Abstract
Sulfate minerals are widely distributed across various geological settings on Earth and provide critical insights into a range of geochemical processes and environmental evolution. Both modern and ancient sulfates possess exceptional potential for preserving biosignatures. Recent studies utilizing remote sensing and in situ exploration techniques have identified extensive sulfate-bearing deposits on the Martian surface. Investigating the habitability and the potential for biosignature preservation in these regions is a key focus in the search for life on Mars. Therefore, this review synthesizes the types, distribution, and formation environments of terrestrial sulfate minerals and summarizes the occurrence and preservation characteristics of biosignatures within both modern and ancient terrestrial sulfates. In light of the current understanding of the occurrence of Martian sulfates, the study further explores the potential for biosignature preservation within Martian sulfate deposits. Finally, drawing on results from current in situ life-detection missions and the objectives of forthcoming Mars sample return missions, this paper provides scientific recommendations for biosignature detection strategies and landing site selection in future Mars exploration missions.
Similar content being viewed by others
References
Acuna M H, Connerney J E P, Wasilewski P, Lin R P, Anderson K A, Carlson C W, McFadden J, Curtis D W, Mitchell D, Reme H, Mazelle C, Sauvaud J A, d’Uston C, Cros A, Medale J L, Bauer S J, Cloutier P, Mayhew M, Winterhalter D, Ness N F. 1998. Magnetic field and plasma observations at Mars: Initial results of the Mars global surveyor mission. Science, 279: 1676–1680
Africano F, Bernard A. 2000. Acid alteration in the fumarolic environment of Usu volcano, Hokkaido, Japan. J Volcanol Geotherm Res, 97: 475–495
Akcil A, Koldas S. 2006. Acid Mine Drainage (AMD): Causes, treatment and case studies. J Clean Prod, 14: 1139–1145
Alberini A, Fornaro T, García-Florentino C, Biczysko M, Poblacion I, Aramendia J, Madariaga J M, Poggiali G, Vicente-Retortillo Á, Benison K C, Siljeström S, Biancalani S, Lorenz C, Cloutis E A, Applin D M, Gómez F, Steele A, Wiens R C, Hand K P, Brucato J R. 2024. Investigating the stability of aromatic carboxylic acids in hydrated magnesium sulfate under UV irradiation to assist detection of organics on Mars. Sci Rep, 14: 15945
Allwood A C, Burch I W, Rouchy J M, Coleman M. 2013. Morphological biosignatures in gypsum: Diverse formation processes of Messinian (∼6.0 Ma) gypsum stromatolites. Astrobiology, 13: 870–886
Alpers C N, Jambor J L, Nordstrom D. 2018. Sulfate Minerals. In: Crystallography, Geochemistry, and Environmental Significance. Berlin: Walter de Gruyter GmbH & Co KG
Alpers C N, Maenz C, Nordstrom D, Erd R, Thompson J. 1991. Storage of metals and acidity by iron-sulfate minerals associated with extremely acidic mine waters, Iron Mountain, California. Geol Soc Am Ann Mtg A, 382
Altheide T, Chevrier V, Nicholson C, Denson J. 2009. Experimental investigation of the stability and evaporation of sulfate and chloride brines on Mars. Earth Planet Sci Lett, 282: 69–78
Amils R. 2016. Lessons learned from thirty years of geomicrobiological studies of Río Tinto. Res Microbiol, 167: 539–545
Amils R, Escudero C, Oggerin M, Puente Sánchez F, Arce Rodríguez A, Fernández Remolar D, Rodríguez N, García Villadangos M, Sanz J L, Briones C, Sánchez-Román M, Gómez F, Leandro T, Moreno-Paz M, Prieto-Ballesteros O, Molina A, Tornos F, Sánchez-Andrea I, Timmis K, Pieper D H, Parro V. 2023. Coupled C, H, N, S and Fe biogeochemical cycles operating in the continental deep subsurface of the Iberian Pyrite Belt. Environ Microbiol, 25: 428–453
Amils R, Fernández-Remolar D, The IPBSL Team D. 2014. Rio Tinto: A geochemical and mineralogical terrestrial analogue of Mars. Life, 4: 511–534
Amils R, González-Toril E, Fernández-Remolar D, Gómez F, Aguilera Á, Rodríguez N, Malki M, García-Moyano A, Fairén A G, de la Fuente V, Luis Sanz J. 2007. Extreme environments as Mars terrestrial analogs: The Rio Tinto case. Planet Space Sci, 55: 370–381
Ansari A H. 2023. Detection of organic matter on Mars, results from various Mars missions, challenges, and future strategy: A review. Front Astron Space Sci, 10: 1075052
Aref M A M. 1998. Holocene stromatolites and microbial laminites associated with lenticular gypsum in a marine-dominated environment, Ras El Shetan area, Gulf of Aqaba, Egypt. Sedimentology, 45: 245–262
Arvidson R E, Ruff S W, Morris R V, Ming D W, Crumpler L S, Yen A S, Squyres S W, Sullivan R J, Bell III J F, Cabrol N A, Clark B C, Farrand W H, Gellert R, Greenberger R, Grant J A, Guinness E A, Herkenhoff K E, Hurowitz J A, Johnson J R, Klingelhöfer G, Lewis K W, Li R, McCoy T J, Moersch J, McSween H Y, Murchie S L, Schmidt M, Schröder C, Wang A, Wiseman S, Madsen M B, Goetz W, McLennan S M. 2008. Spirit Mars rover mission to the Columbia Hills, Gusev Crater: Mission overview and selected results from the Cumberland Ridge to Home Plate. J Geophys Res-Planet, 113: 2008JE003183
Arvidson R E, Squyres S W, Anderson R C, Bell III J F, Blaney D, Brückner J, Cabrol N A, Calvin W M, Carr M H, Christensen P R, Clark B C, Crumpler L, Des Marais D J, de Souza Jr. P A, d’Uston C, Economou T, Farmer J, Farrand W H, Folkner W, Golombek M, Gorevan S, Grant J A, Greeley R, Grotzinger J, Guinness E, Hahn B C, Haskin L, Herkenhoff K E, Hurowitz J A, Hviid S, Johnson J R, Klingelhöfer G, Knoll A H, Landis G, Leff C, Lemmon M, Li R, Madsen M B, Malin M C, McLennan S M, McSween H Y, Ming D W, Moersch J, Morris R V, Parker T, Rice Jr. J W, Richter L, Rieder R, Rodionov D S, Schröder C, Sims M, Smith M, Smith P, Soderblom L A, Sullivan R, Thompson S D, Tosca N J, Wang A, Wänke H, Ward J, Wdowiak T, Wolff M, Yen A. 2006. Overview of the Spirit Mars exploration rover mission to Gusev Crater: Landing site to backstay rock in the Columbia Hills. J Geophys Res-Planet, 111: 2005JE002499
Arvidson R E, Squyres S W, Bell III J F, Catalano J G, Clark B C, Crumpler L S, de Souza Jr. P A, Fairén A G, Farrand W H, Fox V K, Gellert R, Ghosh A, Golombek M P, Grotzinger J P, Guinness E A, Herkenhoff K E, Jolliff B L, Knoll A H, Li R, McLennan S M, Ming D W, Mittlefehldt D W, Moore J M, Morris R V, Murchie S L, Parker T J, Paulsen G, Rice J W, Ruff S W, Smith M D, Wolff M J. 2014. Ancient aqueous environments at Endeavour Crater, Mars. Science, 343: 1248097
Aubrey A, Cleaves H J, Chalmers J H, Skelley A M, Mathies R A, Grunthaner F J, Ehrenfreund P, Bada J L. 2006. Sulfate minerals and organic compounds on Mars. Geology, 34: 357–360
Baccolo G, Delmonte B, Niles P B, Cibin G, Di Stefano E, Hampai D, Keller L, Maggi V, Marcelli A, Michalski J, Snead C, Frezzotti M. 2021. Jarosite formation in deep Antarctic ice provides a window into acidic, water-limited weathering on Mars. Nat Commun, 12: 436
Baird A K, Toulmin III P, Clark B C, Rose Jr. H J, Keil K, Christian R P, Gooding J L. 1976. Mineralogic and petrologic implications of Viking geochemical results from Mars: Interim report. Science, 194: 1288–1293
Bandfield J L. 2002. Global mineral distributions on Mars. J Geophys Res-Planet, 107: 9–1
Bao H, Jenkins K A, Khachaturyan M, Diaz G C. 2004. Different sulfate sources and their post-depositional migration in Atacama soils. Earth Planet Sci Lett, 224: 577–587
Barbieri R, Stivaletta N, Marinangeli L, Ori G G. 2006. Microbial signatures in sabkha evaporite deposits of Chott el Gharsa (Tunisia) and their astrobiological implications. Planet Space Sci, 54: 726–736
