Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Recent advances in organic and polymeric carriers for local tumor chemo-immunotherapy

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Combination therapy involves the simultaneous administration of compounds with varying mechanisms of action that can improve the efficacy of antitumor therapy and reduce toxicity. The most widely used combination regimen is chemotherapy combined with focused immunotherapy. This is implemented to induce the apoptosis of tumor cells and can activate immune responses, improving the clearance rate of primary lesions and maintaining the resistance to postoperative tumor recurrence and metastasis. Advances in micro/nanotechnology, nanomedicine and biomaterials have contributed to the development of enhanced local drug co-delivery systems for cancer treatment, improving tumor targeting and ameliorating severe systemic complications. Carrier materials can achieve the local long-term controllable release of multiple drugs, which not only avoids rapid drug diffusion from the pathological site, but can achieve synergistic effects at lower drug concentrations. Polymeric carriers display excellent biocompatibility and biodegradability; especially, some of them also have anti-tumor effects. The aim of this article was to review recent progress in the use of organic and polymeric materials for local tumor chemo-immunotherapy, which can be used as carriers for chemotherapeutic drugs, immune adjuvants and genes, including amphiphilic nanoparticles, nanocapsules, nano-disks, nano-polyplex particles, hydrogels and implantable materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pardoll D M. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012, 12: 252–264

    Article  Google Scholar 

  2. Park S B, Goldstein D, Krishnan A V, et al. Chemotherapy-induced peripheral neurotoxicity: A critical analysis. CA Cancer J Clin, 2013, 63: 419–437

    Article  Google Scholar 

  3. Curigliano G, Cardinale D, Suter T, et al. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Ann Oncol, 2012, 23: vii155–vii166

    Article  Google Scholar 

  4. Lee S M, O’Halloran T V, Nguyen S B T. Polymer-caged nanobins for synergistic cisplatin-doxorubicin combination chemotherapy. J Am Chem Soc, 2010, 132: 17130–17138

    Article  Google Scholar 

  5. Zheng M, Yue C, Ma Y, et al. Single-step assembly of DOX/ICG loaded lipid-polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano, 2013, 7: 2056–2067

    Article  Google Scholar 

  6. Chen Z, Cheng K, Walton Z, et al. A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature, 2012, 483: 613–617

    Article  Google Scholar 

  7. Park S J, Cheong H I, Shin J I. Antibody depletion by bortezomib through blocking of antigen presentation. New Engl J Med, 2013, 368: 1364–1365

    Article  Google Scholar 

  8. Lake R A, Robinson B W S. Immunotherapy and chemotherapy—A practical partnership. Nat Rev Cancer, 2005, 5: 397–405

    Article  Google Scholar 

  9. Nowak A K, Robinson B W S, Lake R A. Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors. Cancer Res, 2003, 63: 4490–4496

    Google Scholar 

  10. Stewart J M, Keselowsky B G. Combinatorial drug delivery approaches for immunomodulation. Adv Drug Deliver Rev, 2017, 114: 161–174

    Article  Google Scholar 

  11. Whiteside T L. Immune suppression in cancer: Effects on immune cells, mechanisms and future therapeutic intervention. Semin Cancer Biol, 2006, 16: 3–15

    Article  Google Scholar 

  12. Zamarron B F, Chen W J. Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci, 2011, 7: 651–658

    Article  Google Scholar 

  13. Holohan C, Van Schaeybroeck S, Longley D B, et al. Cancer drug resistance: An evolving paradigm. Nat Rev Cancer, 2013, 13: 714–726

    Article  Google Scholar 

  14. Rebucci M, Michiels C. Molecular aspects of cancer cell resistance to chemotherapy. Biochem Pharmacol, 2013, 85: 1219–1226

    Article  Google Scholar 

  15. Makadia H K, Siegel S J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 2011, 3: 1377–1397

    Article  Google Scholar 

  16. LaVan D A, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol, 2003, 21: 1184–1191

    Article  Google Scholar 

  17. Doshi N, Mitragotri S. Designer biomaterials for nanomedicine. Adv Funct Mater, 2009, 19: 3843–3854

    Article  Google Scholar 

  18. Ma H, He C, Chen X. Injectable hydrogels as local depots at tumor sites for antitumor immunotherapy and immune-based combination therapy. Macromol Biosci, 2021, 21: e2100039

