Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Mechanistic Insights and Therapeutic Potential of Wnt5a Signaling in Alveolar Epithelial Cell Development and Bronchopulmonary Dysplasia

  • Review
  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Wnt5a is a key regulator of non-canonical Wnt signaling, critically influencing alveolar epithelial cell dynamics during development and injury responses. Emerging evidence has revealed two conserved Wnt5a mediated mechanisms: ROR-dependent planar cell polarity signaling that orchestrates cytoskeletal reorganization during alveolar septation, and calcium-regulated transcriptional networks balancing type II alveolar epithelial progenitor maintenance and differentiation. Developmental studies demonstrate Wnt5a deficiency disrupts myofibroblast differentiation and alveologenesis, recapitulating bronchopulmonary dysplasia pathology, while its pathological elevation in hyperoxia models promotes extracellular matrix remodeling through LOX/YAP-mediated mechanotransduction. Therapeutic modulation of Wnt5a signaling shows promise, as ROR2 activation enhances mesenchymal stem cell-mediated alveolar repair, and Wnt5a supplementation rescues epithelial transdifferentiation defects in hyperoxia-induced injury. These findings position Wnt5a signaling as a pivotal node connecting developmental mechanisms with regenerative strategies for alveolar pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Nikolić, M. Z., Sun, D., & Rawlins, E. L. (2018). Human lung development: Recent progress and new challenges. Development;145(16).

  2. Costa, R. H., Kalinichenko, V. V., & Lim, L. (2001). Transcription factors in mouse lung development and function. American Journal of Physiology-Lung Cellular and Molecular Physiology,280(5), L823-838.

    Article  CAS  PubMed  Google Scholar 

  3. Sang, Y., & Qiao, L. (2024). Lung epithelial-endothelial-mesenchymal signaling network with hepatocyte growth factor as a hub is involved in bronchopulmonary dysplasia. Frontiers in Cell and Developmental Biology,12, Article 1462841.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li, C., Smith, S. M., Peinado, N. (2020). WNT5a-ROR signaling is essential for alveologenesis. Cells;9(2).

  5. Paramore, S. V., Trenado-Yuste, C., Sharan, R., Nelson, C. M., & Devenport, D. (2024). Vangl-dependent mesenchymal thinning shapes the distal lung during murine sacculation. Developmental Cell, 59(10), 1302–1316e1305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stoll, B. J., Hansen, N. I., Bell, E. F., et al. (2015). Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. JAMA,314(10), 1039–1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morrow, L. A., Wagner, B. D., Ingram, D. A., et al. (2017). Antenatal determinants of bronchopulmonary dysplasia and late respiratory disease in preterm infants. American Journal of Respiratory and Critical Care Medicine,196(3), 364–374.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rim, E. Y., Clevers, H., & Nusse, R. (2022). The Wnt pathway: From signaling mechanisms to synthetic modulators. Annual Review of Biochemistry, 91, 571–598.

    Article  CAS  PubMed  Google Scholar 

  9. Habib, S. J., & Acebrón, S. P. (2022). Wnt signalling in cell division: From mechanisms to tissue engineering. Trends in Cell Biology,32(12), 1035–1048.

    Article  CAS  PubMed  Google Scholar 

  10. Holzem, M., Boutros, M., & Holstein, T. W. (2024). The origin and evolution of Wnt signalling. Nature Reviews Genetics, 25(7), 500–512.

    Article  CAS  PubMed  Google Scholar 

  11. Aros, C. J., Pantoja, C. J., & Gomperts, B. N. (2021). Wnt signaling in lung development, regeneration, and disease progression. Communications Biology,4(1), 601.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nabhan, A. N., Brownfield, D. G., Harbury, P. B., Krasnow, M. A., & Desai, T. J. (2018). Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science, 359(6380), 1118–1123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Travaglini, K. J., Nabhan, A. N., Penland, L., et al. (2020). A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature, 587(7835), 619–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hurskainen, M., Mižíková, I., Cook, D. P., et al. (2021). Single cell transcriptomic analysis of murine lung development on hyperoxia-induced damage. Nature Communications,12(1), Article 1565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jones, D. L., Morley, M. P., Li, X., et al. (2024). An injury-induced mesenchymal-epithelial cell niche coordinates regenerative responses in the lung. Science, 386(6727), eado5561.

    Article  CAS  PubMed  Google Scholar 

  16. Sucre, J. M. S., Vickers, K. C., Benjamin, J. T., et al. (2020). Hyperoxia injury in the developing lung is mediated by mesenchymal expression of Wnt5A. American Journal of Respiratory and Critical Care Medicine,201(10), 1249–1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, C., Brunt, L., Ono, Y., Rogers, S., & Scholpp, S. (2024). Cytoneme-mediated transport of active Wnt5b-Ror2 complexes in zebrafish. Nature,625(7993), 126–133.