Benavente D, Del Cura M a G, Garcıa-Guinea J, Sánchez-Moral S, Ordóñez S. 2004. Role of pore structure in salt crystallisation in unsaturated porous stone. J Cryst Growth, 260: 532–544
Benison K C. 2019. How to search for life in Martian chemical sediments and their fluid and solid inclusions using petrographic and spectroscopic methods. Front Environ Sci, 7: 108
Benison K C, Jagniecki E A, Edwards T B, Mormile M R, Storrie-Lombardi M C. 2008. “Hairy blobs”: Microbial suspects preserved in modern and ancient extremely acid lake evaporites. Astrobiology, 8: 807–821
Benison K C, Karmanocky F J. 2014. Could microorganisms be preserved in Mars gypsum? Insights from terrestrial examples. Geology, 42: 615–618
Benner S A, Devine K G, Matveeva L N, Powell D H. 2000. The missing organic molecules on Mars. Proc Natl Acad Sci USA, 97: 2425–2430
Berger I A, Cooke R U. 1997. The origin and distribution of salts on alluvial fans in the Atacama Desert, northern Chile. Earth Surf Proc Land, 22: 581–600
Bibring J P, Langevin Y, Gendrin A, Gondet B, Poulet F, Berthe M, Soufflot A, Arvidson R, Mangold N, Mustard J, Drossart P. 2005. Mars surface diversity as revealed by the OMEGA/Mars express observations. Science, 307: 1576–1581
Bibring J P, Langevin Y, Mustard J F, Poulet F, Arvidson R, Gendrin A, Gondet B, Mangold N, Pinet P, Forget F, Berthe M, Bibring J P, Gendrin A, Gomez C, Gondet B, Jouglet D, Poulet F, Soufflot A, Vincendon M, Combes M, Drossart P, Encrenaz T, Fouchet T, Merchiorri R, Belluci G C, Altieri F, Formisano V, Capaccioni F, Cerroni P, Coradini A, Fonti S, Korablev O, Kottsov V, Ignatiev N, Moroz V, Titov D, Zasova L, Loiseau D, Mangold N, Pinet P, Doute S, Schmitt B, Sotin C, Hauber E, Hoffmann H, Jaumann R, Keller U, Arvidson R, Mustard J F, Duxbury T, Forget F, Neukum G. 2006. Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science, 312: 400–404
Bishop J L, Dobrea E Z N, McKeown N K, Parente M, Ehlmann B L, Michalski J R, Milliken R E, Poulet F, Swayze G A, Mustard J F, Murchie S L, Bibring J P. 2008. Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars. Science, 321: 830–833
Bishop J L, Gruendler K E, Parente M, Saranathan A, Gross C. 2023. Investigating the diversity of phyllosilicates and sulfates at Mawrth Vallis, Mars and the implications for changing environmental conditions. AAS/Division Planet Sci Meet Abstract, 55: 217–206
Burns R G, Fisher D S. 1990. Iron-sulfur mineralogy of Mars: Magmatic evolution and chemical weathering products. J. Geophys. Res. Solid Earth, 95: 14415–14421
Boison G, Mergel A, Jolkver H, Bothe H. 2004. Bacterial life and dinitrogen fixation at a gypsum rock. Appl Environ Microbiol, 70: 7070–7077
Borzenko S V. 2021. The main formation processes for different types of salt lakes: Evidence from isotopic composition with case studies of lakes in Transbaikalia, Russia. Sci Total Environ, 782: 146782
Borzenko S V, Zamana L V, Usmanova L I. 2017. Basic formation mechanisms of Lake Doroninskoye soda water, East Siberia, Russia. Acta Geochim, 37: 546–558
Bosbach D, Rammensee W. 1994. In situ investigation of growth and dissolution on the (010) surface of gypsum by Scanning Force Microscopy. Geochim Cosmochim Acta, 58: 843–849
Bourrié G. 2021. Salts in Deserts. In: Joly F, Bourrié G, eds. Mankind and Deserts 2. Hoboken: Wiley. 121–137
Brack A. 2013. Clay Minerals and the Origin of Life. In: Bergaya F, Lagaly G, eds. Developments in Clay Science. Amsterdam: Elsevier. 5: 507–521
Brocks J J, Love G D, Summons R E, Knoll A H, Logan G A, Bowden S A. 2005. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature, 437: 866–870
Brocks J J, Schaeffer P. 2008. Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1640Ma Barney Creek Formation. Geochim Cosmochim Acta, 72: 1396–1414
Brown A D. 1990. Microbial water stress physiology. In: Principles and Perspectives. Hoboken: John Wiley & Sons
Buckby T, Black S, Coleman M L, Hodson M E. 2003. Fe-sulphate-rich evaporative mineral precipitates from the Río Tinto, southwest Spain. Mineral Mag, 67: 263–278
Burnie T M, Power I M, Paulo C, Alçiçek H, Falcón L I, Lin Y, Wilson S. 2023. Environmental and mineralogical controls on biosignature preservation in magnesium carbonate systems analogous to Jezero crater, Mars. Astrobiology, 23: 513–535
Cámara B, Souza-Egipsy V, Ascaso C, Artieda O, De Los Ríos A, Wierzchos J. 2016. Biosignatures and microbial fossils in endolithic microbial communities colonizing Ca-sulfate crusts in the Atacama Desert. Chem Geol, 443: 22–31
Campbell K A, Lynne B Y, Handley K M, Jordan S, Farmer J D, Guido D M, Foucher F, Turner S, Perry R S. 2015. Tracing biosignature preservation of geothermally silicified microbial textures into the geological record. Astrobiology, 15: 858–882
Cane H V, Richardson I G, Von Rosenvinge T T. 2010. The properties of cycle 23 solar energetic proton events. Amer Inst Phys, 1216: 687–690
Canfora L, Vendramin E, Vittori Antisari L, Lo Papa G, Dazzi C, Benedetti A, Iavazzo P, Adamo P, Jungblut A D, Pinzari F, Stams A. 2016. Compartmentalization of gypsum and halite associated with cyanobacteria in saline soil crusts. FEMS Microbiol Ecol, 92: fiw080
Carn S A, Fioletov V E, McLinden C A, Li C, Krotkov N A. 2017. A decade of global volcanic SO2 emissions measured from space. Sci Rep, 7: 44095
Casero M C, Meslier V, DiRuggiero J, Quesada A, Ascaso C, Artieda O, Kowaluk T, Wierzchos J. 2021. The composition of endolithic communities in gypcrete is determined by the specific microhabitat architecture. Biogeosciences, 18: 993–1007
Chaddha A S, Sharma A, Singh N K, Shamsad A, Banerjee M. 2024. Biotic-abiotic mingle in rock varnish formation: A new perspective. Chem Geol, 648: 121961
Chevrier V, Mathé P E. 2007. Mineralogy and evolution of the surface of Mars: A review. Planet Space Sci, 55: 289–314
Chevrier V F, Altheide T S. 2008. Low temperature aqueous ferric sulfate solutions on the surface of Mars. Geophys Res Lett, 35: 2008GL035489
Chipera S J, Vaniman D T, Rampe E B, Bristow T F, Martínez G, Tu V M, Peretyazhko T S, Yen A S, Gellert R, Berger J A, Rapin W, Morris R V, Ming D W, Thompson L M, Simpson S, Achilles C N, Tutolo B, Downs R T, Fraeman A A, Fischer E, Blake D F, Treiman A H, Morrison S M, Thorpe M T, Gupta S, Dietrich W E, Downs G, Castle N, Craig P I, Marais D J D, Hazen R M, Vasavada A R, Hausrath E, Sarrazin P, Grotzinger J P. 2023. Mineralogical investigation of Mg-sulfate at the Canaima drill site, Gale Crater, Mars. J Geophys Res-Planet, 128: e2023JE008041
Christensen P R, Wyatt M B, Glotch T D, Rogers A D, Anwar S, Arvidson R E, Bandfield J L, Blaney D L, Budney C, Calvin W M, Fallacaro A, Fergason R L, Gorelick N, Graff T G, Hamilton V E, Hayes A G, Johnson J R, Knudson A T, McSween Jr. H Y, Mehall G L, Mehall L K, Moersch J E, Morris R V, Smith M D, Squyres S W, Ruff S W, Wolff M J. 2004. Mineralogy at Meridiani planum from the Mini-TES experiment on the Opportunity Rover. Science, 306: 1733–1739
Christensen P R, Bandfield J L, Smith M D, Hamilton V E, Clark R N. 2000. Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data. J Geophys Res-Planet, 105: 9609–9621
Clark B C, Baird A K, Rose Jr. H J, Toulmin III P, Keil K, Castro A J, Kelliher W C, Rowe C D, Evans P H. 1976. Inorganic analyses of Martian surface samples at the Viking landing sites. Science, 194: 1283–1288
Cockell C, Catling D C, Davis W L, Snook K, Kepner R L, Lee P, Mckay C P. 2000. The ultraviolet environment of Mars: Biological implications past, present, and future. Icarus, 146: 343–359