    Article  Google Scholar 

  19. Kim J, Manspeaker M P, Thomas S N. Augmenting the synergies of chemotherapy and immunotherapy through drug delivery. Acta Biomater, 2019, 88: 1–14

    Article  Google Scholar 

  20. He Z, Huang J, Xu Y, et al. Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer. Oncotarget, 2015, 6: 42150–42168

    Article  Google Scholar 

  21. Nascimento A V, Singh A, Bousbaa H, et al. Combinatorial-designed epidermal growth factor receptor-targeted chitosan nanoparticles for encapsulation and delivery of lipid-modified platinum derivatives in wild-type and resistant non-small-cell lung cancer cells. Mol Pharm, 2015, 12: 4466–4477

    Article  Google Scholar 

  22. Guo S, Wang Y, Miao L, et al. Turning a water and oil insoluble cisplatin derivative into a nanoparticle formulation for cancer therapy. Biomaterials, 2014, 35: 7647–7653

    Article  Google Scholar 

  23. Aliabadi H M, Lavasanifar A. Polymeric micelles for drug delivery. Expert Opin Drug Deliver, 2006, 3: 139–162

    Article  Google Scholar 

  24. He C, Zhuang X, Tang Z, et al. Stimuli-sensitive synthetic poly-peptide-based materials for drug and gene delivery. Adv Healthcare Mater, 2012, 1: 48–78

    Article  Google Scholar 

  25. Chen J, Huang K, Chen Q, et al. Tailor-making fluorescent hyaluronic acid microgels via combining microfluidics and photoclick chemistry for sustained and localized delivery of herceptin in tumors. ACS Appl Mater Interf, 2018, 10: 3929–3937

    Article  Google Scholar 

  26. Xie X, Hu Y, Ye T, et al. Therapeutic vaccination against leukaemia via the sustained release of co-encapsulated anti-PD-1 and a leukaemia-associated antigen. Nat Biomed Eng, 2021, 5: 414–428

    Article  Google Scholar 

  27. Zhang Z, Zhang Q, Xie J, et al. Enzyme-responsive micellar JQ1 induces enhanced BET protein inhibition and immunotherapy of malignant tumors. Biomater Sci, 2021, 9: 6915–6926

    Article  Google Scholar 

  28. Nitiss J L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer, 2009, 9: 338–350

    Article  Google Scholar 

  29. Cravens P D, Lipsky P E. Dendritic cells, chemokine receptors and autoimmune inflammatory diseases. Immunol Cell Biol, 2002, 80: 497–505

    Article  Google Scholar 

  30. Da Silva C G, Camps M G M, Li T M W Y, et al. Effective chemoimmunotherapy by co-delivery of doxorubicin and immune adjuvants in biodegradable nanoparticles. Theranostics, 2019, 9: 6485–6500

    Article  Google Scholar 

  31. Kuai R, Yuan W, Son S, et al. Elimination of established tumors with nanodisc-based combination chemoimmunotherapy. Sci Adv, 2018, 4: eaao1736

    Article  Google Scholar 

  32. Liao F, Rabin R L, Smith C S, et al. CC-chemokine receptor 6 is expressed on diverse memory subsets of T cells and determines responsiveness to macrophage inflammatory protein 3 alpha. J Immunol, 1999, 162: 186–194

    Google Scholar 

  33. Pasare C, Medzhitov R. Toll-like receptors: Linking innate and adaptive immunity. Microbes Infect, 2004, 6: 1382–1387

    Article  Google Scholar 

  34. Heo M B, Kim S Y, Yun W S, et al. Sequential delivery of an anticancer drug and combined immunomodulatory nanoparticles for efficient chemoimmunotherapy. Int J Nanomed, 2015, 10: 5981–5992

    Google Scholar 

  35. Danhier F, Messaoudi K, Lemaire L, et al. Combined anti-Galectin-1 and anti-EGFR siRNA-loaded chitosan-lipid nanocapsules decrease temozolomide resistance in glioblastoma: In vivo evaluation. Int J Pharm, 2015, 481: 154–161

    Article  Google Scholar 

  36. Kadiyala P, Li D, Nunez F M, et al. High-density lipoprotein-mi-micking nanodiscs for chemo-immunotherapy against glioblastoma multiforme. ACS Nano, 2019, 13: 1365–1384

    Google Scholar 

  37. Sonabend A M, Velicu S, Ulasov I V, et al. A safety and efficacy study of local delivery of interleukin-12 transgene by PPC polymer in a model of experimental glioma. Anti-Cancer Drugs, 2008, 19: 133–142