    Article  CAS  PubMed  Google Scholar 

  18. Li, X., Huang, L., Mao, M. (2024). HucMSCs-derived exosomes promote lung development in premature birth via Wnt5a/ROCK1 Axis. Stem Cell Reviews and Reports

  19. Wang, K., Ma, F., Arai, S., et al. (2023). WNT5a signaling through ROR2 activates the Hippo pathway to suppress YAP1 activity and tumor growth. Cancer Research,83(7), 1016–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Park, H. W., Kim, Y. C., Yu, B., et al. (2015). Alternative Wnt signaling activates YAP/TAZ. Cell,162(4), 780–794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu, D. J., Cai, X. T., Simons, J., Yun, J., Elstrott, J., & Jasper, H. (2025). Non-canonical Wnt signaling promotes epithelial fluidization in the repairing airway. Nature Communications,16(1), Article 4124.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li, C., Peinado, N., Smith, S. M., et al. (2022). Wnt5a promotes AT1 and represses AT2 lineage-specific gene expression in a cell-context-dependent manner. Stem Cells,40(7), 691–703.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Davé, V., Childs, T., Xu, Y., et al. (2006). Calcineurin/Nfat signaling is required for perinatal lung maturation and function. Journal of Clinical Investigation,116(10), 2597–2609.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jia, Y. Y., Lu, J., Huang, Y., et al. (2014). The involvement of NFAT transcriptional activity suppression in SIRT1-mediated inhibition of COX-2 expression induced by pma/ionomycin. PLoS One,9(5), Article e97999.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Martin-Medina, A., Lehmann, M., Burgy, O., et al. (2018). Increased extracellular vesicles mediate WNT5A signaling in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine,198(12), 1527–1538.

    Article  CAS  PubMed  Google Scholar 

  26. Sen, M., Lauterbach, K., El-Gabalawy, H., Firestein, G. S., Corr, M., & Carson, D. A. (2000). Expression and function of wingless and frizzled homologs in rheumatoid arthritis. Proceedings of the National Academy of Sciences of the United States of America,97(6), 2791–2796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kadota, T., Fujita, Y., Araya, J., et al. (2021). Human bronchial epithelial cell-derived extracellular vesicle therapy for pulmonary fibrosis via inhibition of TGF-β-WNT crosstalk. Journal of Extracellular Vesicles,10(10), Article e12124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yao, C., Guan, X., Carraro, G., et al. (2021). Senescence of alveolar type 2 cells drives progressive pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine,203(6), 707–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Swarr, D. T., & Morrisey, E. E. (2015). Lung endoderm morphogenesis: Gasping for form and function. Annual Review of Cell and Developmental Biology,31, 553–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thébaud, B., Goss, K. N., Laughon, M., et al. (2019). Bronchopulmonary dysplasia. Nature Reviews Disease Primers,5(1), Article 78.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Frank, D. B., Penkala, I. J., Zepp, J. A., et al. (2019). Early lineage specification defines alveolar epithelial ontogeny in the murine lung. Proceedings of the National Academy of Sciences of the United States of America,116(10), 4362–4371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Caldeira, I., Fernandes-Silva, H., Machado-Costa, D., Correia-Pinto, J., & Moura, R. S. (2021). Developmental pathways underlying lung development and congenital lung disorders. Cells, 10(11), 2987.

  33. Zhang, K., Yao, E., & Lin, C. (2020). A mammalian Wnt5a-Ror2-Vangl2 axis controls the cytoskeleton and confers cellular properties required for alveologenesis. Elife, 9, e53688.

  34. Toth, A., Kannan, P., Snowball, J., et al. (2023). Alveolar epithelial progenitor cells require Nkx2-1 to maintain progenitor-specific epigenomic state during lung homeostasis and regeneration. Nature Communications,14(1), Article 8452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lim, K., Rutherford, E. N., Delpiano, L., et al. (2025). A novel human fetal lung-derived alveolar organoid model reveals mechanisms of surfactant protein C maturation relevant to interstitial lung disease. The EMBO Journal,44(3), 639–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sarabia-Sánchez, M. A., & Robles-Flores, M. (2024). WNT signaling in stem cells: A look into the non-canonical pathway. Stem Cell Reviews and Reports,20(1), 52–66.

    Article  PubMed  Google Scholar 

  37. Reza, A. A., Kohram, F., Reza, H. A., et al. (2023). FOXF1 regulates alveolar epithelial morphogenesis through transcriptional activation of mesenchymal WNT5A. American Journal of Respiratory Cell and Molecular Biology,68(4), 430–443.

    Article  CAS  PubMed  Google Scholar 

  38. Trinh-Minh, T., Chen, C. W., & Tran Manh, C. (2024). Noncanonical WNT5A controls the activation of latent TGF-β to drive fibroblast activation and tissue fibrosis. The Journal of Clinical Investigation, 134(10), e159884.

  39. Rippa, A. L., Alpeeva, E. V., Vasiliev, A. V., & Vorotelyak, E. A. (2021). Alveologenesis: What governs secondary septa formation. International Journal of Molecular Sciences, 22(22), 12107.

  40. Xu, W., Xu, B., Zhao, Y., et al. (2015). Wnt5a reverses the inhibitory effect of hyperoxia on transdifferentiation of alveolar epithelial type II cells to type I cells. Journal of Physiology and Biochemistry,71(4), 823–838.