Cockell C S, McKay C P, Warren-Rhodes K, Horneck G. 2008. Ultraviolet radiation-induced limitation to epilithic microbial growth in arid deserts—Dosimetric experiments in the hyperarid core of the Atacama Desert. J PhotoChem PhotoBiol B-Biol, 90: 79–87
Cockell C S, Osinski G R, Banerjee N R, Howard K T, Gilmour I, Watson J S. 2010. The microbe-mineral environment and gypsum neogenesis in a weathered polar evaporite. Geobiology, 8: 293–308
Coleine C, Delgado-Baquerizo M, Zerboni A, Turchetti B, Buzzini P, Franceschi P, Selbmann L. 2023. Rock traits drive complex microbial communities at the edge of life. Astrobiology, 23: 395–406
Cravotta III C A, Kirby C S. 2004. Acidity and alkalinity in mine drainage: Practical considerations. In: 2004 National Meeting of the American Society of Mining and Reclamation and the 25th West Virginia Surface Mine Drainage Task Force. Morgantown. 334–365
Crits-Christoph A, Robinson C K, Ma B, Ravel J, Wierzchos J, Ascaso C, Artieda O, Souza-Egipsy V, Casero M C, DiRuggiero J. 2016. Phylogenetic and functional substrate specificity for endolithic microbial communities in hyper-arid environments. Front Microbiol, 7: 301
Cuif J P, Dauphin Y, Doucet J, Salome M, Susini J. 2003. XANES mapping of organic sulfate in three scleractinian coral skeletons. Geochim Cosmochim Acta, 67: 75–83
Cuif J P, Dauphin Y, Farre B, Nehrke G, Nouet J, Salomé M. 2008. Distribution of sulphated polysaccharides within calcareous biominerals suggests a widely shared two-step crystallization process for the microstructural growth units. Mineral Mag, 72: 233–237
David G, Dehouck E, Meslin P-, Rapin W, Cousin A, Forni O, Gasnault O, Lasue J, Mangold N, Beck P, Maurice S, Wiens R C, Berger G, Fabre S, Pinet P, Clark B C, Smith J R, Lanza N L. 2022. Evidence for amorphous sulfates as the main carrier of soil hydration in Gale Crater, Mars. Geophys Res Lett, 49: e2022GL098755
Davis R A, Welty A T, Borrego J, Morales J A, Pendon J G, Ryan J G. 2000. Rio Tinto estuary (Spain): 5000 years of pollution. Environ Geol, 39: 1107–1116
Dehouck E, Chevrier V, Gaudin A, Mangold N, Mathé P E, Rochette P. 2012. Evaluating the role of sulfide-weathering in the formation of sulfates or carbonates on Mars. Geochim Cosmochim Acta, 90: 47–63
Dela Pierre F, Natalicchio M, Ferrando S, Giustetto R, Birgel D, Carnevale G, Gier S, Lozar F, Marabello D, Peckmann J. 2015. Are the large filamentous microfossils preserved in Messinian gypsum colorless sulfide-oxidizing bacteria? Geology, 43: 855–858
Diloreto Z, Ahmad M S, Al Saad Al-Kuwari H, Sadooni F, Bontognali T R R, Dittrich M. 2023. Raman spectroscopic and microbial study of biofilms hosted gypsum deposits in the hypersaline wetlands: Astrobiological perspective. Astrobiology, 23: 991–1005
Dong H, Huang L, Zhao L, Zeng Q, Liu X, Sheng Y, Shi L, Wu G, Jiang H, Li F, Zhang L, Guo D, Li G, Hou W, Chen H. 2022. A critical review of mineral-microbe interaction and co-evolution: Mechanisms and applications. Natl Sci Rev, 9: nwac128
Dong H, Rech J A, Jiang H, Sun H, Buck B J. 2007. Endolithic cyanobacteria in soil gypsum: Occurrences in Atacama (Chile), Mojave (United States), and Al-Jafr Basin (Jordan) Deserts. J Geophys Res. Biogeo, 112: 2006JG000385
Douglas S. 2004. Microbial biosignatures in evaporite deposits: Evidence from Death Valley, California. Planet Space Sci, 52: 223–227
Ehlmann B L, Edwards C S. 2014. Mineralogy of the Martian surface. Annu Rev Earth Planet Sci, 42: 291–315
Ehlmann B L, Mustard J F, Murchie S L, Bibring J P, Meunier A, Fraeman A A, Langevin Y. 2011. Subsurface water and clay mineral formation during the early history of Mars. Nature, 479: 53–60
Eigenbrode J L, Summons R E, Steele A, Freissinet C, Millan M, Navarro-González R, Sutter B, McAdam A C, Franz H B, Glavin D P, Archer Jr. P D, Mahaffy P R, Conrad P G, Hurowitz J A, Grotzinger J P, Gupta S, Ming D W, Sumner D Y, Szopa C, Malespin C, Buch A, Coll P. 2018. Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars. Science, 360: 1096–1101
Ellery A, Wynn-Williams D. 2003. Why Raman spectroscopy on Mars?— A case of the right tool for the right job. Astrobiology, 3: 565–579
Ericksen G E. 1983. The Chilean nitrate deposits: The origin of the Chilean nitrate deposits, which contain a unique group of saline minerals, has provoked lively discussion for more than 100 years. Am Sci, 71: 366–374
Farrand W H, Glotch T D, Horgan B. 2014. Detection of copiapite in the northern Mawrth Vallis region of Mars: Evidence of acid sulfate alteration. Icarus, 241: 346–357
Farrand W H, Glotch T D, Rice Jr. J W, Hurowitz J A, Swayze G A. 2009. Discovery of jarosite within the Mawrth Vallis region of Mars: Implications for the geologic history of the region. Icarus, 204: 478–488
Fernández-Remolar D C, Carrizo D, Harir M, Huang T, Amils R, Schmitt-Kopplin P, Sánchez-García L, Gomez-Ortiz D, Malmberg P. 2021a. Unveiling microbial preservation under hyperacidic and oxidizing conditions in the Oligocene Rio Tinto deposit. Sci Rep, 11: 21543
Fernández-Remolar D C, Gomez-Ortiz D, Huang T, Anglés A, Shen Y, Hu Q, Amils R, Rodríguez N, Escudero C, Banerjee N R. 2021b. The molecular record of metabolic activity in the subsurface of the Río Tinto Mars analog. Astrobiology, 21: 1387–1405
Fernández-Remolar D C, Gómez-Ortiz D, Malmberg P, Huang T, Shen Y, Anglés A, Amils R. 2021c. Preservation of underground microbial diversity in ancient subsurface deposits (>6 Ma) of the Rio Tinto basement. Microorganisms, 9: 1592
Fernández-Remolar D C, Morris R V, Gruener J E, Amils R, Knoll A H. 2005. The Rio Tinto Basin, Spain: Mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars. Earth Planet Sci Lett, 240: 149–167
Fernández-Remolar D C, Rodriguez N, Gómez F, Amils R. 2003. Geological record of an acidic environment driven by iron hydrochemistry: The Tinto River system. J Geophys Res-Planet, 108: 2002JE001918
Fishbaugh K E, Poulet F, Chevrier V, Langevin Y, Bibring J P. 2007. On the origin of gypsum in the Mars north polar region. J Geophys Res-Planet, 112: 2006JE002862
Flahaut J, Quantin C, Allemand P, Thomas P, Le Deit L. 2010. Identification, distribution and possible origins of sulfates in Capri Chasma (Mars), inferred from CRISM data. J Geophys Res-Planet, 115: 2009JE003566
Fliermans C B, Brock T D. 1972. Ecology of sulfur-oxidizing bacteria in hot acid soils. J Bacteriol, 111: 343–350
François P, Szopa C, Buch A, Coll P, McAdam A C, Mahaffy P R, Freissinet C, Glavin D P, Navarro-Gonzalez R, Cabane M. 2016. Magnesium sulfate as a key mineral for the detection of organic molecules on Mars using pyrolysis. J Geophys Res-Planet, 121: 61–74
Franks F. 1973. Water a Comprehensive Treatise: Volume 3. New York: Plenum Press
Freissinet C, Glavin D P, Archer Jr. P D, Teinturier S, Buch A, Szopa C, Lewis J M T, Williams A J, Navarro-Gonzalez R, Dworkin J P, Franz H B, Millan M, Eigenbrode J L, Summons R E, House C H, Williams R H, Steele A, McIntosh O, Gómez F, Prats B, Malespin C A, Mahaffy P R. 2025. Long-chain alkanes preserved in a Martian mudstone. Proc Natl Acad Sci USA, 122: e2420580122
Freissinet C, Glavin D P, Mahaffy P R, Miller K E, Eigenbrode J L, Summons R E, Brunner A E, Buch A, Szopa C, Archer Jr. P D, Franz H B, Atreya S K, Brinckerhoff W B, Cabane M, Coll P, Conrad P G, Des Marais D J, Dworkin J P, Fairén A G, François P, Grotzinger J P, Kashyap S, ten Kate I L, Leshin L A, Malespin C A, Martin M G, Martin-Torres F J, McAdam A C, Ming D W, Navarro-González R, Pavlov A A, Prats B D, Squyres S W, Steele A, Stern J C, Sumner D Y, Sutter B, Zorzano M-P. 2015. Organic molecules in the Sheepbed mudstone, Gale Crater, Mars. J Geophys Res-Planet, 120: 495–514
