Abstract
Wnt5a is a key regulator of non-canonical Wnt signaling, critically influencing alveolar epithelial cell dynamics during development and injury responses. Emerging evidence has revealed two conserved Wnt5a mediated mechanisms: ROR-dependent planar cell polarity signaling that orchestrates cytoskeletal reorganization during alveolar septation, and calcium-regulated transcriptional networks balancing type II alveolar epithelial progenitor maintenance and differentiation. Developmental studies demonstrate Wnt5a deficiency disrupts myofibroblast differentiation and alveologenesis, recapitulating bronchopulmonary dysplasia pathology, while its pathological elevation in hyperoxia models promotes extracellular matrix remodeling through LOX/YAP-mediated mechanotransduction. Therapeutic modulation of Wnt5a signaling shows promise, as ROR2 activation enhances mesenchymal stem cell-mediated alveolar repair, and Wnt5a supplementation rescues epithelial transdifferentiation defects in hyperoxia-induced injury. These findings position Wnt5a signaling as a pivotal node connecting developmental mechanisms with regenerative strategies for alveolar pathologies.
Similar content being viewed by others
Data Availability
No datasets were generated or analysed during the current study.
References
Nikolić, M. Z., Sun, D., & Rawlins, E. L. (2018). Human lung development: Recent progress and new challenges. Development;145(16).
Costa, R. H., Kalinichenko, V. V., & Lim, L. (2001). Transcription factors in mouse lung development and function. American Journal of Physiology-Lung Cellular and Molecular Physiology,280(5), L823-838.
Sang, Y., & Qiao, L. (2024). Lung epithelial-endothelial-mesenchymal signaling network with hepatocyte growth factor as a hub is involved in bronchopulmonary dysplasia. Frontiers in Cell and Developmental Biology,12, Article 1462841.
Li, C., Smith, S. M., Peinado, N. (2020). WNT5a-ROR signaling is essential for alveologenesis. Cells;9(2).
Paramore, S. V., Trenado-Yuste, C., Sharan, R., Nelson, C. M., & Devenport, D. (2024). Vangl-dependent mesenchymal thinning shapes the distal lung during murine sacculation. Developmental Cell, 59(10), 1302–1316e1305.
Stoll, B. J., Hansen, N. I., Bell, E. F., et al. (2015). Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. JAMA,314(10), 1039–1051.
Morrow, L. A., Wagner, B. D., Ingram, D. A., et al. (2017). Antenatal determinants of bronchopulmonary dysplasia and late respiratory disease in preterm infants. American Journal of Respiratory and Critical Care Medicine,196(3), 364–374.
Rim, E. Y., Clevers, H., & Nusse, R. (2022). The Wnt pathway: From signaling mechanisms to synthetic modulators. Annual Review of Biochemistry, 91, 571–598.
Habib, S. J., & Acebrón, S. P. (2022). Wnt signalling in cell division: From mechanisms to tissue engineering. Trends in Cell Biology,32(12), 1035–1048.
Holzem, M., Boutros, M., & Holstein, T. W. (2024). The origin and evolution of Wnt signalling. Nature Reviews Genetics, 25(7), 500–512.
Aros, C. J., Pantoja, C. J., & Gomperts, B. N. (2021). Wnt signaling in lung development, regeneration, and disease progression. Communications Biology,4(1), 601.
Nabhan, A. N., Brownfield, D. G., Harbury, P. B., Krasnow, M. A., & Desai, T. J. (2018). Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science, 359(6380), 1118–1123.
Travaglini, K. J., Nabhan, A. N., Penland, L., et al. (2020). A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature, 587(7835), 619–625.
Hurskainen, M., Mižíková, I., Cook, D. P., et al. (2021). Single cell transcriptomic analysis of murine lung development on hyperoxia-induced damage. Nature Communications,12(1), Article 1565.
Jones, D. L., Morley, M. P., Li, X., et al. (2024). An injury-induced mesenchymal-epithelial cell niche coordinates regenerative responses in the lung. Science, 386(6727), eado5561.
Sucre, J. M. S., Vickers, K. C., Benjamin, J. T., et al. (2020). Hyperoxia injury in the developing lung is mediated by mesenchymal expression of Wnt5A. American Journal of Respiratory and Critical Care Medicine,201(10), 1249–1262.