    Article  CAS  PubMed  Google Scholar 

  41. Vladar, E. K., & Königshoff, M. (2020). Noncanonical wnt planar cell polarity signaling in lung development and disease. Biochemical Society Transactions,48(1), 231–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Oishi, I., Suzuki, H., Onishi, N., et al. (2003). The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes to Cells,8(7), 645–654.

    Article  CAS  PubMed  Google Scholar 

  43. Li, C., Xiao, J., Hormi, K., Borok, Z., & Minoo, P. (2002). Wnt5a participates in distal lung morphogenesis. Developmental Biology,248(1), 68–81.

    Article  CAS  PubMed  Google Scholar 

  44. Gao, F., Li, C., & Smith, S. M. (2022). Decoding the IGF1 signaling gene regulatory network behind alveologenesis from a mouse model of bronchopulmonary dysplasia. Elife, 11, e77522

  45. He, H., Snowball, J., Sun, F., Na, C. L., & Whitsett, J. A. (2021). IGF1R controls mechanosignaling in myofibroblasts required for pulmonary alveologenesis. JCI Insight, 6(6), e144863.

  46. Kadzik, R. S., Cohen, E. D., Morley, M. P., Stewart, K. M., Lu, M. M., & Morrisey, E. E. (2014). Wnt ligand/frizzled 2 receptor signaling regulates tube shape and branch-point formation in the lung through control of epithelial cell shape. Proceedings of the National Academy of Sciences of the United States of America,111(34), 12444–12449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kunimoto, K., Bayly, R. D., Vladar, E. K., Vonderfecht, T., Gallagher, A. R., & Axelrod, J. D. (2017). Disruption of core planar cell Polarity signaling regulates renal tubule morphogenesis but is not cystogenic. Current Biology, 27(20), 3120–3131e3124.

    Article  CAS  PubMed  Google Scholar 

  48. Kishimoto, K., Tamura, M., Nishita, M., et al. (2018). Synchronized mesenchymal cell polarization and differentiation shape the formation of the murine trachea and esophagus. Nature Communications, 9(1), 2816.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Paramore, S. V., Goodwin, K., Fowler, E. W., Devenport, D., & Nelson, C. M. (2024). Mesenchymal Vangl1 and Vangl2 facilitate airway elongation and widening independently of the planar cell Polarity complex. Development, 151(16), dev202692.

  50. Gros, J., Hu, J. K., Vinegoni, C., Feruglio, P. F., Weissleder, R., & Tabin, C. J. (2010). WNT5A/JNK and FGF/MAPK pathways regulate the cellular events shaping the vertebrate limb bud. Current Biology,20(22), 1993–2002.

    Article  CAS  PubMed  Google Scholar 

  51. Fu, Y., Wei, Y., & Zhou, Y. (2021). Wnt5a regulates junctional function of Sertoli cells through PCP-mediated effects on mTORC1 and mTORC2. Endocrinology, 162(10), bqab149.

  52. Kim, S. Y., McTeague, D., Cheong, S. S., Hind, M., & Dean, C. H. (2024). Deciphering the impacts of modulating the Wnt-planar cell polarity (PCP) pathway on alveolar repair. Frontiers in Cell and Developmental Biology,12, Article 1349312.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shi, Y. N., Liu, L. P., Deng, C. F., et al. (2021). Celastrol ameliorates vascular neointimal hyperplasia through Wnt5a-involved autophagy. International Journal of Biological Sciences,17(10), 2561–2575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen, Q., Zheng, X., Li, Y., et al. (2022). Wnt5a regulates autophagy in Bacille Calmette-Guérin (BCG)-Infected pulmonary epithelial cells. Microbial Pathogenesis, 173(Pt A), 105826.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, K., Yao, E., Wang, S. A., et al. (2022). A functional circuit formed by the autonomic nerves and myofibroblasts controls mammalian alveolar formation for gas exchange. Developmental Cell, 57(13), 1566–1581e1567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Loscertales, M., Mikels, A. J., Hu, J. K., Donahoe, P. K., & Roberts, D. J. (2008). Chick pulmonary Wnt5a directs airway and vascular tubulogenesis. Development (Cambridge, England),135(7), 1365–1376.

    Article  CAS  PubMed  Google Scholar 

  57. Negretti, N. M., Plosa, E. J., & Benjamin, J. T. (2021). A single-cell atlas of mouse lung development. Development, 148(24), dev199512.

  58. Bougaran, P., Bats, M. L., Delobel, V., et al. (2023). ROR2/PCP a new pathway controlling endothelial cell Polarity under flow conditions. Arteriosclerosis, Thrombosis, and Vascular Biology, 43(7), 1199–1218.