Friedmann E I, Ocampo-Friedmann R. 1984. The antarctic cryptoendolithic ecosystem: Relevance to exobiology. Origins Life Evol Biosphere, 14: 771–776
Gendrin A, Mangold N, Bibring J P, Langevin Y, Gondet B, Poulet F, Bonello G, Quantin C, Mustard J, Arvidson R, LeMouelic S. 2005. Sulfates in Martian layered terrains: The OMEGA/Mars express view. Science, 307: 1587–1591
Gill K K, Jagniecki E A, Benison K C, Gibson M E. 2023. A Mars-analog sulfate mineral, mirabilite, preserves biosignatures. Geology, 51: 818–822
Gillmann C, Hakim K, Lourenço D, Quanz S P, Sossi P A. 2024. Interior controls on the habitability of rocky planets. Space Sci Technol, 4: 0075
Glavin D P, Bada J L, Brinton K L F, McDonald G D. 1999. Amino acids in the Martian meteorite Nakhla. Proc Natl Acad Sci USA, 96: 8835–8838
Glavin D P, Freissinet C, Miller K E, Eigenbrode J L, Brunner A E, Buch A, Sutter B, Archer Jr. P D, Atreya S K, Brinckerhoff W B, Cabane M, Coll P, Conrad P G, Coscia D, Dworkin J P, Franz H B, Grotzinger J P, Leshin L A, Martin M G, McKay C, Ming D W, Navarro-González R, Pavlov A, Steele A, Summons R E, Szopa C, Teinturier S, Mahaffy P R. 2013. Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. J Geophys Res-Planet, 118: 1955–1973
Gómez-Ortiz D, Fernández-Remolar D C, Granda Á, Quesada C, Granda T, Prieto-Ballesteros O, Molina A, Amils R. 2014. Identification of the subsurface sulfide bodies responsible for acidity in Río Tinto source water, Spain. Earth Planet Sci Lett, 391: 36–41
Greenspan L. 1977. Humidity fixed points of binary saturated aqueous solutions. J Res Natl Bur Stand A Phys Chem, 81A: 89
Grott M, Baratoux D, Hauber E, Sautter V, Mustard J, Gasnault O, Ruff S W, Karato S I, Debaille V, Knapmeyer M, Sohl F, Van Hoolst T, Breuer D, Morschhauser A, Toplis M J. 2013. Long-term evolution of the Martian crust-mantle system. Space Sci Rev, 174: 49–111
Guendouzi M E, Mounir A, Dinane A. 2003. Water activity, osmotic and activity coefficients of aqueous solutions of Li2SO4, Na2SO4, K2SO4, (NH4)2SO4, MgSO4, MnSO4, NiSO4, CuSO4, and ZnSO4 at T=298.15 K. J Chem ThermoDyn, 35: 209–220
Guo Q, Liu M, Li J, Zhang X, Wang Y. 2014. Acid hot springs discharged from the Rehai hydrothermal system of the Tengchong volcanic area (China): Formed via magmatic fluid absorption or geothermal steam heating? Bull Volcanol, 76: 868
Harder H, Christensen U R. 1996. A one-plume model of martian mantle convection. Nature, 380: 507–509
Hardie L A, Eugster H P. 1971. The depositional environment of marine evaporites: A case for shallow, clastic accumulation. Sedimentology, 16: 187–220
Hartmann W K, Neukum G. 2001. Cratering chronology and the evolution of Mars. Space Sci Rev, 96: 165–194
Hassler D M, Zeitlin C, Wimmer-Schweingruber R F, Ehresmann B, Rafkin S, Eigenbrode J L, Brinza D E, Weigle G, Böttcher S, Böhm E, et al. 2014. Mars’ surface radiation environment measured with the Mars science laboratory’s Curiosity rover. Science, 343: 1244797
Hazen R M, Downs R T, Morrison S M, Tutolo B M, Blake D F, Bristow T F, Chipera S J, McSween H Y, Ming D, Morris R V, Rampe E B, Thorpe M T, Treiman A H, Tu V M, Vaniman D T. 2023. On the diversity and formation modes of Martian minerals. J Geophys Res-Planet, 128: e2023JE007865
Hinman N W, Bishop J L, Gulick V C, Dettmann J M K, Morkner P, Berlanga G, Henneberger R M, Bergquist P, Richardson C D, Walter M R, MacKenzie L A, Anitori R P, Scott J R. 2021. Targeting mixtures of jarosite and clay minerals for Mars exploration. Am Mineral, 106: 1237–1254
Hu S, Gao Y, Zhou Z, Gao L, Lin Y. 2024. Water and other volatiles on Mars. Natl Sci Rev, 11: nwae094
Huang T. 2018. Life preserved in the extreme environment and their astrobiological implications: Dalangtan and Rio Tinto as case studies (in Chinese). Doctoral Dissertation. Wuhan: China University of Geosciences. 1–122
Huang W, Ertekin E, Wang T, Cruz L, Dailey M, DiRuggiero J, Kisailus D. 2020a. Mechanism of water extraction from gypsum rock by desert colonizing microorganisms. Proc Natl Acad Sci USA, 117: 10681–10687
Huang W, Ertekin E, Wang T, Cruz L, Dailey M, DiRuggiero J, Kisailus D. 2020b. Reply to Wierzchos et al.: Microorganism-induced gypsum to anhydrite phase transformation. Proc Natl Acad Sci USA, 117: 27788–27790
Hughes K A, Lawley B. 2003. A novel Antarctic microbial endolithic community within gypsum crusts. Environ Microbiol, 5: 555–565
Hurowitz J A, McLennan S M, Tosca N J, Arvidson R E, Michalski J R, Ming D W, Schröder C, Squyres S W. 2006. In situ and experimental evidence for acidic weathering of rocks and soils on Mars. J Geophys Res-Planet, 111: 2005JE002515
Hynek B M, McCollom T M, Marcucci E C, Brugman K, Rogers K L. 2013. Assessment of environmental controls on acid-sulfate alteration at active volcanoes in Nicaragua: Applications to relic hydrothermal systems on Mars. J Geophys Res-Planet, 118: 2083–2104
Jagniecki E A, Benison K C. 2010. Criteria for the recognition of acid-precipitated halite. Sedimentology, 57: 273–292
Jehlička J, Culka A, Mareš J. 2019. Raman spectroscopic screening of cyanobacterial chasmoliths from crystalline gypsum—The Messinian crisis sediments from Southern Sicily. J Raman Spectr, 51: 1802–1812
Jia C, Wu L, Fulton J L, Liang X, De Yoreo J J, Guan B. 2021. Structural characteristics of amorphous calcium sulfate: Evidence to the role of water molecules. J Phys Chem C, 125: 3415–3420
Jones E G. 2018. Shallow transient liquid water environments on present-day mars, and their implications for life. Acta Astronaut, 146: 144–150
Kaplan H H, Milliken R E, Fernández-Remolar D, Amils R, Robertson K, Knoll A H. 2016. Orbital evidence for clay and acidic sulfate assemblages on Mars based on mineralogical analogs from Rio Tinto, Spain. Icarus, 275: 45–64
King P L, McLennan S M. 2010. Sulfur on Mars. Elements, 6: 107–112
King P L, McSween Jr. H Y. 2005. Effects of H2 O, pH, and oxidation state on the stability of Fe minerals on Mars. J Geophys Res-Planet, 110: 2005JE002482
Klingelhofer G, Morris R V, Bernhardt B, Schroder C, Rodionov D S, de Souza Jr. P A, Yen A, Gellert R, Evlanov E N, Zubkov B, Foh J, Bonnes U, Kankeleit E, Gutlich P, Ming D W, Renz F, Wdowiak T, Squyres S W, Arvidson R E. 2004. Jarosite and hematite at Meridiani planum from Opportunity’s Mossbauer spectrometer. Science, 306: 1740–1745
Kloprogge J T T, Hartman H. 2022. Clays and the origin of life: The experiments. Life, 12: 259
Kminek G, Bada J L, Pogliano K, Ward J F. 2003. Radiation-dependent limit for the viability of bacterial spores in halite fluid inclusions and on Mars. Radiat Res, 159: 722–729
Koeppen W C, Hamilton V E. 2008. Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data. J Geophys Res-Planet, 113: 2007JE002984
Langevin Y, Poulet F, Bibring J P, Gondet B. 2005. Sulfates in the north polar region of Mars detected by OMEGA/Mars express. Science, 307: 1584–1586
Leshin L A, Mahaffy P R, Webster C R, Cabane M, Coll P, Conrad P G, Archer Jr. P D, Atreya S K, Brunner A E, Buch A, et al. 2013. Volatile, isotope, and organic analysis of Martian fines with the Mars Curiosity rover. Science, 341: 1238937
Levin Z, Ganor E, Gladstein V. 1996. The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean. J Appl Meteorol Climatol, 35: 1511–1523
Li J, Wang F, Michalski G, Wilkins B. 2019. Atmospheric deposition across the Atacama Desert, Chile: Compositions, source distributions, and interannual comparisons. Chem Geol, 525: 435–446
Lichtenberg K A, Arvidson R E, Morris R V, Murchie S L, Bishop J L, Fernandez Remolar D, Glotch T D, Noe Dobrea E, Mustard J F, Andrews-Hanna J, Roach L H. 2010. Stratigraphy of hydrated sulfates in the sedimentary deposits of Aram Chaos, Mars. J Geophys Res-Planet, 115: 2009JE003353