Zhang, C., Brunt, L., Ono, Y., Rogers, S., & Scholpp, S. (2024). Cytoneme-mediated transport of active Wnt5b-Ror2 complexes in zebrafish. Nature,625(7993), 126–133.
Li, X., Huang, L., Mao, M. (2024). HucMSCs-derived exosomes promote lung development in premature birth via Wnt5a/ROCK1 Axis. Stem Cell Reviews and Reports
Wang, K., Ma, F., Arai, S., et al. (2023). WNT5a signaling through ROR2 activates the Hippo pathway to suppress YAP1 activity and tumor growth. Cancer Research,83(7), 1016–1030.
Park, H. W., Kim, Y. C., Yu, B., et al. (2015). Alternative Wnt signaling activates YAP/TAZ. Cell,162(4), 780–794.
Hu, D. J., Cai, X. T., Simons, J., Yun, J., Elstrott, J., & Jasper, H. (2025). Non-canonical Wnt signaling promotes epithelial fluidization in the repairing airway. Nature Communications,16(1), Article 4124.
Li, C., Peinado, N., Smith, S. M., et al. (2022). Wnt5a promotes AT1 and represses AT2 lineage-specific gene expression in a cell-context-dependent manner. Stem Cells,40(7), 691–703.
Davé, V., Childs, T., Xu, Y., et al. (2006). Calcineurin/Nfat signaling is required for perinatal lung maturation and function. Journal of Clinical Investigation,116(10), 2597–2609.
Jia, Y. Y., Lu, J., Huang, Y., et al. (2014). The involvement of NFAT transcriptional activity suppression in SIRT1-mediated inhibition of COX-2 expression induced by pma/ionomycin. PLoS One,9(5), Article e97999.
Martin-Medina, A., Lehmann, M., Burgy, O., et al. (2018). Increased extracellular vesicles mediate WNT5A signaling in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine,198(12), 1527–1538.
Sen, M., Lauterbach, K., El-Gabalawy, H., Firestein, G. S., Corr, M., & Carson, D. A. (2000). Expression and function of wingless and frizzled homologs in rheumatoid arthritis. Proceedings of the National Academy of Sciences of the United States of America,97(6), 2791–2796.
Kadota, T., Fujita, Y., Araya, J., et al. (2021). Human bronchial epithelial cell-derived extracellular vesicle therapy for pulmonary fibrosis via inhibition of TGF-β-WNT crosstalk. Journal of Extracellular Vesicles,10(10), Article e12124.
Yao, C., Guan, X., Carraro, G., et al. (2021). Senescence of alveolar type 2 cells drives progressive pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine,203(6), 707–717.
Swarr, D. T., & Morrisey, E. E. (2015). Lung endoderm morphogenesis: Gasping for form and function. Annual Review of Cell and Developmental Biology,31, 553–573.
Thébaud, B., Goss, K. N., Laughon, M., et al. (2019). Bronchopulmonary dysplasia. Nature Reviews Disease Primers,5(1), Article 78.
Frank, D. B., Penkala, I. J., Zepp, J. A., et al. (2019). Early lineage specification defines alveolar epithelial ontogeny in the murine lung. Proceedings of the National Academy of Sciences of the United States of America,116(10), 4362–4371.
Caldeira, I., Fernandes-Silva, H., Machado-Costa, D., Correia-Pinto, J., & Moura, R. S. (2021). Developmental pathways underlying lung development and congenital lung disorders. Cells, 10(11), 2987.
Zhang, K., Yao, E., & Lin, C. (2020). A mammalian Wnt5a-Ror2-Vangl2 axis controls the cytoskeleton and confers cellular properties required for alveologenesis. Elife, 9, e53688.
Toth, A., Kannan, P., Snowball, J., et al. (2023). Alveolar epithelial progenitor cells require Nkx2-1 to maintain progenitor-specific epigenomic state during lung homeostasis and regeneration. Nature Communications,14(1), Article 8452.
Lim, K., Rutherford, E. N., Delpiano, L., et al. (2025). A novel human fetal lung-derived alveolar organoid model reveals mechanisms of surfactant protein C maturation relevant to interstitial lung disease. The EMBO Journal,44(3), 639–664.
Sarabia-Sánchez, M. A., & Robles-Flores, M. (2024). WNT signaling in stem cells: A look into the non-canonical pathway. Stem Cell Reviews and Reports,20(1), 52–66.