    Article  CAS  PubMed  Google Scholar 

  59. Malsin, E. S., Kim, S., Lam, A. P., & Gottardi, C. J. (2019). Macrophages as a source and recipient of Wnt signals. Frontiers in Immunology,10, Article 1813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jacob, A., Morley, M., Hawkins, F., et al. (2017). Differentiation of human pluripotent stem cells into functional lung alveolar epithelial cells. Cell Stem Cell, 21(4), 472–488e410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Conlon, T. M., John-Schuster, G., Heide, D., et al. (2020). Inhibition of LTβR signalling activates WNT-induced regeneration in lung. Nature, 588(7836), 151–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Qi, Y., Liang, X., Dai, F., Guan, H., Sun, J., & Yao, W. (2020). RhoA/ROCK pathway activation is regulated by AT1 receptor and participates in smooth muscle migration and dedifferentiation via promoting actin cytoskeleton polymerization. International Journal of Molecular Sciences, 21(15), 5398.

  63. Huang, T., Xie, Z., Wang, J., Li, M., Jing, N., & Li, L. (2011). Nuclear factor of activated T cells (NFAT) proteins repress canonical Wnt signaling via its interaction with dishevelled (Dvl) protein and participate in regulating neural progenitor cell proliferation and differentiation. Journal of Biological Chemistry, 286(43), 37399–37405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, M. Y., Yang, J. M., Wu, Y., et al. (2024). Curcumin-activated Wnt5a pathway mediates Ca(2+) channel opening to affect myoblast differentiation and skeletal muscle regeneration. Journal of Cachexia, Sarcopenia and Muscle,15(5), 1834–1849.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Popp, T., Steinritz, D., Breit, A., et al. (2014). Wnt5a/β-catenin signaling drives calcium-induced differentiation of human primary keratinocytes. Journal of Investigative Dermatology,134(8), 2183–2191.

    Article  CAS  PubMed  Google Scholar 

  66. Lee, J. H., Bhang, D. H., Beede, A., et al. (2014). Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell,156(3), 440–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tu, M. K., Levin, J. B., Hamilton, A. M., & Borodinsky, L. N. (2016). Calcium signaling in skeletal muscle development, maintenance and regeneration. Cell Calcium,59(2–3), 91–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Naillat, F., Deshar, G., Hankkila, A., et al. (2024). Calcium signaling induces partial EMT and renal fibrosis in a Wnt4(mCherry) knock-in mouse model. Biochim Biophys Acta Mol Basis Dis, 1870(5), 167180.

    Article  CAS  PubMed  Google Scholar 

  69. Baudel, M., Shi, J., Large, W. A., & Albert, A. P. (2020). Insights into activation mechanisms of Store-Operated TRPC1 channels in vascular smooth muscle. Cells, 9(1), 179.

  70. Sabourin, J., Bartoli, F., Antigny, F., Gomez, A. M., & Benitah, J. P. (2016). Transient receptor potential canonical (TRPC)/Orai1-dependent Store-operated Ca2 + Channels: NEW TARGETS OF ALDOSTERONE IN CARDIOMYOCYTES. Journal of Biological Chemistry, 291(25), 13394–13409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liao, Y., Plummer, N. W., George, M. D., Abramowitz, J., Zhu, M. X., & Birnbaumer, L. (2009). A role for Orai in TRPC-mediated Ca2 + entry suggests that a trpc: Orai complex may mediate store and receptor operated Ca2 + entry. Proceedings of the National Academy of Sciences of the United States of America,106(9), 3202–3206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ong, H. L., de Souza, L. B., Zheng, C., et al. (2015). STIM2 enhances receptor-stimulated ca²⁺ signaling by promoting recruitment of STIM1 to the endoplasmic reticulum-plasma membrane junctions. Science Signaling,8(359), Article ra3.

    Article  PubMed  Google Scholar 

  73. Zhuang, Z., Meng, Y., Xue, Y., Wang, Y., Cheng, X., & Jing, J. (2024). Adaptation of STIM1 structure-function relationships for optogenetic control of calcium signaling. Journal of Biological Chemistry,300(9), Article 107636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Berchtold, M. W., & Villalobo, A. (2025). Ca(2+)/calmodulin signaling in organismal aging and cellular senescence: Impact on human diseases. Biochim Biophys Acta Mol Basis Dis, 1871(2), 167583.

    Article  CAS  PubMed  Google Scholar 

  75. Park, H. S., Lee, S. C., Cardenas, M. E., & Heitman, J. (2019). Calcium-calmodulin-calcineurin signaling: A globally conserved virulence cascade in eukaryotic microbial pathogens. Cell Host & Microbe,26(4), 453–462.

    Article  CAS  Google Scholar 

  76. Vandewalle, A., Tourneur, E., Bens, M., Chassin, C., & Werts, C. (2014). Calcineurin/NFAT signaling and innate host defence: A role for NOD1-mediated phagocytic functions. Cell Commun Signal, 12, 8.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Aramburu, J., Heitman, J., & Crabtree, G. R. (2004). Calcineurin: A central controller of signalling in eukaryotes. EMBO Reports,5(4), 343–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mognol, G. P., Carneiro, F. R., Robbs, B. K., Faget, D. V., & Viola, J. P. (2016). Cell cycle and apoptosis regulation by NFAT transcription factors: New roles for an old player. Cell Death & Disease,7(4), e-2199.

