Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Combustion-related activities dominate atmospheric ammonia in the Pearl River Delta region, China

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Ammonia (NH3) is a key precursor of fine particulate matter (PM2.5) in the air; however, its emission sources at different heights remain poorly understood in the Pearl River Delta (PRD) region of China. In this study, we simultaneously collected PM2.5 samples at three atmospheric heights (ground, 118 m, and 488 m) based on the atmospheric observatories of Canton Tower, the tallest structure in the PRD region. Our results showed that the average NH4+ concentrations were 2.7 ± 1.4, 3.0 ± 1.8, and 2.6 ± 1.7 µg/m3 at the ground site, 118 m, and 488 m during the sampling campaign, with no significant difference (p > 0.05) among the three heights. However, the stable nitrogen isotope composition values in NH4+15N-NH4+) displayed a significant correlation with height (p < 0.05). We further calculated the initial δ15N-NH3 values and performed source apportionments using the Bayesian Isotope Mixture Model. The results indicated that the mean contributions of agriculture, waste, vehicle, biomass burning, NH3 slip, and coal combustion were 9.9% ± 4.4%, 8.3% ± 5.5%, 29% ± 8.0%, 16% ± 2.2%, 25% ± 6.0%, and 12% ± 3.4%, respectively, at the ground site during the sampling campaign. By contrast, the contributions of sources at 488 m remained relatively stable due to the limited influence of local activities. Overall, our study highlights the dominant role of combustion sources in NH3 emissions in the PRD region, with their contribution being highly dependent on atmospheric height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berner A H, David Felix J (2020). Investigating ammonia emissions in a coastal urban airshed using stable isotope techniques. Science of the Total Environment, 707: 134952

    Article  CAS  Google Scholar 

  • Bhattarai N, Wang S, Xu Q, Dong Z, Chang X, Jiang Y, Zheng H (2020). Sources of gaseous NH3 in urban Beijing from parallel sampling of NH3 and NH4+, their nitrogen isotope measurement and modeling. Science of the Total Environment, 747: 141361

    Article  CAS  Google Scholar 

  • Bokhoven C, Theeuwen H J (1966). Determination of the abundance of carbon and nitrogen isotopes in Dutch coals and natural gas. Nature, 211(5052): 927–929

    Article  CAS  Google Scholar 

  • Chang Y, Cheng K, Kuang Y, Hu Q, Gao Y, Huang R J, Huang C, Walters W W, Lehmann M F (2022). Isotopic variability of ammonia (δ15N-NH3) slipped from heavy-duty vehicles under real-world conditions. Environmental Science & Technology Letters, 9(9): 726–732

    Article  CAS  Google Scholar 

  • Chang Y, Zhang Y L, Kawichai S, Wang Q, Van Damme M, Clarisse L, Prapamontol T, Lehmann M F (2021). Convergent evidence for the pervasive but limited contribution of biomass burning to atmospheric ammonia in peninsular Southeast Asia. Atmospheric Chemistry and Physics, 21(9): 7187–7198

    Article  CAS  Google Scholar 

  • Chen Z, Pei C, Liu J, Zhang X, Ding P, Dang L, Zong Z, Jiang F, Wu L, Sun X, Zhou S, Zhang Y, Zhang Z, Zheng J, Tian C, Li J, Zhang G (2022). Non-agricultural source dominates the ammonium aerosol in the largest city of South China based on the vertical δ15N measurements. Science of the Total Environment, 848: 157750

    Article  CAS  Google Scholar 

  • David Felix J, Elliott E M, Gish T J, Mcconnell L L, Shaw S L (2013). Characterizing the isotopic composition of atmospheric ammonia emission sources using passive samplers and a combined oxidation-bacterial denitrifier approach. Rapid Communications in Mass Spectrometry, 27(20): 2239–2246