Reza, A. A., Kohram, F., Reza, H. A., et al. (2023). FOXF1 regulates alveolar epithelial morphogenesis through transcriptional activation of mesenchymal WNT5A. American Journal of Respiratory Cell and Molecular Biology,68(4), 430–443.
Trinh-Minh, T., Chen, C. W., & Tran Manh, C. (2024). Noncanonical WNT5A controls the activation of latent TGF-β to drive fibroblast activation and tissue fibrosis. The Journal of Clinical Investigation, 134(10), e159884.
Rippa, A. L., Alpeeva, E. V., Vasiliev, A. V., & Vorotelyak, E. A. (2021). Alveologenesis: What governs secondary septa formation. International Journal of Molecular Sciences, 22(22), 12107.
Xu, W., Xu, B., Zhao, Y., et al. (2015). Wnt5a reverses the inhibitory effect of hyperoxia on transdifferentiation of alveolar epithelial type II cells to type I cells. Journal of Physiology and Biochemistry,71(4), 823–838.
Vladar, E. K., & Königshoff, M. (2020). Noncanonical wnt planar cell polarity signaling in lung development and disease. Biochemical Society Transactions,48(1), 231–243.
Oishi, I., Suzuki, H., Onishi, N., et al. (2003). The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes to Cells,8(7), 645–654.
Li, C., Xiao, J., Hormi, K., Borok, Z., & Minoo, P. (2002). Wnt5a participates in distal lung morphogenesis. Developmental Biology,248(1), 68–81.
Gao, F., Li, C., & Smith, S. M. (2022). Decoding the IGF1 signaling gene regulatory network behind alveologenesis from a mouse model of bronchopulmonary dysplasia. Elife, 11, e77522
He, H., Snowball, J., Sun, F., Na, C. L., & Whitsett, J. A. (2021). IGF1R controls mechanosignaling in myofibroblasts required for pulmonary alveologenesis. JCI Insight, 6(6), e144863.
Kadzik, R. S., Cohen, E. D., Morley, M. P., Stewart, K. M., Lu, M. M., & Morrisey, E. E. (2014). Wnt ligand/frizzled 2 receptor signaling regulates tube shape and branch-point formation in the lung through control of epithelial cell shape. Proceedings of the National Academy of Sciences of the United States of America,111(34), 12444–12449.
Kunimoto, K., Bayly, R. D., Vladar, E. K., Vonderfecht, T., Gallagher, A. R., & Axelrod, J. D. (2017). Disruption of core planar cell Polarity signaling regulates renal tubule morphogenesis but is not cystogenic. Current Biology, 27(20), 3120–3131e3124.
Kishimoto, K., Tamura, M., Nishita, M., et al. (2018). Synchronized mesenchymal cell polarization and differentiation shape the formation of the murine trachea and esophagus. Nature Communications, 9(1), 2816.
Paramore, S. V., Goodwin, K., Fowler, E. W., Devenport, D., & Nelson, C. M. (2024). Mesenchymal Vangl1 and Vangl2 facilitate airway elongation and widening independently of the planar cell Polarity complex. Development, 151(16), dev202692.
Gros, J., Hu, J. K., Vinegoni, C., Feruglio, P. F., Weissleder, R., & Tabin, C. J. (2010). WNT5A/JNK and FGF/MAPK pathways regulate the cellular events shaping the vertebrate limb bud. Current Biology,20(22), 1993–2002.
Fu, Y., Wei, Y., & Zhou, Y. (2021). Wnt5a regulates junctional function of Sertoli cells through PCP-mediated effects on mTORC1 and mTORC2. Endocrinology, 162(10), bqab149.
Kim, S. Y., McTeague, D., Cheong, S. S., Hind, M., & Dean, C. H. (2024). Deciphering the impacts of modulating the Wnt-planar cell polarity (PCP) pathway on alveolar repair. Frontiers in Cell and Developmental Biology,12, Article 1349312.
Shi, Y. N., Liu, L. P., Deng, C. F., et al. (2021). Celastrol ameliorates vascular neointimal hyperplasia through Wnt5a-involved autophagy. International Journal of Biological Sciences,17(10), 2561–2575.
Chen, Q., Zheng, X., Li, Y., et al. (2022). Wnt5a regulates autophagy in Bacille Calmette-Guérin (BCG)-Infected pulmonary epithelial cells. Microbial Pathogenesis, 173(Pt A), 105826.