    Article  Google Scholar 

  79. König, A., Fernandez-Zapico, M. E., & Ellenrieder, V. (2010). Primers on molecular pathways–the NFAT transcription pathway in pancreatic cancer. Pancreatology,10(4), 416–422.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Graef, I. A., Chen, F., Chen, L., Kuo, A., & Crabtree, G. R. (2001). Signals transduced by Ca(2+)/calcineurin and NFATc3/c4 pattern the developing vasculature. Cell,105(7), 863–875.

    Article  CAS  PubMed  Google Scholar 

  81. Cohen, M. L., Brumwell, A. N., Ho, T. C. (2024). A fibroblast-dependent TGF-β1/sFRP2 noncanonical Wnt signaling axis promotes epithelial metaplasia in idiopathic pulmonary fibrosis. The Journal of Clinical Investigation, 134(18), e174598.

  82. Zhang, M., Shi, J., Huang, Y., & Lai, L. (2012). Expression of canonical WNT/β-CATENIN signaling components in the developing human lung. BMC Developmental Biology,12, Article 21.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Love, D., Li, F. Q., Burke, M. C., et al. (2010). Altered lung morphogenesis, epithelial cell differentiation and mechanics in mice deficient in the Wnt/β-catenin antagonist Chibby. PLoS One,5(10), Article e13600.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kumawat, K., Koopmans, T., & Gosens, R. (2014). β-catenin as a regulator and therapeutic target for asthmatic airway remodeling. Expert Opinion on Therapeutic Targets, 18(9), 1023–1034.

    Article  CAS  PubMed  Google Scholar 

  85. Perkins, T. N., Dentener, M. A., Stassen, F. R., et al. (2016). Alteration of canonical and non-canonical WNT-signaling by crystalline silica in human lung epithelial cells. Toxicology and Applied Pharmacology,301, 61–70.

    Article  CAS  PubMed  Google Scholar 

  86. Zhu, M., Gu, H., Bai, H., Li, Y., Zhong, C., & Huang, X. (2024). Role and molecular regulatory mechanisms of Hippo signaling pathway in Caenorhabditis elegans and mammalian cell models of Alzheimer’s disease. Neurobiology of Aging,134, 9–20.

    Article  CAS  PubMed  Google Scholar 

  87. Kim, W., & Jho, E. H. (2018). The history and regulatory mechanism of the hippo pathway. BMB Reports,51(3), 106–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen, M., Wang, M., Xu, S., Guo, X., & Jiang, J. (2015). Upregulation of miR-181c contributes to chemoresistance in pancreatic cancer by inactivating the Hippo signaling pathway. Oncotarget, 6(42), 44466–44479.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Klaihmon, P., Lorthongpanich, C., Kheolamai, P., Luanpitpong, S., & Issaragrisil, S. (2022). Distinctive roles of YAP and TAZ in human endothelial progenitor cells growth and functions. Biomedicines, 10(1), 147.

  90. Yang, Y., Gan, X., Zhang, W., et al. (2024). Research progress of the Hippo signaling pathway in renal cell carcinoma. Asian Journal of Urology,11(4), 511–520.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wan, S., Fu, X., Ji, Y., Li, M., Shi, X., & Wang, Y. (2018). FAK- and YAP/TAZ dependent mechanotransduction pathways are required for enhanced immunomodulatory properties of adipose-derived mesenchymal stem cells induced by aligned fibrous scaffolds. Biomaterials,171, 107–117.

    Article  CAS  PubMed  Google Scholar 

  92. Francisco, J., Zhang, Y., Nakada, Y., et al. (2021). AAV-mediated YAP expression in cardiac fibroblasts promotes inflammation and increases fibrosis. Scientific Reports,11(1), Article 10553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. DiGiovanni, G. T., Han, W., & Sherrill, T. P. (2023). Epithelial Yap/Taz are required for functional alveolar regeneration following acute lung injury. JCI Insight. https://doi.org/10.1172/jci.insight.173374

    Article  PubMed  PubMed Central  Google Scholar 

  94. Salvador, F., Martin, A., López-Menéndez, C., et al. (2017). Lysyl oxidase-like protein LOXL2 promotes lung metastasis of breast cancer. Cancer Research,77(21), 5846–5859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gokey, J. J., Snowball, J., Sridharan, A., et al. (2021). YAP regulates alveolar epithelial cell differentiation and AGER via NFIB/KLF5/NKX2-1. IScience,24(9), Article 102967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Warren, R., Lyu, H., Klinkhammer, K., & De Langhe, S. P. (2023). Hippo signaling impairs alveolar epithelial regeneration in pulmonary fibrosis. Elife, 12, e85092.

  97. Swanson, W. B., Omi, M., Woodbury, S. M. (2022). Scaffold pore curvature influences ΜSC fate through differential cellular organization and YAP/TAZ activity. International Journal of Molecular Sciences, 23(9), 4499.