Lin H, Lin Y, Wei Y, Gou S, Zhang C, Ruan R, Pan Y. 2023. Mineralogical evidence of water activity in the northern lowlands of Mars based on inflight-calibrated spectra from the Zhurong rover. Sci China Earth Sci, 66: 2463–2472
Ling Z C, Ju E M. 2024. Research progress in the detection and investigation of sulfates on the Martian surface (in Chinese). J Space Sci Exp, 1: 40–53
Ling Z C, Wang A. 2010. A systematic spectroscopic study of eight hydrous ferric sulfates relevant to Mars. Icarus, 209: 422–433
Liu J, Michalski J R, Gao W, Schröder C, Li Y L. 2024. Freeze-thaw cycles drove chemical weathering and enriched sulfates in the Burns formation at Meridiani, Mars. Sci Adv, 10: eadi1805
Liu Y, Wu X, Zhao Y Y S, Pan L, Wang C, Liu J, Zhao Z, Zhou X, Zhang C, Wu Y, Wan W, Zou Y. 2022. Zhurong reveals recent aqueous activities in Utopia Planitia, Mars. Sci Adv, 8: eabn8555
Loizeau D, Mangold N, Poulet F, Bibring J P, Gendrin A, Ansan V, Gomez C, Gondet B, Langevin Y, Masson P, Neukum G. 2007. Phyllosilicates in the Mawrth Vallis region of Mars. J Geophys Res-Planet, 112: 2006JE002877
Lowenstein T K, Schubert B A, Timofeeff M N. 2011. Microbial communities in fluid inclusions and long-term survival in halite. GSA Today, 21: 4–9
Luo L, Wen H, Zheng R, Liu R, Li Y, Luo X, You Y. 2019. Subaerial sulfate mineral formation related to acid aerosols at the Zhenzhu Spring, Tengchong, China. MinMag, 83: 381–392
Manzoni S, Schaeffer S M, Katul G, Porporato A, Schimel J P. 2014. A theoretical analysis of microbial eco-physiological and diffusion limitations to carbon cycling in drying soils. Soil Biol Biochem, 73: 69–83
Marion G M, Farren R E. 1999. Mineral solubilities in the Na-K-Mg-Ca-Cl-SO4-H2O system: A re-evaluation of the sulfate chemistry in the Spencer-Møller-Weare model. Geochim Cosmochim Acta, 63: 1305–1318
Marshall C P, Olcott Marshall A. 2010. The potential of Raman spectroscopy for the analysis of diagenetically transformed carotenoids. Phil Trans R Soc A, 368: 3137–3144
Martínez G M, Renno N O. 2013. Water and brines on Mars: Current evidence and implications for MSL. Space Sci Rev, 175: 29–51
Massé M, Bourgeois O, Le Mouélic S, Verpoorter C, Spiga A, Le Deit L. 2012. Wide distribution and glacial origin of polar gypsum on Mars. Earth Planet Sci Lett, 317–318: 44–55
McCanta M C, Dyar M D, Treiman A H. 2014. Alteration of Hawaiian basalts under sulfur-rich conditions: Applications to understanding surface-atmosphere interactions on Mars and Venus. Am Mineral, 99: 291–302
McCollom T M. 2018. Geochemical trends in the burns formation layered sulfate deposits at Meridiani planum, Mars, and implications for their origin. J Geophys Res-Planet, 123: 2393–2429
McCollom T M, Hynek B M. 2005. A volcanic environment for bedrock diagenesis at Meridiani Planum on Mars. Nature, 438: 1129–1131
McCollom T M, Robbins M, Moskowitz B, Berquó T S, Jöns N, Hynek B M. 2013. Experimental study of acid-sulfate alteration of basalt and implications for sulfate deposits on Mars. J Geophys Res-Planet, 118: 577–614
McHenry L J, Carson G L, Dixon D T, Vickery C L. 2017. Secondary minerals associated with Lassen fumaroles and hot springs: Implications for martian hydrothermal deposits. Am Mineral, 102: 1418–1434
Meslier V, Casero M C, Dailey M, Wierzchos J, Ascaso C, Artieda O, McCullough P R, DiRuggiero J. 2018. Fundamental drivers for endolithic microbial community assemblies in the hyperarid Atacama Desert. Environ Microbiol, 20: 1765–1781
Ming D W, Mittlefehldt D W, Morris R V, Golden D C, Gellert R, Yen A, Clark B C, Squyres S W, Farrand W H, Ruff S W, Arvidson R E, Klingelhöfer G, McSween H Y, Rodionov D S, Schröder C, de Souza Jr. P A, Wang A. 2006. Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars. J Geophys Res-Planet, 111: 2005JE002560
Mißbach H, Duda J P, van den Kerkhof A M, Lüders V, Pack A, Reitner J, Thiel V. 2021. Ingredients for microbial life preserved in 3.5 billion-year-old fluid inclusions. Nat Commun, 12: 1101
Moreras-Marti A, Fox-Powell M, Toney J, McAdam A C, Slaymark C, Knudson C A, Lewis J M T, Salik M A, Cousins C R. 2024. Molecular biosignatures in planetary analogue salts: Implications for transport of organics in sulfate-rich brines beyond Earth. Geochem Persp Let, 32: 1–6
Morris R, Rampe E, Graff T, Archer Jr P, Le L, Ming D, Sutter B. 2015. Transmission X-ray Diffraction (XRD) Patterns Relevant to The MSL CheMin Amorphous Component: Sulfates and Silicates. In: Lunar and planetary science Conference. Woodlands. (No. JSC-CN-32826)
Mosser J L, Mosser A G, Brock T D. 1973. Bacterial origin of sulfuric acid in geothermal habitats. Science, 179: 1323–1324
National Natural Science Foundation of China, Chinese Academy of Sciences. 2022. China’s Disciplinary Development Strategy: Microbiology in Extreme Environments (in Chinese). Beijing: Science Press. 356
Navarro-González R, Vargas E, de la Rosa J, Raga A C, McKay C P. 2011. Correction to “Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars”. J Geophys Res-Planet, 116: E08011
Němečková K, Culka A, Němec I, Edwards H G M, Mareš J, Jehlička J. 2021. Raman spectroscopic search for scytonemin and gloeocapsin in endolithic colonizations in large gypsum crystals. J Raman Spectr, 52: 2633–2647
Němečková K, Mareš J, Procházková L, Culka A, Košek F, Wierzchos J, Nedbalová L, Dudák J, Tymlová V, Žemlička J, Kust A, Zima J, Nováková E, Jehlička J. 2023. Gypsum endolithic phototrophs under moderate climate (Southern Sicily): Their diversity and pigment composition. Front Microbiol, 14: 1175066
Niles P B, Michalski J. 2009. Meridiani Planum sediments on Mars formed through weathering in massive ice deposits. Nat Geosci, 2: 215–220
Niles P B, Michalski J, Ming D W, Golden D C. 2017. Elevated olivine weathering rates and sulfate formation at cryogenic temperatures on Mars. Nat Commun, 8: 998
Noe Dobrea E Z, Bishop J L, McKeown N K, Fu R, Rossi C M, Michalski J R, Heinlein C, Hanus V, Poulet F, Mustard R J F, Murchie S, McEwen A S, Swayze G, Bibring J P, Malaret E, Hash C. 2010. Mineralogy and stratigraphy of phyllosilicate-bearing and dark mantling units in the greater Mawrth Vallis/west Arabia Terra area: Constraints on geological origin. J Geophys Res-Planet, 115: 2009JE003351
O’Donnell A E, Muirhead D K, Brasier A T, Capezzuoli E. 2024. Searching for life in hot spring carbonate systems: Investigating Raman spectra of carotenoid-bearing organic carbonaceous inclusions from travertines of Italy. Astrobiology, 24: 163–176
O’Neill P M. 2010. Badhwar-O’Neill 2010 galactic cosmic ray flux model—Revised. IEEE Trans Nucl Sci, 57: 3148
Omelon C R. 2008. Endolithic microbial communities in polar desert habitats. GeoMicrobiol J, 25: 404–414
Oppenheimer C, Scaillet B, Martin R S. 2011. Sulfur degassing from volcanoes: Source conditions, surveillance, plume chemistry and earth system impacts. Rev Mineral Geochem, 73: 363–421
Panieri G, Lugli S, Manzi V, Palinska K A, Roveri M. 2008. Microbial communities in Messinian evaporite deposits of the Vena del Gesso (northern Apennines, Italy). Stratigraphy, 5: 343–352
Panieri G, Lugli S, Manzi V, Roveri M, Schreiber B C, Palinska K A. 2010. Ribosomal RNA gene fragments from fossilized cyanobacteria identified in primary gypsum from the late Miocene, Italy. Geobiology, 8: 101–111
Parnell J, Lee P, Cockell C S, Osinski G R. 2004. Microbial colonization in impact-generated hydrothermal sulphate deposits, Haughton impact structure, and implications for sulphates on Mars. Int J AstroBiol, 3: 247–256