    Article  CAS  Google Scholar 

  • EEA (2023). European Union Emission Inventory Report 1990–2022—Under the UNECE Convention on Long-range Transboundary Air Pollution (Air Convention). Copenhagen, Denmark: EEA

    Google Scholar 

  • Farren N J, Davison J, Rose R A, Wagner R L, Carslaw D C (2020). Underestimated ammonia emissions from road vehicles. Environmental Science & Technology, 54(24): 15689–15697

    Article  CAS  Google Scholar 

  • Felix J D, Berner A, Wetherbee G A, Murphy S F, Heindel R C (2023). Nitrogen isotopes indicate vehicle emissions and biomass burning dominate ambient ammonia across Colorado’s Front Range urban corridor. Environmental Pollution, 316: 120537

    Article  CAS  Google Scholar 

  • Feng S, Xu W, Cheng M, Ma Y, Wu L, Kang J, Wang K, Tang A, Collett J L Jr, Fang Y, et al. (2022). Overlooked nonagricultural and wintertime agricultural NH3 emissions in Quzhou County, North China Plain: evidence from 15N-stable isotopes. Environmental Science & Technology Letters, 9(2): 127–133

    Article  CAS  Google Scholar 

  • Feng X, Chen Y, Du H, Feng Y, Mu Y, Chen J (2023). Biomass burning is a non-negligible source for ammonium during winter haze episodes in rural North China: evidence from high time resolution 15N-stable isotope. Journal of Geophysical Research: Atmospheres, 128(3): e2022JD038012

    Article  CAS  Google Scholar 

  • Feryer H D (1978). Seasonal trends of NH4+ and NO3 nitrogen isotope composition in rain collected at Jiilich, Germany. Tellus, 30(1): 83–92

    Google Scholar 

  • Gu B, Zhang L, Dingenen R V, Vieno M, Grinsven H J V, Zhang X, Zhang S, Chen Y, Wang S, Ren C, et al. (2021). Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Science, 374(6568): 758–762

    Article  CAS  Google Scholar 

  • Heaton T H E (1987). 15N/14N ratios of nitrate and ammonium in rain at Pretoria, South Africa. Atmospheric Environment, 21(4): 843–852

    Article  CAS  Google Scholar 

  • Huang Z, Zhong Z, Sha Q, Xu Y, Zhang Z, Wu L, Wang Y, Zhang L, Cui X, Tang M, et al. (2021). An updated model-ready emission inventory for Guangdong Province by incorporating big data and mapping onto multiple chemical mechanisms. Science of the Total Environment, 769: 144535

    Article  CAS  Google Scholar 

  • Jiang F, Liu J, Cheng Z, Ding P, Xu Y, Zong Z, Zhu S, Zhou S, Yan C, Zhang Z, et al. (2022). Dual-carbon isotope constraints on source apportionment of black carbon in the megacity Guangzhou of the Pearl River Delta region, China for 2018 autumn season. Environmental Pollution, 294: 118638

    Article  CAS  Google Scholar 

  • Jiang F, Liu J, Cheng Z, Ding P, Zhu S, Yuan X, Chen W, Zhang Z, Zong Z, Tian C, et al. (2023). Quantitative evaluation for the sources and aging processes of organic aerosols in urban Guangzhou: insights from a comprehensive method of dualcarbon isotopes and macro tracers. Science of the Total Environment, 888: 164182

    Article  CAS  Google Scholar 

  • Kawashima H, Ono S (2019). Nitrogen isotope fractionation from ammonia gas to ammonium in particulate ammonium chloride. Environmental Science & Technology, 53(18): 10629–10635

    Article  CAS  Google Scholar 

  • Kawashima H, Yoshida O, Suto N (2023). Long-term source apportionment of ammonium in PM2.5 at a suburban and a rural site using stable nitrogen isotopes. Environmental Science & Technology, 57(3): 1268–1277