  98. Li, S., Zhou, X., Zeng, R., et al. (2022). YAP1 Silencing attenuated lung injury/fibrosis but worsened diaphragmatic function by regulating oxidative stress and inflammation response in mice. Free Radical Biology and Medicine, 193(Pt 2), 485–498.

    Article  CAS  PubMed  Google Scholar 

  99. Minami, Y., Oishi, I., Endo, M., & Nishita, M. (2010). Ror-family receptor tyrosine kinases in noncanonical Wnt signaling: Their implications in developmental morphogenesis and human diseases. Developmental Dynamics,239(1), 1–15.

    Article  CAS  PubMed  Google Scholar 

  100. Endo, M., Nishita, M., & Minami, Y. (2012). Analysis of wnt/planar cell Polarity pathway in cultured cells. Methods in Molecular Biology, 839, 201–214.

    Article  CAS  PubMed  Google Scholar 

  101. Liang, H., Chen, Q., Coles, A. H., et al. (2003). Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell,4(5), 349–360.

    Article  CAS  PubMed  Google Scholar 

  102. Igota, S., Tosa, M., Murakami, M., et al. (2013). Identification and characterization of Wnt signaling pathway in keloid pathogenesis. International Journal of Medical Sciences,10(4), 344–354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xing, Y. Z., Wang, R. M., Yang, K., et al. (2013). Adenovirus-mediated Wnt5a expression inhibits the telogen-to-anagen transition of hair follicles in mice. International Journal of Medical Sciences,10(7), 908–914.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Baltazar-García, E. A., Vargas-Guerrero, B., Gasca-Lozano, L. E., & Gurrola-Díaz, C. M. (2024). Molecular changes underlying pulmonary emphysema and chronic bronchitis in chronic obstructive pulmonary disease: An updated review. Histology and Histopathology,39(7), 805–816.

    PubMed  Google Scholar 

  105. Sarabia-Sánchez, M. A., Moreno-Londoño, A. P., Castañeda-Patlán, M. C., Alvarado-Ortiz, E., Martínez-Morales, J. C., & Robles-Flores, M. (2023). Non-canonical Wnt/Ca2 + signaling is essential to promote self-renewal and proliferation in colon cancer stem cells. Frontiers in Oncology,13, Article 1121787.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Li, X., Chu, G., Zhu, F., et al. (2020). Epoxyeicosatrienoic acid prevents maladaptive remodeling in pressure overload by targeting calcineurin/NFAT and Smad-7. Experimental Cell Research,386(1), Article 111716.

    Article  CAS  PubMed  Google Scholar 

  107. Ji, Y., Dou, Y. N., Zhao, Q. W., et al. (2016). Paeoniflorin suppresses TGF-β mediated epithelial-mesenchymal transition in pulmonary fibrosis through a Smad-dependent pathway. Acta Pharmacologica Sinica,37(6), 794–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Geng, X. Q., Ma, A., He, J. Z., et al. (2020). Ganoderic acid hinders renal fibrosis via suppressing the TGF-β/Smad and MAPK signaling pathways. Acta Pharmacologica Sinica, 41(5), 670–677.

    Article  CAS  PubMed  Google Scholar 

  109. He, P., Lim, K., Sun, D., et al. (2022). A human fetal lung cell atlas uncovers proximal-distal gradients of differentiation and key regulators of epithelial fates. Cell, 185(25), 4841–4860e4825.

    Article  CAS  PubMed  Google Scholar 

  110. Lim, K., Donovan, A. P. A., Tang, W., et al. (2023). Organoid modeling of human fetal lung alveolar development reveals mechanisms of cell fate patterning and neonatal respiratory disease. Cell Stem Cell, 30(1), 20–37e29.

    Article  CAS  PubMed  Google Scholar 

  111. Sengupta, S., Jana, S., Biswas, S., Mandal, P. K., & Bhattacharyya, A. (2013). Cooperative involvement of NFAT and SnoN mediates transforming growth factor-β (TGF-β) induced EMT in metastatic breast cancer (MDA-MB 231) cells. Clinical & Experimental Metastasis,30(8), 1019–1031.

    Article  CAS  Google Scholar 

  112. Gallardo, F. S., Cruz-Soca, M., Bock-Pereda, A., et al. (2025). Role of TGF-β/SMAD/YAP/TAZ signaling in skeletal muscle fibrosis. American Journal of Physiology-Cell Physiology,328(3), C1015–C1028.

    Article  CAS  PubMed  Google Scholar 

  113. Wu, C., Chen, W., Fang, M., et al. (2019). Compound Astragalus and salvia miltiorrhiza extract inhibits hepatocellular carcinoma progression via miR-145/miR-21 mediated Smad3 phosphorylation. Journal of Ethnopharmacology, 231, 98–112.

    Article  CAS  PubMed  Google Scholar 

  114. Huang, C., Xiao, X., Yang, Y., et al. (2017). MicroRNA-101 attenuates pulmonary fibrosis by inhibiting fibroblast proliferation and activation. Journal of Biological Chemistry, 292(40), 16420–16439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Davidson, L. M., & Berkelhamer, S. K. (2017). Bronchopulmonary dysplasia: Chronic lung disease of infancy and Long-Term pulmonary outcomes. Journal of Clinical Medicine, 6(1), 4.