Zhang, K., Yao, E., Wang, S. A., et al. (2022). A functional circuit formed by the autonomic nerves and myofibroblasts controls mammalian alveolar formation for gas exchange. Developmental Cell, 57(13), 1566–1581e1567.
Loscertales, M., Mikels, A. J., Hu, J. K., Donahoe, P. K., & Roberts, D. J. (2008). Chick pulmonary Wnt5a directs airway and vascular tubulogenesis. Development (Cambridge, England),135(7), 1365–1376.
Negretti, N. M., Plosa, E. J., & Benjamin, J. T. (2021). A single-cell atlas of mouse lung development. Development, 148(24), dev199512.
Bougaran, P., Bats, M. L., Delobel, V., et al. (2023). ROR2/PCP a new pathway controlling endothelial cell Polarity under flow conditions. Arteriosclerosis, Thrombosis, and Vascular Biology, 43(7), 1199–1218.
Malsin, E. S., Kim, S., Lam, A. P., & Gottardi, C. J. (2019). Macrophages as a source and recipient of Wnt signals. Frontiers in Immunology,10, Article 1813.
Jacob, A., Morley, M., Hawkins, F., et al. (2017). Differentiation of human pluripotent stem cells into functional lung alveolar epithelial cells. Cell Stem Cell, 21(4), 472–488e410.
Conlon, T. M., John-Schuster, G., Heide, D., et al. (2020). Inhibition of LTβR signalling activates WNT-induced regeneration in lung. Nature, 588(7836), 151–156.
Qi, Y., Liang, X., Dai, F., Guan, H., Sun, J., & Yao, W. (2020). RhoA/ROCK pathway activation is regulated by AT1 receptor and participates in smooth muscle migration and dedifferentiation via promoting actin cytoskeleton polymerization. International Journal of Molecular Sciences, 21(15), 5398.
Huang, T., Xie, Z., Wang, J., Li, M., Jing, N., & Li, L. (2011). Nuclear factor of activated T cells (NFAT) proteins repress canonical Wnt signaling via its interaction with dishevelled (Dvl) protein and participate in regulating neural progenitor cell proliferation and differentiation. Journal of Biological Chemistry, 286(43), 37399–37405.
Wang, M. Y., Yang, J. M., Wu, Y., et al. (2024). Curcumin-activated Wnt5a pathway mediates Ca(2+) channel opening to affect myoblast differentiation and skeletal muscle regeneration. Journal of Cachexia, Sarcopenia and Muscle,15(5), 1834–1849.
Popp, T., Steinritz, D., Breit, A., et al. (2014). Wnt5a/β-catenin signaling drives calcium-induced differentiation of human primary keratinocytes. Journal of Investigative Dermatology,134(8), 2183–2191.
Lee, J. H., Bhang, D. H., Beede, A., et al. (2014). Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell,156(3), 440–455.
Tu, M. K., Levin, J. B., Hamilton, A. M., & Borodinsky, L. N. (2016). Calcium signaling in skeletal muscle development, maintenance and regeneration. Cell Calcium,59(2–3), 91–97.
Naillat, F., Deshar, G., Hankkila, A., et al. (2024). Calcium signaling induces partial EMT and renal fibrosis in a Wnt4(mCherry) knock-in mouse model. Biochim Biophys Acta Mol Basis Dis, 1870(5), 167180.
Baudel, M., Shi, J., Large, W. A., & Albert, A. P. (2020). Insights into activation mechanisms of Store-Operated TRPC1 channels in vascular smooth muscle. Cells, 9(1), 179.
Sabourin, J., Bartoli, F., Antigny, F., Gomez, A. M., & Benitah, J. P. (2016). Transient receptor potential canonical (TRPC)/Orai1-dependent Store-operated Ca2 + Channels: NEW TARGETS OF ALDOSTERONE IN CARDIOMYOCYTES. Journal of Biological Chemistry, 291(25), 13394–13409.
Liao, Y., Plummer, N. W., George, M. D., Abramowitz, J., Zhu, M. X., & Birnbaumer, L. (2009). A role for Orai in TRPC-mediated Ca2 + entry suggests that a trpc: Orai complex may mediate store and receptor operated Ca2 + entry. Proceedings of the National Academy of Sciences of the United States of America,106(9), 3202–3206.