    Article  Google Scholar 

  38. Hood R L, Bruno G, Jain P, et al. Nanochannel implants for minimally-invasive insertion and intratumoral delivery. J Biomed Nanotechnol, 2016, 12: 1907–1915

    Article  Google Scholar 

  39. Phuengkham H, Song C, Um S H, et al. Implantable synthetic immune niche for spatiotemporal modulation of tumor-derived immunosuppression and systemic antitumor immunity: Postoperative immunotherapy. Adv Mater, 2018, 30: e1706719

    Article  Google Scholar 

  40. Ren L, Lim Y T. Degradation-regulatable architectured implantable macroporous scaffold for the spatiotemporal modulation of immunosuppressive microenvironment and enhanced combination cancer immunotherapy. Adv Funct Mater, 2018, 28: 1804490

    Article  Google Scholar 

  41. Seo S H, Han H D, Noh K H, et al. Chitosan hydrogel containing GMCSF and a cancer drug exerts synergistic anti-tumor effects via the induction of CD8+ T cell-mediated anti-tumor immunity. Clin Exp Metastasis, 2009, 26: 179–187

    Article  Google Scholar 

  42. Sun L, Shen F, Tian L, et al. ATP-responsive smart hydrogel releasing immune adjuvant synchronized with repeated chemotherapy or radiotherapy to boost antitumor immunity. Adv Mater, 2021, 33: e2007910

    Article  Google Scholar 

  43. Nishikawa M, Mizuno Y, Mohri K, et al. Biodegradable CpG DNA hydrogels for sustained delivery of doxorubicin and immunostimulatory signals in tumor-bearing mice. Biomaterials, 2011, 32: 488–494

    Article  Google Scholar 

  44. Chen M, Tan Y, Dong Z, et al. Injectable anti-inflammatory nanofiber hydrogel to achieve systemic immunotherapy post local administration. Nano Lett, 2020, 20: 6763–6773

    Article  Google Scholar 

  45. Wu X, He C, Wu Y, et al. Nanogel-incorporated physical and chemical hybrid gels for highly effective chemo-protein combination therapy. Adv Funct Mater, 2015, 25: 6744–6755

    Article  Google Scholar 

  46. Li Y, Fang M, Zhang J, et al. Hydrogel dual delivered celecoxib and anti-PD-1 synergistically improve antitumor immunity. OncoImmunology, 2016, 5: e1074374

    Article  Google Scholar 

  47. Chao Y, Liang C, Tao H, et al. Localized cocktail chemoimmunotherapy after in situ gelation to trigger robust systemic antitumor immune responses. Sci Adv, 2020, 6: eaaz4204

    Article  Google Scholar 

  48. Wang H, Najibi A J, Sobral M C, et al. Biomaterial-based scaffold for in situ chemo-immunotherapy to treat poorly immunogenic tumors. Nat Commun, 2020, 11: 5696

    Article  Google Scholar 

  49. Wu X, Wu Y, Ye H, et al. Interleukin-15 and cisplatin co-encapsulated thermosensitive polypeptide hydrogels for combined immuno-chemotherapy. J Control Release, 2017, 255: 81–93

    Article  Google Scholar 

  50. Shi Y, Li D, He C, et al. Design of an injectable polypeptide hydrogel depot containing the immune checkpoint blocker anti-PD-L1 and doxorubicin to enhance antitumor combination therapy. Macromol Biosci, 2021, 21: e2100049

    Article  Google Scholar 

  51. Jiang L, Ding Y, Xue X, et al. Entrapping multifunctional dendritic nanoparticles into a hydrogel for local therapeutic delivery and synergetic immunochemotherapy. Nano Res, 2018, 11: 6062–6073

    Article  Google Scholar 

  52. Wang C, Wang J, Zhang X, et al. In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci Transl Med, 2018, 10: eaan3682

    Article  Google Scholar 

  53. Gong Y, Chen M, Tan Y, et al. Injectable reactive oxygen species-responsive SN38 prodrug scaffold with checkpoint inhibitors for combined chemoimmunotherapy. ACS Appl Mater Interfaces, 2020, 12: 50248–50259

    Article  Google Scholar 

  54. Wang F, Xu D, Su H, et al. Supramolecular prodrug hydrogelator as an immune booster for checkpoint blocker-based immunotherapy. Sci Adv, 2020, 6: eaaz8985