  116. Jensen, E. A., Wiener, L. E., Rysavy, M. A., et al. (2023). Assessment of corticosteroid therapy and death or disability according to pretreatment risk of death or bronchopulmonary dysplasia in extremely preterm infants. JAMA Network Open,6(5), e2312277.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Jaumotte, J. D., El Khoury, N., Min, C. K., et al. (2025). Physiologic and structural characterization of desisobutyryl-ciclesonide, a selective glucocorticoid receptor modulator in newborn rats. PNAS Nexus, 4(1), pgae573.

    Article  CAS  PubMed  Google Scholar 

  118. Rydell-Törmänen, K., Zhou, X. H., Hallgren, O. (2016). Aberrant nonfibrotic parenchyma in idiopathic pulmonary fibrosis is correlated with decreased β-catenin Inhibition and increased Wnt5a/b interaction. Physiological Reports, 4(5), e12727.

  119. Enomoto, Y., Katsura, H., Fujimura, T., et al. (2023). Autocrine TGF-β-positive feedback in profibrotic AT2-lineage cells plays a crucial role in non-inflammatory lung fibrogenesis. Nature Communications,14(1), Article 4956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhang, X., Chang, M., Wang, B., Liu, X., Zhang, Z., & Han, G. (2023). YAP/WNT5A/FZD4 axis regulates osteogenic differentiation of human periodontal ligament cells under cyclic stretch. Journal of Periodontal Research,58(5), 907–918.

    Article  CAS  PubMed  Google Scholar 

  121. Burgess, C. L., Huang, J., Bawa, P. S., et al. (2024). Generation of human alveolar epithelial type I cells from pluripotent stem cells. Cell Stem Cell, 31(5), 657–675e658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Patel, J. R., Joel, M. Z., Lee, K. K., et al. (2024). Single-Cell RNA sequencing reveals dysregulated POSTN + WNT5A + Fibroblast subclusters in prurigo nodularis. The Journal of Investigative Dermatology, 144(7), 1568–1578e1565.

    Article  CAS  PubMed  Google Scholar 

  123. Xiang, Q., Zhao, Y., Lin, J., Jiang, S., & Li, W. (2022). Epigenetic modifications in spinal ligament aging. Ageing Research Reviews,77, Article 101598.

    Article  PubMed  Google Scholar 

  124. Wu, X., van Dijk, E. M., Ng-Blichfeldt, J. P. (2019). Mesenchymal WNT-5A/5B signaling represses lung alveolar epithelial progenitors. Cells, 8(10), 1147.

  125. Chen, Y., Feng, J., Zhao, S., et al. (2018). Long-term engraftment promotes differentiation of alveolar epithelial cells from human embryonic stem cell derived lung organoids. Stem Cells and Development,27(19), 1339–1349.

    Article  CAS  PubMed  Google Scholar 

  126. Hatırnaz Ng, Ö., Fırtına, S., Can, İ, et al. (2015). A possible role for WNT5A hypermethylation in pediatric acute lymphoblastic leukemia. Turkish Journal of Hematology,32(2), 127–135.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Wright, C. J., Zhuang, T., La, P., Yang, G., & Dennery, P. A. (2009). Hyperoxia-induced NF-kappaB activation occurs via a maturationally sensitive atypical pathway. American Journal of Physiology-Lung Cellular and Molecular Physiology,296(3), L296-306.

    Article  CAS  PubMed  Google Scholar 

  128. Bertero, T., Cottrill, K. A., Lu, Y., et al. (2015). Matrix remodeling promotes pulmonary hypertension through feedback mechanoactivation of the YAP/TAZ-miR-130/301 circuit. Cell Reports, 13(5), 1016–1032.

    Article  CAS  PubMed  Google Scholar 

  129. Choi, E. Y., Park, H. H., & Kim, H. (2020). Wnt5a and Wnt11 as acute respiratory distress syndrome biomarkers for severe acute respiratory syndrome coronavirus 2 patients. European Respiratory Journal, 56(5), 2001531.

  130. Lignelli, E., Palumbo, F., Myti, D., & Morty, R. E. (2019). Recent advances in our Understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. American Journal of Physiology. Lung Cellular and Molecular Physiology, 317(6), L832–l887.

    Article  CAS  PubMed  Google Scholar 

  131. Lingappan, K., & Savani, R. C. (2020). The Wnt signaling pathway and the development of bronchopulmonary dysplasia. American Journal of Respiratory and Critical Care Medicine,201(10), 1174–1176.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Liu, Q., Zhu, H., Tiruthani, K., et al. (2018). Nanoparticle-mediated trapping of Wnt family member 5A in tumor microenvironments enhances immunotherapy for B-Raf proto-oncogene mutant melanoma. ACS Nano,12(2), 1250–1261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Boucherat, O., Franco-Montoya, M. L., Thibault, C., et al. (2007). Gene expression profiling in lung fibroblasts reveals new players in alveolarization. Physiological Genomics,32(1), 128–141.