Ong, H. L., de Souza, L. B., Zheng, C., et al. (2015). STIM2 enhances receptor-stimulated ca²⁺ signaling by promoting recruitment of STIM1 to the endoplasmic reticulum-plasma membrane junctions. Science Signaling,8(359), Article ra3.
Zhuang, Z., Meng, Y., Xue, Y., Wang, Y., Cheng, X., & Jing, J. (2024). Adaptation of STIM1 structure-function relationships for optogenetic control of calcium signaling. Journal of Biological Chemistry,300(9), Article 107636.
Berchtold, M. W., & Villalobo, A. (2025). Ca(2+)/calmodulin signaling in organismal aging and cellular senescence: Impact on human diseases. Biochim Biophys Acta Mol Basis Dis, 1871(2), 167583.
Park, H. S., Lee, S. C., Cardenas, M. E., & Heitman, J. (2019). Calcium-calmodulin-calcineurin signaling: A globally conserved virulence cascade in eukaryotic microbial pathogens. Cell Host & Microbe,26(4), 453–462.
Vandewalle, A., Tourneur, E., Bens, M., Chassin, C., & Werts, C. (2014). Calcineurin/NFAT signaling and innate host defence: A role for NOD1-mediated phagocytic functions. Cell Commun Signal, 12, 8.
Aramburu, J., Heitman, J., & Crabtree, G. R. (2004). Calcineurin: A central controller of signalling in eukaryotes. EMBO Reports,5(4), 343–348.
Mognol, G. P., Carneiro, F. R., Robbs, B. K., Faget, D. V., & Viola, J. P. (2016). Cell cycle and apoptosis regulation by NFAT transcription factors: New roles for an old player. Cell Death & Disease,7(4), e-2199.
König, A., Fernandez-Zapico, M. E., & Ellenrieder, V. (2010). Primers on molecular pathways–the NFAT transcription pathway in pancreatic cancer. Pancreatology,10(4), 416–422.
Graef, I. A., Chen, F., Chen, L., Kuo, A., & Crabtree, G. R. (2001). Signals transduced by Ca(2+)/calcineurin and NFATc3/c4 pattern the developing vasculature. Cell,105(7), 863–875.
Cohen, M. L., Brumwell, A. N., Ho, T. C. (2024). A fibroblast-dependent TGF-β1/sFRP2 noncanonical Wnt signaling axis promotes epithelial metaplasia in idiopathic pulmonary fibrosis. The Journal of Clinical Investigation, 134(18), e174598.
Zhang, M., Shi, J., Huang, Y., & Lai, L. (2012). Expression of canonical WNT/β-CATENIN signaling components in the developing human lung. BMC Developmental Biology,12, Article 21.
Love, D., Li, F. Q., Burke, M. C., et al. (2010). Altered lung morphogenesis, epithelial cell differentiation and mechanics in mice deficient in the Wnt/β-catenin antagonist Chibby. PLoS One,5(10), Article e13600.
Kumawat, K., Koopmans, T., & Gosens, R. (2014). β-catenin as a regulator and therapeutic target for asthmatic airway remodeling. Expert Opinion on Therapeutic Targets, 18(9), 1023–1034.
Perkins, T. N., Dentener, M. A., Stassen, F. R., et al. (2016). Alteration of canonical and non-canonical WNT-signaling by crystalline silica in human lung epithelial cells. Toxicology and Applied Pharmacology,301, 61–70.
Zhu, M., Gu, H., Bai, H., Li, Y., Zhong, C., & Huang, X. (2024). Role and molecular regulatory mechanisms of Hippo signaling pathway in Caenorhabditis elegans and mammalian cell models of Alzheimer’s disease. Neurobiology of Aging,134, 9–20.
Kim, W., & Jho, E. H. (2018). The history and regulatory mechanism of the hippo pathway. BMB Reports,51(3), 106–118.
Chen, M., Wang, M., Xu, S., Guo, X., & Jiang, J. (2015). Upregulation of miR-181c contributes to chemoresistance in pancreatic cancer by inactivating the Hippo signaling pathway. Oncotarget, 6(42), 44466–44479.
Klaihmon, P., Lorthongpanich, C., Kheolamai, P., Luanpitpong, S., & Issaragrisil, S. (2022). Distinctive roles of YAP and TAZ in human endothelial progenitor cells growth and functions. Biomedicines, 10(1), 147.