    Article  Google Scholar 

  55. Wang F, Su H, Xu D, et al. Tumour sensitization via the extended intratumoural release of a STING agonist and camptothecin from a self-assembled hydrogel. Nat Biomed Eng, 2020, 4: 1090–1101

    Article  Google Scholar 

  56. Jin H, Wan C, Zou Z, et al. Tumor ablation and therapeutic immunity induction by an injectable peptide hydrogel. ACS Nano, 2018, 12: 3295–3310

    Article  Google Scholar 

  57. Phillips M A, Gran M L, Peppas N A. Targeted nanodelivery of drugs and diagnostics. Nano Today, 2010, 5: 143–159

    Article  Google Scholar 

  58. Astete C E, Sabliov C M. Synthesis and characterization of PLGA nanoparticles. J BioMater Sci Polym Ed, 2006, 17: 247–289

    Article  Google Scholar 

  59. Krug A, Towarowski A, Britsch S, et al. Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur J Immunol, 2001, 31: 3026–3037

    Article  Google Scholar 

  60. Bode C, Zhao G, Steinhagen F, et al. CpG DNA as a vaccine adjuvant. Expert Rev Vaccines, 2011, 10: 499–511

    Article  Google Scholar 

  61. Pradhan P, Qin H, Leleux J A, et al. The effect of combined IL10 siRNA and CpG ODN as pathogen-mimicking microparticles on Th1/Th2 cytokine balance in dendritic cells and protective immunity against B cell lymphoma. Biomaterials, 2014, 35: 5491–5504

    Article  Google Scholar 

  62. Roy A, Singh M S, Upadhyay P, et al. Nanoparticle mediated co-delivery of paclitaxel and a TLR-4 agonist results in tumor regression and enhanced immune response in the tumor microenvironment of a mouse model. Int J Pharm, 2013, 445: 171–180

    Article  Google Scholar 

  63. Lee I H, An S, Yu M K, et al. Targeted chemoimmunotherapy using drug-loaded aptamer-dendrimer bioconjugates. J Control Release, 2011, 155: 435–441

    Article  Google Scholar 

  64. Yin Y, Hu Q, Xu C, et al. Co-delivery of doxorubicin and interferon-γ by thermosensitive nanoparticles for cancer immunochemotherapy. Mol Pharm, 2018, 15: 4161–4172

    Article  Google Scholar 

  65. Sharp F A, Ruane D, Claass B, et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc Natl Acad Sci USA, 2009, 106: 870–875

    Article  Google Scholar 

  66. Wolfram J, Zhu M, Yang Y, et al. Safety of nanoparticles in medicine. Current Drug Targets, 2015, 16: 1671–1681

    Article  Google Scholar 

  67. Huynh N T, Passirani C, Saulnier P, et al. Lipid nanocapsules: A new platform for nanomedicine. Int J Pharm, 2009, 379: 201–209

    Article  Google Scholar 

  68. Battaglia L, Gallarate M. Lipid nanoparticles: State of the art, new preparation methods and challenges in drug delivery. Expert Opin Drug Deliver, 2012, 9: 497–508

    Article  Google Scholar 

  69. Bernardi A, Braganhol E, Jäger E, et al. Indomethacin-loaded nanocapsules treatment reduces in vivo glioblastoma growth in a rat glioma model. Cancer Lett, 2009, 281: 53–63

    Article  Google Scholar 

  70. Friedman H S, Kerby T, Calvert H. Temozolomide and treatment of malignant glioma. Clin Cancer Res, 2000, 6: 2585–2597

    Google Scholar 

  71. Messaoudi K, Saulnier P, Boesen K, et al. Anti-epidermal growth factor receptor siRNA carried by chitosan-transacylated lipid nanocapsules increases sensitivity of glioblastoma cells to temozolomide. Int J Nanomedicine, 2014, 9: 1479–1490

    Google Scholar 

  72. Malmo J, Sørgård H, Vårum K M, et al. siRNA delivery with chitosan nanoparticles: Molecular properties favoring efficient gene silencing. J Control Release, 2012, 158: 261–268

    Article  Google Scholar 

  73. Han L, Zhao J, Zhang X, et al. Enhanced siRNA delivery and silencing gold-chitosan nanosystem with surface charge-reversal polymer assembly and good biocompatibility. ACS Nano, 2012, 6: 7340–7351