Pellegrino L, Natalicchio M, Abe K, Jordan R W, Longo S E F, Ferrando S, Carnevale G, Pierre F D. 2021. Tiny, glassy, and rapidly trapped: The nano-sized planktic diatoms in Messinian (late Miocene) gypsum. Geology, 49: 1369–1374
Pérez-Fodich A, Reich M, Álvarez F, Snyder G T, Schoenberg R, Vargas G, Muramatsu Y, Fehn U. 2014. Climate change and tectonic uplift triggered the formation of the Atacama Desert’s giant nitrate deposits. Geology, 42: 251–254
Picard A, Gartman A, Girguis P R. 2021. Interactions between iron sulfide minerals and organic carbon: Implications for biosignature preservation and detection. Astrobiology, 21: 587–604
Pillay V, Gärtner R S, Himawan C, Seckler M M, Lewis A E, Witkamp G J. 2005. MgSO4+H2O System at Eutectic Conditions and Thermodynamic Solubility Products of MgSO4·12H2O(s) and MgSO4·7H2O(s). J Chem Eng Data, 50: 551–555
Piochi M, Mormone A, Balassone G. 2019. Hydrothermal alteration environments and recent dynamics of the Ischia volcanic island (southern Italy): Insights from repeated field, mineralogical and geochemical surveys before and after the 2017 Casamicciola earthquake. J Volcanol Geotherm Res, 376: 104–124
Pitman K M, Noe Dobrea E Z, Jamieson C S, Dalton J B, Abbey W J, Joseph E C S. 2014. Reflectance spectroscopy and optical functions for hydrated Fe-sulfates. Am Mineral, 99: 1593–1603
Pointing S B, Belnap J. 2012. Microbial colonization and controls in dryland systems. Nat Rev Microbiol, 10: 551–562
Ponnamperuma C, Shimoyama A, Friebele E. 1982. Clay and the origin of life. Origins Life Evol Biosphere, 12: 9–40
Post F J. 1977. The microbial ecology of the Great Salt Lake. Microb Ecol, 3: 143–165
Qin X, Ren X, Wang X, Liu J, Wu H, Zeng X, Sun Y, Chen Z, Zhang S, Zhang Y, Chen W, Liu B, Liu D, Guo L, Li K, Zeng X, Huang H, Zhang Q, Yu S, Li C, Guo Z. 2023. Modern water at low latitudes on Mars: Potential evidence from dune surfaces. Sci Adv, 9: eadd8868
Rampe E B, Bristow T F, Morris R V, Morrison S M, Achilles C N, Ming D W, Vaniman D T, Blake D F, Tu V M, Chipera S J, Yen A S, Peretyazhko T S, Downs R T, Hazen R M, Treiman A H, Grotzinger J P, Castle N, Craig P I, Des Marais D J, Thorpe M T, Walroth R C, Downs G W, Fraeman A A, Siebach K L, Gellert R, Lafuente B, McAdam A C, Meslin P Y, Sutter B, Salvatore M R. 2020. Mineralogy of vera Rubin Ridge from the Mars science laboratory CheMin instrument. J Geophys Res-Planet, 125: e2019JE006306
Ramirez R M, Craddock R A. 2018. The geological and climatological case for a warmer and wetter early Mars. Nat Geosci, 11: 230–237
Randall S P, Vera M K. 2004. Biological and organic constituents of desert varnish: Review and new hypotheses. In: Instruments, Methods, and Missions for Astrobiology VII. San Diego. 202–217
Rech J A, Quade J, Hart W S. 2003. Isotopic evidence for the source of Ca and S in soil gypsum, anhydrite and calcite in the Atacama Desert, Chile. Geochim Cosmochim Acta, 67: 575–586
Rieder R, Gellert R, Anderson R C, Bruckner J, Clark B C, Dreibus G, Economou T, Klingelhofer G, Lugmair G W, Ming D W, Squyres S W, d’Uston C, Wanke H, Yen A, Zipfel J. 2004. Chemistry of rocks and soils at Meridiani planum from the alpha particle X-ray spectrometer. Science, 306: 1746–1749
Röling W F M, Aerts J W, Patty C H L, ten Kate I L, Ehrenfreund P, Direito S O L. 2015. The significance of microbe-mineral-biomarker interactions in the detection of life on Mars and beyond. Astrobiology, 15: 492–507
Rose C V, Webb S M, Newville M, Lanzirotti A, Richardson J A, Tosca N J, Catalano J G, Bradley A S, Fike D A. 2019. Insights into past ocean proxies from micron-scale mapping of sulfur species in carbonates. Geology, 47: 833–837
Rouchy J, Monty C. 2000. Gypsum Microbial Sediments: Neogene and Modern Examples. In: Microbial sediments. Berlin Heidelberg: Springer. 209–216
Ruff S W, Christensen P R. 2002. Bright and dark regions on Mars: Particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. J Geophys Res-Planet, 107: 2–1
Scheller E, Razzell Hollis J, Cardarelli E, Steele A, Beegle L, Bhartia R, Conrad P, Uckert K, Sharma S, Ehlmann B. 2022. First-Results from the Perseverance SHERLOC Investigation: Aqueous Alteration Processes and Implications for Organic Geochemistry in Jezero Crater, Mars. LPI Contributions, 2678: 1652
Schiffman P, Zierenberg R, Marks N, Bishop J L, Dyar M D. 2006. Acid-fog deposition at Kilauea volcano: A possible mechanism for the formation of siliceous-sulfate rock coatings on Mars. Geology, 34: 921–924
Schopf J W, Farmer J D, Foster I S, Kudryavtsev A B, Gallardo V A, Espinoza C. 2012. Gypsum-permineralized microfossils and their relevance to the search for life on Mars. Astrobiology, 12: 619–633
Schreder-Gomes S I, Benison K C, Bernau J A. 2022. 830-million-year-old microorganisms in primary fluid inclusions in halite. Geology, 50: 918–922
Schulze-Makuch D, Dohm J, Fan C, Fairen A, Rodriguez J, Baker V, Fink W. 2007. Exploration of hydrothermal targets on Mars. Icarus, 189: 308–324
Seeger C H, Grotzinger J P. 2024. Diagenesis of the clay-sulfate stratigraphic transition, mount sharp group, Gale Crater, Mars. J Geophys Res-Planet, 129: e2024JE008531
Settle M. 1979. Formation and deposition of volcanic sulfate aerosols on Mars. J Geophys Res. Solid Earth, 84: 8343–8354
Shen J X, Chen Y, Sun Y, Liu L, Pan Y X, Lin W. 2022. Detection of biosignatures in terrestrial Mars analogs: Strategical and technical assessments. Earth Planet Phys, 6: 0
Sheppard R Y, Thorpe M T, Fraeman A A, Fox V K, Milliken R E. 2021. Merging perspectives on secondary minerals on Mars: A review of ancient water-rock interactions in Gale Crater inferred from orbital and in-situ observations. Minerals, 11: 986
Sholes S F, Dickeson Z I, Montgomery D R, Catling D C. 2021. Where are Mars’ hypothesized ocean shorelines? Large lateral and topographic offsets between different versions of paleoshoreline maps. J Geophys Res-Planets, 126: e2020JE006486
Simpson J A. 1983. Elemental and isotopic composition of the galactic cosmic rays. Annu Rev Nucl Part Sci, 33: 323–382
Sklute E C, Rogers A D, Gregerson J C, Jensen H B, Reeder R J, Dyar M D. 2018. Amorphous salts formed from rapid dehydration of multi-component chloride and ferric sulfate brines: Implications for Mars. Icarus, 302: 285–295
Skousen J G, Ziemkiewicz P F, McDonald L M. 2019. Acid mine drainage formation, control and treatment: Approaches and strategies. Extractive Industries Soc, 6: 241–249
Squyres S W, Arvidson R E, Bell III J F, Bruckner J, Cabrol N A, Calvin W, Carr M H, Christensen P R, Clark B C, Crumpler L, Marais D J D, d’Uston C, Economou T, Farmer J, Farrand W, Folkner W, Golombek M, Gorevan S, Grant J A, Greeley R, Grotzinger J, Haskin L, Herkenhoff K E, Hviid S, Johnson J, Klingelhofer G, Knoll A H, Landis G, Lemmon M, Li R, Madsen M B, Malin M C, McLennan S M, McSween H Y, Ming D W, Moersch J, Morris R V, Parker T, Rice Jr. J W, Richter L, Rieder R, Sims M, Smith M, Smith P, Soderblom L A, Sullivan R, Wanke H, Wdowiak T, Wolff M, Yen A. 2004a. The opportunity rover’s Athena science investigation at Meridiani planum, Mars. Science, 306: 1698–1703
Squyres S W, Grotzinger J P, Arvidson R E, Bell III J F, Calvin W, Christensen P R, Clark B C, Crisp J A, Farrand W H, Herkenhoff K E, Johnson J R, Klingelhofer G, Knoll A H, McLennan S M, McSween Jr. H Y, Morris R V, Rice Jr. J W, Rieder R, Soderblom L A. 2004b. In situ evidence for an ancient aqueous environment at Meridiani planum, Mars. Science, 306: 1709–1714