    Article  CAS  PubMed  Google Scholar 

  134. Baarsma, H. A., Skronska-Wasek, W., Mutze, K., et al. (2017). Noncanonical WNT-5A signaling impairs endogenous lung repair in COPD. Journal of Experimental Medicine,214(1), 143–163.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Nelson, A. L., Mancino, C., Gao, X., et al. (2024). Β-catenin mRNA encapsulated in SM-102 lipid nanoparticles enhances bone formation in a murine tibia fracture repair model. Bioactive Materials,39, 273–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wei, P. S., Thota, N., John, G., et al. (2024). Enhancing RNA-lipid nanoparticle delivery: Organ- and cell-specificity and barcoding strategies. Journal of Controlled Release,375, 366–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Canesin, G., Evans-Axelsson, S., Hellsten, R., et al. (2017). Treatment with the WNT5A-mimicking peptide Foxy-5 effectively reduces the metastatic spread of WNT5A-low prostate cancer cells in an orthotopic mouse model. PLoS One,12(9), Article e0184418.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Syed Khaja, A. S., Helczynski, L., Edsjö, A., et al. (2011). Elevated level of Wnt5a protein in localized prostate cancer tissue is associated with better outcome. PLoS One,6(10), Article e26539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Carmo-Fernandes, A., Puschkarow, M., Peters, K., Gnipp, S., & Peters, M. (2021). The pathogenic role of smooth muscle Cell-Derived Wnt5a in a murine model of lung fibrosis. Pharmaceuticals (Basel), 14(8), 755.

  140. Zhao, H., Dennery, P. A., & Yao, H. (2018). Metabolic reprogramming in the pathogenesis of chronic lung diseases, including BPD, COPD, and pulmonary fibrosis. American Journal of Physiology-Lung Cellular and Molecular Physiology,314(4), L544–L554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Haynes, B. F., Wiehe, K., Borrow, P., et al. (2023). Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies. Nature Reviews Immunology,23(3), 142–158.

    Article  CAS  PubMed  Google Scholar 

  142. Cao, Y., Su, B., Guo, X., et al. (2020). Potent neutralizing antibodies against SARS-CoV-2 identified by High-Throughput Single-Cell sequencing of convalescent patients’ B cells. Cell, 182(1), 73–84e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Melero, I., de Miguel Luken, M., de Velasco, G., et al. (2025). Neutralizing GDF-15 can overcome anti-PD-1 and anti-PD-L1 resistance in solid tumours. Nature, 637(8048), 1218–1227.

    Article  CAS  PubMed  Google Scholar 

  144. Liu, F., Lagares, D., Choi, K. M., et al. (2015). Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. American Journal of Physiology. Lung Cellular and Molecular Physiology, 308(4), L344–357.

    Article  CAS  PubMed  Google Scholar 

  145. Sucre, J. M., Wilkinson, D., Vijayaraj, P., et al. (2016). A three-dimensional human model of the fibroblast activation that accompanies bronchopulmonary dysplasia identifies Notch-mediated pathophysiology. American Journal of Physiology. Lung Cellular and Molecular Physiology, 310(10), L889–898.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Ishikawa, T., Ogura, Y., Tanaka, K., et al. (2023). Ror1 is expressed inducibly by Notch and hypoxia signaling and regulates stem cell-like property of glioblastoma cells. Cancer Science,114(2), 561–573.

    Article  CAS  PubMed  Google Scholar 

  147. Farrera-Hernández, A., Marín-Llera, J. C., & Chimal-Monroy, J. (2021). WNT5A-Ca(2+)-CaN-NFAT signalling plays a permissive role during cartilage differentiation in embryonic chick digit development. Developmental Biology,469, 86–95.

    Article  PubMed  Google Scholar 

  148. Szema, A. M., Forsyth, E., Ying, B., et al. (2017). NFATc3 and VIP in idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease. PLoS One,12(1), Article e0170606.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All the firures in this article were created by ‘Figdraw’.

Funding

This study was supported by the National Natural Science Foundation of China, Grant/Award Numbers: 82171710 and 82371716, Sichuan Provincial Natural Science Foundation Project (General Project, NO. 2025ZNSFSC0639).

Author information

Authors and Affiliations

Authors

Contributions

Jinglan Huang: Writing. Xin Li: Writing, review and editing, Project administration and Funding acquisition. Lan Huang: Visualization. Haiting Liu: Supervision. Jun Tang: Conceptualization and Funding acquisition.

Corresponding author

Correspondence to Xin Li.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

All authors consent to publication.

Competing interest

The other authors have no conflicts of interest to declare.

Clinical Trial Number

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Li, X., Huang, L. et al. Mechanistic Insights and Therapeutic Potential of Wnt5a Signaling in Alveolar Epithelial Cell Development and Bronchopulmonary Dysplasia. Stem Cell Rev and Rep 21, 2372–2385 (2025). https://doi.org/10.1007/s12015-025-10951-3

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12015-025-10951-3

Keywords