    Article  Google Scholar 

  74. Kim D H, Rossi J J. Strategies for silencing human disease using RNA interference. Nat Rev Genet, 2007, 8: 173–184

    Article  Google Scholar 

  75. Allard E, Passirani C, Benoit J P. Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials, 2009, 30: 2302–2318

    Article  Google Scholar 

  76. Bayburt T H, Sligar S G. Membrane protein assembly into Nanodiscs. FEBS Lett, 2010, 584: 1721–1727

    Article  Google Scholar 

  77. Denisov I G, Sligar S G. Nanodiscs in membrane biochemistry and biophysics. Chem Rev, 2017, 117: 4669–4713

    Article  Google Scholar 

  78. van Tellingen O, Yetkin-Arik B, de Gooijer M C, et al. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resistance Updates, 2015, 19: 1–12

    Article  Google Scholar 

  79. Vickers K C, Palmisano B T, Shoucri B M, et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol, 2011, 13: 423–433

    Article  Google Scholar 

  80. Kuai R, Li D, Chen Y E, et al. High-density lipoproteins: Nature’s multifunctional nanoparticles. ACS Nano, 2016, 10: 3015–3041

    Article  Google Scholar 

  81. Yuan Y, Wen J, Tang J, et al. Synthetic high-density lipoproteins for delivery of 10-hydroxycamptothecin. Int J Nanomed, 2016, 11: 6229–6238

    Article  Google Scholar 

  82. Krause B R, Remaley A T. Reconstituted HDL for the acute treatment of acute coronary syndrome. Curr Opin Lipidol, 2013, 24: 480–486

    Article  Google Scholar 

  83. Zhao D, Alizadeh D, Zhang L, et al. Carbon nanotubes enhance CpG uptake and potentiate antiglioma immunity. Clin Cancer Res, 2011, 17: 771–782

    Article  Google Scholar 

  84. Fan H, Zhang I, Chen X, et al. Intracerebral CpG immunotherapy with carbon nanotubes abrogates growth of subcutaneous melanomas in mice. Clin Cancer Res, 2012, 18: 5628–5638

    Article  Google Scholar 

  85. Lollo G, Vincent M, Ullio-Gamboa G, et al. Development of multifunctional lipid nanocapsules for the co-delivery of paclitaxel and CpG-ODN in the treatment of glioblastoma. Int J Pharm, 2015, 495: 972–980

    Article  Google Scholar 

  86. Alifieris C, Trafalis D T. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol Ther, 2015, 152: 63–82

    Article  Google Scholar 

  87. Mahato R I, Lee M, Han S, et al. Intratumoral delivery of p2CMVmIL-12 using water-soluble lipopolymers. Mol Ther, 2001, 4: 130–138

    Article  Google Scholar 

  88. Wang D, Narang A S, Kotb M, et al. Novel branched poly(ethylenimine)-cholesterol water-soluble lipopolymers for gene delivery. Biomacromolecules, 2002, 3: 1197–1207

    Article  Google Scholar 

  89. Fewell J G, Matar M, Slobodkin G, et al. Synthesis and application of a non-viral gene delivery system for immunogene therapy of cancer. J Control Release, 2005, 109: 288–298

    Article  Google Scholar 

  90. Tan J, Newton C A, Djeu J Y, et al. Injection of complementary DNA encoding interleukin-12 inhibits tumor establishment at a distant site in a murine renal carcinoma model. Cancer Res, 1996, 56: 3399–3403

    Google Scholar 

  91. Voest E E, Kenyon B M, O’Reilly M S, et al. Inhibition of angiogenesis in vivo by interleukin 12. J Natl Cancer Inst, 1995, 87: 581–586

    Article  Google Scholar 

  92. Sgadari C, Angiolillo A L, Tosato G. Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood, 1996, 87: 3877–3882

    Article  Google Scholar 

  93. Wei J, Barr J, Kong L Y, et al. Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway. Mol Cancer Ther, 2010, 9: 67–78

    Article  Google Scholar 

  94. Duvic M, Sherman M L, Wood G S, et al. A phase II open-label study of recombinant human interleukin-12 in patients with stage IA, IB, or IIA mycosis fungoides. J Am Acad Dermatol, 2006, 55: 807–813

    Article  Google Scholar 

  95. Gollob J A, Mier J W, Veenstra K, et al. Phase I trial of twice-weekly intravenous interleukin 12 in patients with metastatic renal cell cancer or malignant melanoma: Ability to maintain IFN-gamma induction is associated with clinical response. Clin Cancer Res, 2000, 6: 1678–1692

