, William Carey J, Feldman W C. 2004. Magnesium sulphate salts and the history of water on Mars. Nature, 431: 663–665

    Article  CAS  Google Scholar 

  • Vaniman D T, Bish D L, Ming D W, Bristow T F, Morris R V, Blake D F, Chipera S J, Morrison S M, Treiman A H, Rampe E B, et al. 2014. Mineralogy of a mudstone at yellowknife bay, Gale Crater, Mars. Science, 343: 1243480

    Article  CAS  Google Scholar 

  • Vaniman D T, Martínez G M, Rampe E B, Bristow T F, Blake D F, Yen A S, Ming D W, Rapin W, Meslin P Y, Morookian J M, Downs R T, Chipera S J, Morris R V, Morrison S M, Treiman A H, Achilles C N, Robertson K, Grotzinger J P, Hazen R M, Wiens R C, Sumner D Y. 2018. Gypsum, bassanite, and anhydrite at Gale crater, Mars. Am Mineral, 103: 1011–1020

    Article  Google Scholar 

  • Vasiliev I, Mezger E M, Lugli S, Reichart G J, Manzi V, Roveri M. 2017. How dry was the Mediterranean during the Messinian salinity crisis? Palaeogeogr Palaeoclimatol Palaeoecol, 471: 120–133

    Article  Google Scholar 

  • Vítek P, Ascaso C, Artieda O, Casero M C, Wierzchos J. 2017. Discovery of carotenoid red-shift in endolithic cyanobacteria from the Atacama Desert. Sci Rep, 7: 11116

    Article  Google Scholar 

  • Vítek P, Ascaso C, Artieda O, Casero M C, Wierzchos J. 2020. Raman imaging of microbial colonization in rock—some analytical aspects. Anal Bioanal Chem, 412: 3717–3726

    Article  Google Scholar 

  • Vítek P, Jehlička J, Ascaso C, Mašek V, Gómez-Silva B, Olivares H, Wierzchos J. 2014. Distribution of scytonemin in endolithic microbial communities from halite crusts in the hyperarid zone of the Atacama Desert, Chile. FEMS Microbiol Ecol, 90: 351

    Google Scholar 

  • Vogel M B, Des Marais D J, Parenteau M N, Jahnke L L, Turk K A, Kubo M D Y. 2010. Biological influences on modern sulfates: Textures and composition of gypsum deposits from Guerrero Negro, Baja California Sur, Mexico. Sediment Geol, 223: 265–280

    Article  CAS  Google Scholar 

  • Voigt C, Klipsch S, Herwartz D, Chong G, Staubwasser M. 2020. The spatial distribution of soluble salts in the surface soil of the Atacama Desert and their relationship to hyperaridity. Glob Planet Change, 184: 103077

    Article  Google Scholar 

  • Vreeland R H, Rosenzweig W D, Powers D W. 2000. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature, 407: 897–900

    Article  CAS  Google Scholar 

  • Walker J J, Pace N R. 2007. Endolithic microbial ecosystems. Annu Rev Microbiol, 61: 331–347

    Article  CAS  Google Scholar 

  • Wang A, Feldman W C, Mellon M T, Zheng M. 2013. The preservation of subsurface sulfates with mid-to-high degree of hydration in equatorial regions on Mars. Icarus, 226: 980–991

    Article  CAS  Google Scholar 

  • Wang A, Haskin L A, Squyres S W, Jolliff B L, Crumpler L, Gellert R, Schröder C, Herkenhoff K, Hurowitz J, Tosca N J, Farrand W H, Anderson R, Knudson A T. 2006. Sulfate deposition in subsurface regolith in Gusev crater, Mars. J Geophys Res-Planet, 111: 2005JE002513

    Article  Google Scholar 

  • Wang A, Ling Z C. 2011. Ferric sulfates on Mars: A combined mission data analysis of salty soils at Gusev crater and laboratory experimental investigations. J Geophys Res-Planet, 116: E00F17

    Google Scholar 

  • Wang F, Michalski G, Seo J H, Granger D E, Lifton N, Caffee M. 2015. Beryllium-10 concentrations in the hyper-arid soils in the Atacama Desert, Chile: Implications for arid soil formation rates and El Niño driven changes in Pliocene precipitation. Geochim Cosmochim Acta, 160: 227–242

    Article  CAS  Google Scholar 

  • Wang J, Zhao J, Xiao L, Peng S, Zhang L, Zhang Z, Gao A, Qiao H, Wang L, Zhang S, Xiao X, Shi Y, Zhao S, Zhao J, Qian Y, Zhang J, Zhang X, Huang J. 2023. Recent aqueous activity on Mars evidenced by transverse aeolian ridges in the Zhurong exploration region of Utopia Planitia. Geophys Res Lett, 50: e2022GL101650

    Article  CAS  Google Scholar 

  • Wang J Y, Liu C L. 2016. Reviews on ancient halophilic microbes in halite fluid inclusions (in Chinese). Adv Earth Sci. 31: 1220–1227

    Google Scholar 

  • Warren J. 2018. Evaporites. In: White, W M (ed.) Encyclopedia of Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth. Cham: Springer International Publishing