    Article  CAS  Google Scholar 

  • Li B, Chen L, Shen W, Jin J, Wang T, Wang P, Yang Y, Liao H (2021). Improved gridded ammonia emission inventory in China. Atmospheric Chemistry and Physics, 21(20): 15883–15900

    Article  CAS  Google Scholar 

  • Li L, Lollar B S, Li H, Wortmann U G, Lacrampe-Couloume G (2012). Ammonium stability and nitrogen isotope fractionations for NH4+-NH3(aq)-NH3(gas) systems at 20–70 °C and pH of 2–13: applications to habitability and nitrogen cycling in low-temperature hydrothermal systems. Geochimica et Cosmochimica Acta, 84: 280–296

    Article  CAS  Google Scholar 

  • Li M, Liu H, Geng G, Hong C, Liu F, Song Y, Tong D, Zheng B, Cui H, Man H, et al. (2017a). Anthropogenic emission inventories in China: a review. National Science Review, 4(6): 834–866

    Article  CAS  Google Scholar 

  • Li Y, Liu J, George C, Herrmann H, Gu M, Yang M, Wang Y, Mellouki A, Pan Y, Felix J D, et al. (2023). Apportioning atmospheric ammonia sources across spatial and seasonal scales by their isotopic fingerprint. Environmental Science & Technology, 57(43): 16424–16434

    Article  CAS  Google Scholar 

  • Li Y, Thompson T M, Van Damme M, Chen X, Benedict K B, Shao Y, Day D, Boris A, Sullivan A P, Ham J, et al. (2017b). Temporal and spatial variability of ammonia in urban and agricultural regions of northern Colorado, United States. Atmospheric Chemistry and Physics, 17(10): 6197–6213

    Article  CAS  Google Scholar 

  • Liu D, Fang Y, Tu Y, Pan Y (2014). Chemical method for nitrogen isotopic analysis of ammonium at natural abundance. Analytical Chemistry, 86(8): 3787–3792

    Article  CAS  Google Scholar 

  • Liu J, Ding P, Zong Z, Li J, Tian C, Chen W, Chang M, Salazar G, Shen C, Cheng Z, et al. (2018). Evidence of rural and suburban sources of urban haze formation in China: a case study from the Pearl River Delta region. Journal of Geophysical Research. Atmospheres, 123(9): 4712–4726

    Google Scholar 

  • Nirmalkar J, Jung J, Han S, Dong Z, Xu Z, Fu P, Pavulari C M (2023). Chemistry of PM2.5 in haze events in two East Asian cities during winter–spring 2019. Atmospheric Environment, 293: 119457

    Article  CAS  Google Scholar 

  • Pan Y, Gu M, Song L, Tian S, Wu D, Walters W W, Yu X, Lü X, Ni X, Wang Y, et al. (2020). Systematic low bias of passive samplers in characterizing nitrogen isotopic composition of atmospheric ammonia. Atmospheric Research, 243: 105018

    Article  CAS  Google Scholar 

  • Pan Y, Tian S, Liu D, Fang Y, Zhu X, Zhang Q, Zheng B, Michalski G, Wang Y (2016). Fossil fuel combustion-related emissions dominate atmospheric ammonia sources during severe haze episodes: evidence from 15N-stable isotope in size-resolved aerosol ammonium. Environmental Science & Technology, 50(15): 8049–8056

    Article  CAS  Google Scholar 

  • Parnell A C, Inger R, Bearhop S, Jackson A L (2010). Source partitioning using stable isotopes: coping with too much variation. PLoS One, 5(3): e9672

    Article  Google Scholar 

  • Sahoo P, Sahu S K, Mangaraj P, Mishra A, Beig G, Gunthe S S (2024). Reporting of gridded ammonia emission and assessment of hotspots across India: a comprehensive study of 24 anthropogenic sources. Journal of Hazardous Materials, 479: 135557