    Google Scholar 

  96. Fine D, Grattoni A, Hosali S, et al. A robust nanofluidic membrane with tunable zero-order release for implantable dose specific drug delivery. Lab Chip, 2010, 10: 3074–3083

    Article  Google Scholar 

  97. Park S N, Lee H J, Lee K H, et al. Biological characterization of EDC-crosslinked collagen-hyaluronic acid matrix in dermal tissue restoration. Biomaterials, 2003, 24: 1631–1641

    Article  Google Scholar 

  98. Burdick J A, Prestwich G D. Hyaluronic acid hydrogels for biomedical applications. Adv Mater, 2011, 23: H41–H56

    Article  Google Scholar 

  99. Phuengkham H, Song C, Lim Y T. A designer scaffold with immune nanoconverters for reverting immunosuppression and enhancing immune checkpoint blockade therapy. Adv Mater, 2019, 31: e1903242

    Article  Google Scholar 

  100. Jurk M, Heil F, Vollmer J, et al. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol, 2002, 3: 499

    Article  Google Scholar 

  101. Rodell C B, Arlauckas S P, Cuccarese M F, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng, 2018, 2: 578–588

    Article  Google Scholar 

  102. Vasilakos J P, Tomai M A. The use of toll-like receptor 7/8 agonists as vaccine adjuvants. Expert Rev Vaccines, 2013, 12: 809–819

    Article  Google Scholar 

  103. Shimabukuro-Vornhagen A, Gödel P, Subklewe M, et al. Cytokine release syndrome. J ImmunoTher Cancer, 2018, 6: 56

    Article  Google Scholar 

  104. Si X, Ji G, Ma S, et al. Biodegradable implants combined with immunogenic chemotherapy and immune checkpoint therapy for peritoneal metastatic carcinoma postoperative treatment. ACS Biomater Sci Eng, 2020, 6: 5281–5289

    Article  Google Scholar 

  105. Ji G, Zhang Y, Si X, et al. Biopolymer immune implants’ sequential activation of innate and adaptive immunity for colorectal cancer postoperative immunotherapy. Adv Mater, 2021, 33: e2004559

    Article  Google Scholar 

  106. Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliver Rev, 2001, 53: 321–339

    Article  Google Scholar 

  107. He C, Kim S W, Lee D S. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release, 2008, 127: 189–207

    Article  Google Scholar 

  108. Yu L, Ding J. Injectable hydrogels as unique biomedical materials. Chem Soc Rev, 2008, 37: 1473–1481

    Article  Google Scholar 

  109. Hoffman A S. Hydrogels for biomedical applications. Adv Drug Deliver Rev, 2012, 64: 18–23

    Article  Google Scholar 

  110. Li Q Y, Xu Z Y, Zhang D F, et al. T-shaped trifunctional crosslinker-toughening hydrogels. Sci China Tech Sci, 2020, 63: 1721–1729

    Article  Google Scholar 

  111. Rong Y, Zhang Z, He C L, et al. Matrix metalloproteinase-sensitive poly(ethylene glycol)/peptide hydrogels as an interactive platform conducive to cell proliferation during 3D cell culture. Sci China Tech Sci, 2021, 64: 1285–1294

    Article  Google Scholar 

  112. Shi S, Wang J Y, Wang T R, et al. Influence of residual chirality on the conformation and enzymatic degradation of glycopolypeptide based biomaterials. Sci China Tech Sci, 2021, 64: 641–650

    Article  Google Scholar 

  113. Zou Y, Jin X, Zhang X P, et al. A multifunctional biomedical patch based on hyperbranched epoxy polymer and MXene. Sci China Tech Sci, 2021, 64: 2744–2754

    Article  Google Scholar 

  114. Singh A, Peppas N A. Hydrogels and scaffolds for immunomodulation. Adv Mater, 2014, 26: 6530–6541

    Article  Google Scholar 

  115. Wu X, He C, Wu Y, et al. Synergistic therapeutic effects of Schiff’s base cross-linked injectable hydrogels for local co-delivery of metformin and 5-fluorouracil in a mouse colon carcinoma model. Biomaterials, 2016, 75: 148–162

    Article  Google Scholar 

  116. Molinaro G, Leroux J C, Damas J, et al. Biocompatibility of thermosensitive chitosan-based hydrogels: An in vivo experimental approach to injectable biomaterials. Biomaterials, 2002, 23: 2717–2722