    Google Scholar 

  • Weitz C M, Noe Dobrea E, Wray J J. 2015. Mixtures of clays and sulfates within deposits in western Melas Chasma, Mars. Icarus, 251: 291–314

    Article  CAS  Google Scholar 

  • Wen H, Xu W, Li Y, You Y, Luo X. 2019. Siliceous-sulphate rock coatings at Zhenzhu Spring, Tengchong, China: The integrated product of acid-fog deposition, spring water capillary action, and dissolution. Geol Mag, 157: 201–212

    Article  Google Scholar 

  • Westall F, Foucher F, Bost N, Bertrand M, Loizeau D, Vago J L, Kminek G, Gaboyer F, Campbell K A, Bréhéret J G, Gautret P, Cockell C S. 2015. Biosignatures on Mars: What, where, and how? Implications for the search for Martian life. Astrobiology, 15: 998–1029

    Article  Google Scholar 

  • Wierzchos J, Artieda O, Ascaso C, Nieto García F, Vítek P, Azua-Bustos A, Fairén A G. 2020. Crystalline water in gypsum is unavailable for cyanobacteria in laboratory experiments and in natural desert endolithic habitats. Proc Natl Acad Sci USA, 117: 27786–27787

    Article  CAS  Google Scholar 

  • Wierzchos J, Casero M C, Artieda O, Ascaso C. 2018. Endolithic microbial habitats as refuges for life in polyextreme environment of the Atacama Desert. Curr Opin Microbiol, 43: 124–131

    Article  Google Scholar 

  • Wierzchos J, DiRuggiero J, Vítek P, Artieda O, Souza-Egipsy V, Škaloud P, Tisza M, Davila A F, Vílchez C, Garbayo I, Ascaso C. 2015. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front Microbiol, 6: 934

    Article  Google Scholar 

  • Williams R B G, Robinson D A. 1981. Weathering of sandstone by the combined action of frost and salt. Earth Surf Processes Landf, 6: 1–9

    Article  CAS  Google Scholar 

  • Wray J, Milliken R, Swayze G, Dundas C, Bishop J, Murchie S, Seelos F, Squyres S. 2009a. Columbus Crater and Other Possible Paleolakes in Terra Sirenum, Mars. In: 40th Annual Lunar and Planetary Science Conference. Texas. 1896

    Google Scholar 

  • Wray J J, Ehlmann B L, Squyres S W, Mustard J F, Kirk R L. 2008. Compositional stratigraphy of clay-bearing layered deposits at Mawrth Vallis, Mars. Geophys Res Lett, 35: 2008GL034385

    Article  Google Scholar 

  • Wray J J, Noe Dobrea E Z, Arvidson R E, Wiseman S M, Squyres S W, McEwen A S, Mustard J F, Murchie S L. 2009b. Phyllosilicates and sulfates at Endeavour Crater, Meridiani planum, Mars. Geophys Res Lett, 36: 2009GL040734

    Article  Google Scholar 

  • Wray J J, Squyres S W, Roach L H, Bishop J L, Mustard J F, Noe Dobrea E Z. 2010. Identification of the Ca-sulfate bassanite in Mawrth Vallis, Mars. Icarus, 209: 416–421

    Article  CAS  Google Scholar 

  • Wrence L, Hardie A, Eugster H. 1970. The evolution of closed-basin brines. Mineral. Soc. Amer. Spec. Pap, 3: 273–290

    Google Scholar 

  • Wu M H, Zhang G S, Chen T, Liu G X, Zhang W. 2017. Advance in lithophilous microorganisms (in Chinese). J Microbiol. 37: 64–73

    Google Scholar 

  • Wu X, Liu Y, Zhang C, Wu Y, Zhang F, Du J, Liu Z, Xing Y, Xu R, He Z, Lin Y, Zou Y. 2021. Geological characteristics of China’s Tianwen-1 landing site at Utopia Planitia, Mars. Icarus, 370: 114657

    Article  Google Scholar 

  • Wynn-Williams D D, Edwards H G M. 2000. Proximal analysis of regolith habitats and protective biomolecules in situ by laser Raman spectroscopy: Overview of terrestrial Antarctic habitats and Mars analogs. Icarus, 144: 486–503

    Article  CAS  Google Scholar 

  • Xiao L, Wang J, Dang Y, Cheng Z, Huang T, Zhao J, Xu Y, Huang J, Xiao Z, Komatsu G. 2017. A new terrestrial analogue site for Mars research: The Qaidam Basin, Tibetan Plateau (NW China). Earth-Sci Rev, 164: 84–101

    Article  CAS  Google Scholar 

  • Xu H, Liu Q, Zhu D, Peng W, Meng Q, Wang J, Shi J, Jin Z. 2022. Molecular evidence reveals the presence of hydrothermal effect on ultra-deep-preserved organic compounds. Chem Geol, 608: 121045

    Article  CAS  Google Scholar 

  • Yan Y, Yang H. 2024. Interactions of clay minerals with biomolecules and protocells complex structures in the origin of life: A review. Adv Funct Mater, 34: 2406210