Squyres S W, Knoll A H. 2005. Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars. Earth Planet Sci Lett, 240: 1–10
Steele A, Benning L G, Wirth R, Siljeström S, Fries M D, Hauri E, Conrad P G, Rogers K, Eigenbrode J, Schreiber A, Needham A, Wang J H, McCubbin F M, Kilcoyne D, Rodriguez Blanco J D. 2018. Organic synthesis on Mars by electrochemical reduction of CO2. Sci Adv, 4: eaat5118
Stern J C, Malespin C A, Eigenbrode J L, Webster C R, Flesch G, Franz H B, Graham H V, House C H, Sutter B, Archer Jr. P D, Hofmann A E, McAdam A C, Ming D W, Navarro-Gonzalez R, Steele A, Freissinet C, Mahaffy P R. 2022. Organic carbon concentrations in 3.5-billion-year-old lacustrine mudstones of Mars. Proc Natl Acad Sci USA, 119: e2201139119
Stevenson A, Cray J A, Williams J P, Santos R, Sahay R, Neuenkirchen N, Mcclure C D, Grant I R, Houghton J D R, Quinn J P, Timson D J, Patil S V, Singhal R S, Antón J, Dijksterhuis J, Hocking A D, Lievens B, Rangel D E N, Voytek M A, Gunde-Cimerman N, Oren A, Timmis K N, Mcgenity T J, Hallsworth J E. 2015. Is there a common water-activity limit for the three domains of life? ISME J, 9: 1333–1351
Stevenson A, Hamill P G, O’Kane C J, Kminek G, Rummel J D, Voytek M A, Dijksterhuis J, Hallsworth J E. 2017. Aspergillus penicillioides differentiation and cell division at 0.585 water activity. Environ Microbiol, 19: 687–697
Stivaletta N, López-García P, Boihem L, Millie D F, Barbieri R. 2010. Biomarkers of endolithic communities within gypsum crusts (southern Tunisia). GeoMicrobiol J, 27: 101–110
Summons R E, Sessions A L, Allwood A C, Barton H A, Beaty D W, Blakkolb B, Canham J, Clark B C, Dworkin J P, Lin Y, Mathies R, Milkovich S M, Steele A. 2014. Planning considerations related to the organic contamination of Martian samples and implications for the Mars 2020 rover. Astrobiology, 14: 969–1027
Sun Y, Li Y, Li L, He H. 2019. Preservation of cyanobacterial UVR-shielding pigment scytonemin in carbonate ooids formed in Pleistocene salt lakes in the Qaidam basin, Tibetan Plateau. Geophys Res Lett, 46: 10375–10383
Szopa C, Freissinet C, Glavin D P, Millan M, Buch A, Franz H B, Summons R E, Sumner D Y, Sutter B, Eigenbrode J L, Williams R H, Navarro-González R, Guzman M, Malespin C, Teinturier S, Mahaffy P R, Cabane M. 2020. First detections of dichlorobenzene isomers and trichloromethylpropane from organic matter indigenous to Mars mudstone in Gale crater, Mars: Results from the sample analysis at Mars instrument onboard the Curiosity rover. Astrobiology, 20: 292–306
Tamenori Y, Yoshimura T, Luan N T, Hasegawa H, Suzuki A, Kawahata H, Iwasaki N. 2014. Identification of the chemical form of sulfur compounds in the Japanese pink coral (Corallium elatius) skeleton using μ-XRF/XAS speciation mapping. J Struct Biol, 186: 214–223
Tanaka K L. 1986. The stratigraphy of Mars. J Geophys Res. Solid Earth, 91: E139–E158
Tang M, Ehreiser A, Li Y L. 2014. Gypsum in modern Kamchatka volcanic hot springs and the Lower Cambrian black shale: Applied to the microbial-mediated precipitation of sulfates on Mars. Am Mineral, 99: 2126–2137
Tang M, Li Y L. 2020. A complex assemblage of crystal habits of pyrite in the volcanic hot springs from Kamchatka, Russia: Implications for the mineral signature of life on Mars. Crystals, 10: 535
Thompson J B, Ferris F G. 1990. Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology, 18: 995–998
Tosca N J, McLennan S M, Lindsley D H, Schoonen M A A. 2004. Acid-sulfate weathering of synthetic Martian basalt: The acid fog model revisited. J Geophys Res-Planet, 109: 2003JE002218
Trong Nguyen L, Rahman M A, Maki T, Tamenori Y, Yoshimura T, Suzuki A, Iwasaki N, Hasegawa H. 2014. Distribution of trace element in Japanese red coral Paracorallium japonicum by μ-XRF and sulfur speciation by XANES: Linkage between trace element distribution and growth ring formation. Geochim Cosmochim Acta, 127: 1–9
Vai G B, Lucchi F. 1976. The vena del gesso in northern Apennines: Growth and mechanical breakdown of gypsified algal crusts. Mem Soc Geol It., 16: 217–249
Vaniman D T, Bish D L, Chipera S J, Fialips C I, William Carey J, Feldman W C. 2004. Magnesium sulphate salts and the history of water on Mars. Nature, 431: 663–665
Vaniman D T, Bish D L, Ming D W, Bristow T F, Morris R V, Blake D F, Chipera S J, Morrison S M, Treiman A H, Rampe E B, et al. 2014. Mineralogy of a mudstone at yellowknife bay, Gale Crater, Mars. Science, 343: 1243480
Vaniman D T, Martínez G M, Rampe E B, Bristow T F, Blake D F, Yen A S, Ming D W, Rapin W, Meslin P Y, Morookian J M, Downs R T, Chipera S J, Morris R V, Morrison S M, Treiman A H, Achilles C N, Robertson K, Grotzinger J P, Hazen R M, Wiens R C, Sumner D Y. 2018. Gypsum, bassanite, and anhydrite at Gale crater, Mars. Am Mineral, 103: 1011–1020
Vasiliev I, Mezger E M, Lugli S, Reichart G J, Manzi V, Roveri M. 2017. How dry was the Mediterranean during the Messinian salinity crisis? Palaeogeogr Palaeoclimatol Palaeoecol, 471: 120–133
Vítek P, Ascaso C, Artieda O, Casero M C, Wierzchos J. 2017. Discovery of carotenoid red-shift in endolithic cyanobacteria from the Atacama Desert. Sci Rep, 7: 11116
Vítek P, Ascaso C, Artieda O, Casero M C, Wierzchos J. 2020. Raman imaging of microbial colonization in rock—some analytical aspects. Anal Bioanal Chem, 412: 3717–3726
Vítek P, Jehlička J, Ascaso C, Mašek V, Gómez-Silva B, Olivares H, Wierzchos J. 2014. Distribution of scytonemin in endolithic microbial communities from halite crusts in the hyperarid zone of the Atacama Desert, Chile. FEMS Microbiol Ecol, 90: 351
Vogel M B, Des Marais D J, Parenteau M N, Jahnke L L, Turk K A, Kubo M D Y. 2010. Biological influences on modern sulfates: Textures and composition of gypsum deposits from Guerrero Negro, Baja California Sur, Mexico. Sediment Geol, 223: 265–280
Voigt C, Klipsch S, Herwartz D, Chong G, Staubwasser M. 2020. The spatial distribution of soluble salts in the surface soil of the Atacama Desert and their relationship to hyperaridity. Glob Planet Change, 184: 103077
Vreeland R H, Rosenzweig W D, Powers D W. 2000. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature, 407: 897–900
Walker J J, Pace N R. 2007. Endolithic microbial ecosystems. Annu Rev Microbiol, 61: 331–347
Wang A, Feldman W C, Mellon M T, Zheng M. 2013. The preservation of subsurface sulfates with mid-to-high degree of hydration in equatorial regions on Mars. Icarus, 226: 980–991
Wang A, Haskin L A, Squyres S W, Jolliff B L, Crumpler L, Gellert R, Schröder C, Herkenhoff K, Hurowitz J, Tosca N J, Farrand W H, Anderson R, Knudson A T. 2006. Sulfate deposition in subsurface regolith in Gusev crater, Mars. J Geophys Res-Planet, 111: 2005JE002513
Wang A, Ling Z C. 2011. Ferric sulfates on Mars: A combined mission data analysis of salty soils at Gusev crater and laboratory experimental investigations. J Geophys Res-Planet, 116: E00F17
Wang F, Michalski G, Seo J H, Granger D E, Lifton N, Caffee M. 2015. Beryllium-10 concentrations in the hyper-arid soils in the Atacama Desert, Chile: Implications for arid soil formation rates and El Niño driven changes in Pliocene precipitation. Geochim Cosmochim Acta, 160: 227–242
Wang J, Zhao J, Xiao L, Peng S, Zhang L, Zhang Z, Gao A, Qiao H, Wang L, Zhang S, Xiao X, Shi Y, Zhao S, Zhao J, Qian Y, Zhang J, Zhang X, Huang J. 2023. Recent aqueous activity on Mars evidenced by transverse aeolian ridges in the Zhurong exploration region of Utopia Planitia. Geophys Res Lett, 50: e2022GL101650
Wang J Y, Liu C L. 2016. Reviews on ancient halophilic microbes in halite fluid inclusions (in Chinese). Adv Earth Sci. 31: 1220–1227