    Article  Google Scholar 

  117. Ruel-Gariépy E, Shive M, Bichara A, et al. A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. Europ J Pharma Biopharma, 2004, 57: 53–63

    Article  Google Scholar 

  118. Nowak A K, Lake R A, Robinson B W. Combined chemoimmunotherapy of solid tumours: Improving vaccines? Adv Drug Deliv Rev, 2006, 58: 975–990

    Article  Google Scholar 

  119. Serafini P, Carbley R, Noonan K A, et al. High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res, 2004, 64: 6337–6343

    Article  Google Scholar 

  120. Albert M L, Sauter B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature, 1998, 392: 86–89

    Article  Google Scholar 

  121. Judson I R. Anthrapyrazoles: True successors to the anthracyclines? Anti-Cancer Drugs, 1991, 2: 223–231

    Article  Google Scholar 

  122. Gačanin J, Synatschke C V, Weil T. Biomedical applications of DNA-based hydrogels. Adv Funct Mater, 2019, 30: 1906253

    Article  Google Scholar 

  123. Bauer S, Kirschning C J, Häcker H, et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA, 2001, 98: 9237–9242

    Article  Google Scholar 

  124. Vollmer J, Krieg A M. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliver Rev, 2009, 61: 195–204

    Article  Google Scholar 

  125. Koyama S, Akbay E A, Li Y Y, et al. STK11/LKB1 deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T-cell activity in the lung tumor microenvironment. Cancer Res, 2016, 76: 999–1008

    Article  Google Scholar 

  126. Oh J K, Drumright R, Siegwart D J, et al. The development of microgels/nanogels for drug delivery applications. Prog Polym Sci, 2008, 33: 448–477

    Article  Google Scholar 

  127. Leonard W J, O’Shea J J. JAKS AND STATS: Biological implications. Annu Rev Immunol, 1998, 16: 293–322

    Article  Google Scholar 

  128. Zhu M, John S, Berg M, et al. Functional association of NMI with Stat5 and Stat1 in IL-2- and IFN γ-mediated signaling. Cell, 1999, 96: 121–130

    Article  Google Scholar 

  129. Negoro S, Oh H, Tone E, et al. Glycoprotein 130 regulates cardiac myocyte survival in doxorubicin-induced apoptosis through phosphatidylinositol 3-kinase/Akt phosphorylation and Bcl-xL/caspase-3 interaction. Circulation, 2001, 103: 555–561

    Article  Google Scholar 

  130. Rossé T, Olivier R, Monney L, et al. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature, 1998, 391: 496–499

    Article  Google Scholar 

  131. Lee K Y, Mooney D J. Alginate: Properties and biomedical applications. Prog Polym Sci, 2012, 37: 106–126

    Article  Google Scholar 

  132. Ruvinov E, Cohen S. Alginate biomaterial for the treatment of myocardial infarction: Progress, translational strategies, and clinical outlook. Adv Drug Deliver Rev, 2016, 96: 54–76

    Article  Google Scholar 

  133. Selmi T A S, Verdonk P, Chambat P, et al. Autologous chondrocyte implantation in a novel alginate-agarose hydrogel. J Bone Joint Surg Br volume, 2008, 90-B: 597–604

    Article  Google Scholar 

  134. Keir M E, Butte M J, Freeman G J, et al. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol, 2008, 26: 677–704

    Article  Google Scholar 

  135. Zou W, Wolchok J D, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci Transl Med, 2016, 8: 328rv4

    Article  Google Scholar 

  136. Alsaab H O, Sau S, Alzhrani R, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Front Pharmacol, 2017, 8: 561

    Article  Google Scholar 

  137. Dannenberg A J, Subbaramaiah K. Targeting cyclooxygenase-2 in human neoplasia. Cancer Cell, 2003, 4: 431–436

    Article  Google Scholar 

  138. Obermajer N, Muthuswamy R, Odunsi K, et al. PGE2-induced CXCL12 production and CXCR4 expression controls the accumulation of human MDSCs in ovarian cancer environment. Cancer Res, 2011, 71: 7463–7470

    Article  Google Scholar 

  139. Leahy K M, Ornberg R L, Wang Y, et al. Cyclooxygenase-2 inhibition by celecoxib reduces proliferation and induces apoptosis in angiogenic endothelial cells in vivo. Cancer Res, 2002, 62: 625–631

    Google Scholar 

  140. Michot J M, Bigenwald C, Champiat S, et al. Immune-related adverse events with immune checkpoint blockade: A comprehensive review. Eur J Cancer, 2016, 54: 139–148