    Article  CAS  Google Scholar 

  • Shao S, Zhang Y, Chang Y, Cao F, Lin Y, Mozaffar A, Hong Y (2020). Online characterization of a large but overlooked human excreta source of ammonia in China’s urban atmosphere. Atmospheric Environment, 230: 117459

    Article  CAS  Google Scholar 

  • Smirnoff A, Savard M M, Vet R, Simard M C (2012). Nitrogen and triple oxygen isotopes in near - road air samples using chemical conversion and thermal decomposition. Rapid Communications in Mass Spectrometry, 26(23): 2791–2804

    Article  CAS  Google Scholar 

  • Song L, Walters W W, Pan Y, Li Z, Gu M, Duan Y, Lü X, Fang Y (2021). 15N natural abundance of vehicular exhaust ammonia, quantified by active sampling techniques. Atmospheric Environment, 255: 118430

    Article  CAS  Google Scholar 

  • U.S.EPA (2023). EPA’s 2020 National Emissions Inventory and Trends Report. Washington, DC: U.S.EPA

    Google Scholar 

  • Urey H C (1947). The thermodynamic properties of isotopic substances. Journal of the Chemical Society (Resumed), 1947(5): 562–581

    Article  Google Scholar 

  • Van Damme M, Clarisse L, Whitburn S, Hadji-Lazaro J, Hurtmans D, Clerbaux C, Coheur P F (2018). Industrial and agricultural ammonia point sources exposed. Nature, 564(7734): 99–103

    Article  CAS  Google Scholar 

  • Vo T, Christiansen A E (2024). Impact of recent agricultural ammonia increases on fine particulate matter burden over the Midwestern United States. ACS Earth & Space Chemistry, 8(11): 2209–2217

    Article  CAS  Google Scholar 

  • Walters W W, Chai J, Hastings M G (2019). Theoretical phase resolved ammonia–ammonium nitrogen equilibrium isotope exchange fractionations: applications for tracking atmospheric ammonia gas-to-particle conversion. ACS Earth & Space Chemistry, 3(1): 79–89

    Article  CAS  Google Scholar 

  • Walters W W, Karod M, Willcocks E, Baek B H, Blum D E, Hastings M G (2022). Quantifying the importance of vehicle ammonia emissions in an urban area of northeastern USA utilizing nitrogen isotopes. Atmospheric Chemistry and Physics, 22(20): 13431–13448

    Article  CAS  Google Scholar 

  • Walters W W, Song L, Chai J, Fang Y, Colombi N, Hastings M G (2020). Characterizing the spatiotemporal nitrogen stable isotopic composition of ammonia in vehicle plumes. Atmospheric Chemistry and Physics Discussion, 20(19): 11551–11567

    Article  CAS  Google Scholar 

  • Wang W, Gao Y, Shao L, Fan C, Li X, Li Y, Liu M, Zhou X (2023a). Chemical compositions and possible transportation of PM2.5 during two haze periods in a coastal city of the North China Plain. Geological Journal, 58(12): 4417–4427

    Article  CAS  Google Scholar 

  • Wang Y, Liu J, Jiang F, Chen Z, Wu L, Zhou S, Pei C, Kuang Y, Cao F, Zhang Y, et al. (2023b). Vertical measurements of stable nitrogen and oxygen isotope composition of fine particulate nitrate aerosol in Guangzhou city: source apportionment and oxidation pathway. Science of the Total Environment, 865: 161239

    Article  CAS  Google Scholar 

  • Weagle C L, Snider G, Li C, Van Donkelaar A, Philip S, Bissonnette P, Burke J, Jackson J, Latimer R, Stone E, et al. (2018). Global sources of fine particulate matter: interpretation of PM2.5 chemical composition observed by SPARTAN using a global chemical transport model. Environmental Science & Technology, 52(20): 11670–11681

    CAS  Google Scholar 

  • Wei Y, Tian X, Huang J, Wang Z, Huang B, Liu J, Gao J, Liang D, Yu H, Feng Y, et al. (2023). New insights into the formation of ammonium nitrate from a physical and chemical level perspective. Frontiers of Environmental Science & Engineering, 17(11): 137