Warren J. 2018. Evaporites. In: White, W M (ed.) Encyclopedia of Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth. Cham: Springer International Publishing
Weitz C M, Noe Dobrea E, Wray J J. 2015. Mixtures of clays and sulfates within deposits in western Melas Chasma, Mars. Icarus, 251: 291–314
Wen H, Xu W, Li Y, You Y, Luo X. 2019. Siliceous-sulphate rock coatings at Zhenzhu Spring, Tengchong, China: The integrated product of acid-fog deposition, spring water capillary action, and dissolution. Geol Mag, 157: 201–212
Westall F, Foucher F, Bost N, Bertrand M, Loizeau D, Vago J L, Kminek G, Gaboyer F, Campbell K A, Bréhéret J G, Gautret P, Cockell C S. 2015. Biosignatures on Mars: What, where, and how? Implications for the search for Martian life. Astrobiology, 15: 998–1029
Wierzchos J, Artieda O, Ascaso C, Nieto García F, Vítek P, Azua-Bustos A, Fairén A G. 2020. Crystalline water in gypsum is unavailable for cyanobacteria in laboratory experiments and in natural desert endolithic habitats. Proc Natl Acad Sci USA, 117: 27786–27787
Wierzchos J, Casero M C, Artieda O, Ascaso C. 2018. Endolithic microbial habitats as refuges for life in polyextreme environment of the Atacama Desert. Curr Opin Microbiol, 43: 124–131
Wierzchos J, DiRuggiero J, Vítek P, Artieda O, Souza-Egipsy V, Škaloud P, Tisza M, Davila A F, Vílchez C, Garbayo I, Ascaso C. 2015. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front Microbiol, 6: 934
Williams R B G, Robinson D A. 1981. Weathering of sandstone by the combined action of frost and salt. Earth Surf Processes Landf, 6: 1–9
Wray J, Milliken R, Swayze G, Dundas C, Bishop J, Murchie S, Seelos F, Squyres S. 2009a. Columbus Crater and Other Possible Paleolakes in Terra Sirenum, Mars. In: 40th Annual Lunar and Planetary Science Conference. Texas. 1896
Wray J J, Ehlmann B L, Squyres S W, Mustard J F, Kirk R L. 2008. Compositional stratigraphy of clay-bearing layered deposits at Mawrth Vallis, Mars. Geophys Res Lett, 35: 2008GL034385
Wray J J, Noe Dobrea E Z, Arvidson R E, Wiseman S M, Squyres S W, McEwen A S, Mustard J F, Murchie S L. 2009b. Phyllosilicates and sulfates at Endeavour Crater, Meridiani planum, Mars. Geophys Res Lett, 36: 2009GL040734
Wray J J, Squyres S W, Roach L H, Bishop J L, Mustard J F, Noe Dobrea E Z. 2010. Identification of the Ca-sulfate bassanite in Mawrth Vallis, Mars. Icarus, 209: 416–421
Wrence L, Hardie A, Eugster H. 1970. The evolution of closed-basin brines. Mineral. Soc. Amer. Spec. Pap, 3: 273–290
Wu M H, Zhang G S, Chen T, Liu G X, Zhang W. 2017. Advance in lithophilous microorganisms (in Chinese). J Microbiol. 37: 64–73
Wu X, Liu Y, Zhang C, Wu Y, Zhang F, Du J, Liu Z, Xing Y, Xu R, He Z, Lin Y, Zou Y. 2021. Geological characteristics of China’s Tianwen-1 landing site at Utopia Planitia, Mars. Icarus, 370: 114657
Wynn-Williams D D, Edwards H G M. 2000. Proximal analysis of regolith habitats and protective biomolecules in situ by laser Raman spectroscopy: Overview of terrestrial Antarctic habitats and Mars analogs. Icarus, 144: 486–503
Xiao L, Wang J, Dang Y, Cheng Z, Huang T, Zhao J, Xu Y, Huang J, Xiao Z, Komatsu G. 2017. A new terrestrial analogue site for Mars research: The Qaidam Basin, Tibetan Plateau (NW China). Earth-Sci Rev, 164: 84–101
Xu H, Liu Q, Zhu D, Peng W, Meng Q, Wang J, Shi J, Jin Z. 2022. Molecular evidence reveals the presence of hydrothermal effect on ultra-deep-preserved organic compounds. Chem Geol, 608: 121045
Yan Y, Yang H. 2024. Interactions of clay minerals with biomolecules and protocells complex structures in the origin of life: A review. Adv Funct Mater, 34: 2406210
Yang J, Zheng D, Wu Y, Chen H, Yang L, Zhang B. 2024. Mars exploration—In situ K-Ar dating of jarosite. Sci China Earth Sci, 67: 641–656
Yen A S, Ming D W, Vaniman D T, Gellert R, Blake D F, Morris R V, Morrison S M, Bristow T F, Chipera S J, Edgett K S, Treiman A H, Clark B C, Downs R T, Farmer J D, Grotzinger J P, Rampe E B, Schmidt M E, Sutter B, Thompson L M. 2017. Multiple stages of aqueous alteration along fractures in mudstone and sandstone strata in Gale Crater, Mars. Earth Planet Sci Lett, 471: 186–198
Yuan J, Huo C, Cai K. 1983. The high mountain-deep basin saline environment—A new genetic model of salt deposits. Geological Review, 29: 159–165
Zhang B S, Zhao Z, Han C Y, Sun W F, Li Q, Li H L. 2005. Research summary of sequence stratigraphy in salt-lake basin (in Chinese). Northwestern Geology, 38: 94–99
Zhang, X F, Zheng, M P, 2017. Research progress of salt minerals in Qinghai-Tibetan Plateau (in Chinese). Sci Technol Rev, 35: 72–76
Zhao J, Xiao Z, Huang J, Head J W, Wang J, Shi Y, Wu B, Wang L. 2021. Geological characteristics and targets of high scientific interest in the Zhurong landing region on Mars. Geophys Res Lett, 48: e2021GL094903
Zhao Y Y S, Yu J, Wei G, Pan L, Liu X, Lin Y, Liu Y, Sun C, Wang X, Wang J, Xu W, Rao Y, Xu W, Sun T, Chen F, Zhang B, Lin H, Zhang Z, Hu S, Li X Y, Yu X W, Qu S Y, Zhou D S, Wu X, Zeng X, Li X, Tang H, Liu J. 2023. In situ analysis of surface composition and meteorology at the Zhurong landing site on Mars. Natl Sci Rev, 10: nwad056
Zhao Y Y S, Zhou D S, Li X Y, Liu J Z, Wang S J, Ouyang Z Y. 2020. The evolution of scientific goals for Mars exploration and future prospects (in Chinese). Chin Sci Bull, 2020, 65: 2439–2453
Zheng M P, Zhang Y, Liu X, Qi W, Kong F, Nie Z, Pu L, Hou X, Wang H, Zhang Z, Kong W, Lin Y. 2016. Progress and prospects of salt lake research in China. Acta Geol Sin-Engl Ed, 90: 1195–1235
Zhou D S, Yu X W, Chang R, Zhao Y Y S, Li X, Liu J, Lin H, Qi C. 2022. Effects of formation pathways and bromide incorporation on jarosite dissolution rates: Implications for Mars. J Geophys Res-Planet, 127: e2022JE007202
Zolotov M Y, Shock E L. 2005. Formation of jarosite-bearing deposits through aqueous oxidation of pyrite at Meridiani Planum, Mars. Geophys Res Lett, 32: 2005GL024253
Zimbelman D R, Rye R O, Breit G N. 2005. Origin of secondary sulfate minerals on active andesitic stratovolcanoes. Chem Geol, 215: 37–60
Ziolkowski L A, Mykytczuk N C S, Omelon C R, Johnson H, Whyte L G, Slater G F. 2013. Arctic gypsum endoliths: A biogeochemical characterization of a viable and active microbial community. Biogeosciences, 10: 7661–7675
Acknowledgements
We sincerely thank Prof. Wei LIN from the Institute of Geology and Geophysics, Chinese Academy of Sciences, for his invaluable suggestions during the preparation of this study. We are also grateful to Miaosen XIA, a Ph.D. candidate at China University of Geosciences (Wuhan), for his assistance with the Martian sulfate-related sections. Additionally, we deeply appreciate the constructive comments and suggestions provided by the two anonymous reviewers, which significantly improved the quality of this work. This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFF0504000), the National Natural Science Foundation of China (Grant No. 42272274), the National Key Research and Development Program of China (Grant No. 2021YFA0716100), the Natural Science Foundation of Hubei Province (Grant No. 2024AFB692), and the Macao Science and Technology Development Fund (FDCT) (Grant No. 0052/2024/RIA1).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest The authors declare no conflict of interest.
Rights and permissions
About this article
Cite this article
Xie, Y., Huang, T., Zhao, J. et al. Preservation characteristics of biosignatures in sulfates and their implications for the search for life on Mars. Sci. China Earth Sci. 68, 2867–2890 (2025). https://doi.org/10.1007/s11430-024-1645-5
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s11430-024-1645-5