    Article  Google Scholar 

  141. Galluzzi L, Buqué A, Kepp O, et al. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell, 2015, 28: 690–714

    Article  Google Scholar 

  142. Emens L A, Middleton G. The interplay of immunotherapy and chemotherapy: Harnessing potential synergies. Cancer Immunol Res, 2015, 3: 436–443

    Article  Google Scholar 

  143. Martins I, Wang Y, Michaud M, et al. Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ, 2014, 21: 79–91

    Article  Google Scholar 

  144. Dimitrov I, Trzebicka B, Müller A H E, et al. Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog Polym Sci, 2007, 32: 1275–1343

    Article  Google Scholar 

  145. Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliver Rev, 2012, 64: 49–60

    Article  Google Scholar 

  146. Steel J C, Waldmann T A, Morris J C. Interleukin-15 biology and its therapeutic implications in cancer. Trends Pharmacol Sci, 2012, 33: 35–41

    Article  Google Scholar 

  147. Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer, 2007, 7: 573–584

    Article  Google Scholar 

  148. Lv Q, He C, Quan F, et al. DOX/IL-2/IFN-γ co-loaded thermosensitive polypeptide hydrogel for efficient melanoma treatment. Bioactive Mater, 2018, 3: 118–128

    Article  Google Scholar 

  149. Lechner M, Lirk P, Rieder J. Inducible nitric oxide synthase (iNOS) in tumor biology: The two sides of the same coin. Semin Cancer Biol, 2005, 15: 277–289

    Article  Google Scholar 

  150. Fukumura D, Kashiwagi S, Jain R K. The role of nitric oxide in tumour progression. Nat Rev Cancer, 2006, 6: 521–534

    Article  Google Scholar 

  151. Sena L A, Chandel N S. Physiological roles of mitochondrial reactive oxygen species. Mol Cell, 2012, 48: 158–167

    Article  Google Scholar 

  152. Chen X, Song M, Zhang B, et al. Reactive oxygen species regulate T cell immune response in the tumor microenvironment. Oxid Med Cell Longev, 2016, 2016: 1580967

    Google Scholar 

  153. Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol, 2013, 13: 349–361

    Article  Google Scholar 

  154. Toschi L, Finocchiaro G, Bartolini S, et al. Role of gemcitabine in cancer therapy. Future Oncology (London, England), 2005, 1: 7–17

    Article  Google Scholar 

  155. Zhang P, Su D M, Liang M, et al. Chemopreventive agents induce programmed death-1-ligand 1 (PD-L1) surface expression in breast cancer cells and promote PD-L1-mediated T cell apoptosis. Mol Immunol, 2008, 45: 1470–1476

    Article  Google Scholar 

  156. Ginn-Pease M E, Whisler R L. Redox signals and NF-κB activation in T cells. Free Radical Biol Med, 1998, 25: 346–361

    Article  Google Scholar 

  157. Zhang Y, Choksi S, Chen K, et al. ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res, 2013, 23: 898–914

    Article  Google Scholar 

  158. Nishikawa M. Reactive oxygen species in tumor metastasis. Cancer Lett, 2008, 266: 53–59

    Article  Google Scholar 

  159. Sharma A, Lee M G, Won M, et al. Targeting heterogeneous tumors using a multifunctional molecular prodrug. J Am Chem Soc, 2019, 141: 15611–15618

    Article  Google Scholar 

  160. Corrales L, Glickman L H, McWhirter S M, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep, 2015, 11: 1018–1030

    Article  Google Scholar 

  161. Raghuraman H, Chattopadhyay A. Melittin: A membrane-active peptide with diverse functions. Biosci Rep, 2007, 27: 189–223

    Article  Google Scholar 

  162. Trédan O, Galmarini C M, Patel K, et al. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst, 2007, 99: 1441–1454

    Article  Google Scholar 

  163. Jain R K. Normalizing tumor microenvironment to treat cancer: Bench to bedside to biomarkers. J Clin Oncol, 2013, 31: 2205–2218

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to SongLing Zhang or ChaoLiang He.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51973218, 51833010, 51622307), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Wang, T., Zhang, S. et al. Recent advances in organic and polymeric carriers for local tumor chemo-immunotherapy. Sci. China Technol. Sci. 65, 1011–1028 (2022). https://doi.org/10.1007/s11431-021-1961-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11431-021-1961-y

Keywords