    Article  CAS  Google Scholar 

  • Wu L, Ren H, Wang P, Chen J, Fang Y, Hu W, Ren L, Deng J, Song Y, Li J, et al. (2019). Aerosol ammonium in the urban boundary layer in Beijing: insights from nitrogen isotope ratios and simulations in summer 2015. Environmental Science & Technology Letters, 6(7): 389–395

    Article  CAS  Google Scholar 

  • Wu L, Wang P, Zhang Q, Ren H, Shi Z, Hu W, Chen J, Xie Q, Li L, Yue S, et al. (2024). Dominant contribution of combustion-related ammonium during haze pollution in Beijing. Science Bulletin, 69(7): 978–987

    Article  CAS  Google Scholar 

  • Xiao H W, Wu J F, Luo L, Liu C, Xie Y J, Xiao H (2020). Enhanced biomass burning as a source of aerosol ammonium over cities in central China in autumn. Environmental Pollution, 266: 115278

    Article  CAS  Google Scholar 

  • Xu W, Zhao Y, Wen Z, Chang Y, Pan Y, Sun Y, Ma X, Sha Z, Li Z, Kang J J S B, et al. (2022). Increasing importance of ammonia emission abatement in PM2.5 pollution control. Science Bulletin, 67(17): 1745–1749

    Article  CAS  Google Scholar 

  • Yue D, Zhong L, Zhang T, Shen J, Zhou Y, Zeng L, Dong H, Ye S (2015). Pollution properties of water-soluble secondary inorganic ions in atmospheric PM2.5 in the Pearl River Delta Region. Aerosol and Air Quality Research, 15(5): 1737–1747

    Article  CAS  Google Scholar 

  • Zhang Y, Benedict K B, Tang A, Sun Y, Fang Y, Liu X (2020). Persistent nonagricultural and periodic agricultural emissions dominate sources of ammonia in urban Beijing: evidence from 15N stable isotope in vertical profiles. Environmental Science & Technology, 54(1): 102–109

    Article  CAS  Google Scholar 

  • Zhang Y, Ma X, Tang A, Fang Y, Misselbrook T, Liu X (2023). Source apportionment of atmospheric ammonia at 16 sites in China using a Bayesian isotope mixing model based on δ15N-NHx signatures. Environmental Science & Technology, 57(16): 6599–6608

    Article  CAS  Google Scholar 

  • Zhang Y, Tang A, Wang D, Wang Q, Benedict K, Zhang L, Liu D, Li Y, Collett J L Jr, Sun Y, et al. (2018). The vertical variability of ammonia in urban Beijing, China. Atmospheric Chemistry and Physics, 18(22): 16385–16398

    Article  CAS  Google Scholar 

  • Zheng M, Wang Y, Yuan L, Chen N, Kong S (2022). Ambient observations indicating an increasing effectiveness of ammonia control in wintertime PM2.5 reduction in Central China. Science of the Total Environment, 824: 153708

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 42230602), the National Key Research and Development Program of China (No. 2022YFC3700602), and the Guang Dong Basic and Applied Basic Research Foundation (China) (No. 2024B1515040026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwen Liu.

Ethics declarations

Conflict of Interests The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this manuscript.

Additional information

Highlights

• The NH4+ concentrations showed no significant differences at different altitudes.

• The δ15N-NH4+ values decreased with increasing altitude in urban areas.

• Combustion source was the largest emitter for NH3 in the PRD region.

• The contributions of different sources to NH3 vary with height.

Supporting Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Liu, J., Pei, C. et al. Combustion-related activities dominate atmospheric ammonia in the Pearl River Delta region, China. Front. Environ. Sci. Eng. 19, 77 (2025). https://doi.org/10.1007/s11783-025-1997-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-025-1997-4

Keywords