    Article  CAS  Google Scholar 

  • Yang J, Zheng D, Wu Y, Chen H, Yang L, Zhang B. 2024. Mars exploration—In situ K-Ar dating of jarosite. Sci China Earth Sci, 67: 641–656

    Article  CAS  Google Scholar 

  • Yen A S, Ming D W, Vaniman D T, Gellert R, Blake D F, Morris R V, Morrison S M, Bristow T F, Chipera S J, Edgett K S, Treiman A H, Clark B C, Downs R T, Farmer J D, Grotzinger J P, Rampe E B, Schmidt M E, Sutter B, Thompson L M. 2017. Multiple stages of aqueous alteration along fractures in mudstone and sandstone strata in Gale Crater, Mars. Earth Planet Sci Lett, 471: 186–198

    Article  CAS  Google Scholar 

  • Yuan J, Huo C, Cai K. 1983. The high mountain-deep basin saline environment—A new genetic model of salt deposits. Geological Review, 29: 159–165

    Google Scholar 

  • Zhang B S, Zhao Z, Han C Y, Sun W F, Li Q, Li H L. 2005. Research summary of sequence stratigraphy in salt-lake basin (in Chinese). Northwestern Geology, 38: 94–99

    Google Scholar 

  • Zhang, X F, Zheng, M P, 2017. Research progress of salt minerals in Qinghai-Tibetan Plateau (in Chinese). Sci Technol Rev, 35: 72–76

    Google Scholar 

  • Zhao J, Xiao Z, Huang J, Head J W, Wang J, Shi Y, Wu B, Wang L. 2021. Geological characteristics and targets of high scientific interest in the Zhurong landing region on Mars. Geophys Res Lett, 48: e2021GL094903

    Article  Google Scholar 

  • Zhao Y Y S, Yu J, Wei G, Pan L, Liu X, Lin Y, Liu Y, Sun C, Wang X, Wang J, Xu W, Rao Y, Xu W, Sun T, Chen F, Zhang B, Lin H, Zhang Z, Hu S, Li X Y, Yu X W, Qu S Y, Zhou D S, Wu X, Zeng X, Li X, Tang H, Liu J. 2023. In situ analysis of surface composition and meteorology at the Zhurong landing site on Mars. Natl Sci Rev, 10: nwad056

    Article  CAS  Google Scholar 

  • Zhao Y Y S, Zhou D S, Li X Y, Liu J Z, Wang S J, Ouyang Z Y. 2020. The evolution of scientific goals for Mars exploration and future prospects (in Chinese). Chin Sci Bull, 2020, 65: 2439–2453

    Google Scholar 

  • Zheng M P, Zhang Y, Liu X, Qi W, Kong F, Nie Z, Pu L, Hou X, Wang H, Zhang Z, Kong W, Lin Y. 2016. Progress and prospects of salt lake research in China. Acta Geol Sin-Engl Ed, 90: 1195–1235

    Article  Google Scholar 

  • Zhou D S, Yu X W, Chang R, Zhao Y Y S, Li X, Liu J, Lin H, Qi C. 2022. Effects of formation pathways and bromide incorporation on jarosite dissolution rates: Implications for Mars. J Geophys Res-Planet, 127: e2022JE007202

    Article  CAS  Google Scholar 

  • Zolotov M Y, Shock E L. 2005. Formation of jarosite-bearing deposits through aqueous oxidation of pyrite at Meridiani Planum, Mars. Geophys Res Lett, 32: 2005GL024253

    Article  Google Scholar 

  • Zimbelman D R, Rye R O, Breit G N. 2005. Origin of secondary sulfate minerals on active andesitic stratovolcanoes. Chem Geol, 215: 37–60

    Article  CAS  Google Scholar 

  • Ziolkowski L A, Mykytczuk N C S, Omelon C R, Johnson H, Whyte L G, Slater G F. 2013. Arctic gypsum endoliths: A biogeochemical characterization of a viable and active microbial community. Biogeosciences, 10: 7661–7675

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank Prof. Wei LIN from the Institute of Geology and Geophysics, Chinese Academy of Sciences, for his invaluable suggestions during the preparation of this study. We are also grateful to Miaosen XIA, a Ph.D. candidate at China University of Geosciences (Wuhan), for his assistance with the Martian sulfate-related sections. Additionally, we deeply appreciate the constructive comments and suggestions provided by the two anonymous reviewers, which significantly improved the quality of this work. This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFF0504000), the National Natural Science Foundation of China (Grant No. 42272274), the National Key Research and Development Program of China (Grant No. 2021YFA0716100), the Natural Science Foundation of Hubei Province (Grant No. 2024AFB692), and the Macao Science and Technology Development Fund (FDCT) (Grant No. 0052/2024/RIA1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Huang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Huang, T., Zhao, J. et al. Preservation characteristics of biosignatures in sulfates and their implications for the search for life on Mars. Sci. China Earth Sci. 68, 2867–2890 (2025). https://doi.org/10.1007/s11430-024-1645-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11430-024-1645-5

Keywords