Yang, Y., Gan, X., Zhang, W., et al. (2024). Research progress of the Hippo signaling pathway in renal cell carcinoma. Asian Journal of Urology,11(4), 511–520.
Wan, S., Fu, X., Ji, Y., Li, M., Shi, X., & Wang, Y. (2018). FAK- and YAP/TAZ dependent mechanotransduction pathways are required for enhanced immunomodulatory properties of adipose-derived mesenchymal stem cells induced by aligned fibrous scaffolds. Biomaterials,171, 107–117.
Francisco, J., Zhang, Y., Nakada, Y., et al. (2021). AAV-mediated YAP expression in cardiac fibroblasts promotes inflammation and increases fibrosis. Scientific Reports,11(1), Article 10553.
DiGiovanni, G. T., Han, W., & Sherrill, T. P. (2023). Epithelial Yap/Taz are required for functional alveolar regeneration following acute lung injury. JCI Insight. https://doi.org/10.1172/jci.insight.173374
Salvador, F., Martin, A., López-Menéndez, C., et al. (2017). Lysyl oxidase-like protein LOXL2 promotes lung metastasis of breast cancer. Cancer Research,77(21), 5846–5859.
Gokey, J. J., Snowball, J., Sridharan, A., et al. (2021). YAP regulates alveolar epithelial cell differentiation and AGER via NFIB/KLF5/NKX2-1. IScience,24(9), Article 102967.
Warren, R., Lyu, H., Klinkhammer, K., & De Langhe, S. P. (2023). Hippo signaling impairs alveolar epithelial regeneration in pulmonary fibrosis. Elife, 12, e85092.
Swanson, W. B., Omi, M., Woodbury, S. M. (2022). Scaffold pore curvature influences ΜSC fate through differential cellular organization and YAP/TAZ activity. International Journal of Molecular Sciences, 23(9), 4499.
Li, S., Zhou, X., Zeng, R., et al. (2022). YAP1 Silencing attenuated lung injury/fibrosis but worsened diaphragmatic function by regulating oxidative stress and inflammation response in mice. Free Radical Biology and Medicine, 193(Pt 2), 485–498.
Minami, Y., Oishi, I., Endo, M., & Nishita, M. (2010). Ror-family receptor tyrosine kinases in noncanonical Wnt signaling: Their implications in developmental morphogenesis and human diseases. Developmental Dynamics,239(1), 1–15.
Endo, M., Nishita, M., & Minami, Y. (2012). Analysis of wnt/planar cell Polarity pathway in cultured cells. Methods in Molecular Biology, 839, 201–214.
Liang, H., Chen, Q., Coles, A. H., et al. (2003). Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell,4(5), 349–360.
Igota, S., Tosa, M., Murakami, M., et al. (2013). Identification and characterization of Wnt signaling pathway in keloid pathogenesis. International Journal of Medical Sciences,10(4), 344–354.
Xing, Y. Z., Wang, R. M., Yang, K., et al. (2013). Adenovirus-mediated Wnt5a expression inhibits the telogen-to-anagen transition of hair follicles in mice. International Journal of Medical Sciences,10(7), 908–914.
Baltazar-García, E. A., Vargas-Guerrero, B., Gasca-Lozano, L. E., & Gurrola-Díaz, C. M. (2024). Molecular changes underlying pulmonary emphysema and chronic bronchitis in chronic obstructive pulmonary disease: An updated review. Histology and Histopathology,39(7), 805–816.
Sarabia-Sánchez, M. A., Moreno-Londoño, A. P., Castañeda-Patlán, M. C., Alvarado-Ortiz, E., Martínez-Morales, J. C., & Robles-Flores, M. (2023). Non-canonical Wnt/Ca2 + signaling is essential to promote self-renewal and proliferation in colon cancer stem cells. Frontiers in Oncology,13, Article 1121787.
Li, X., Chu, G., Zhu, F., et al. (2020). Epoxyeicosatrienoic acid prevents maladaptive remodeling in pressure overload by targeting calcineurin/NFAT and Smad-7. Experimental Cell Research,386(1), Article 111716.
Ji, Y., Dou, Y. N., Zhao, Q. W., et al. (2016). Paeoniflorin suppresses TGF-β mediated epithelial-mesenchymal transition in pulmonary fibrosis through a Smad-dependent pathway. Acta Pharmacologica Sinica,37(6), 794–804.
Geng, X. Q., Ma, A., He, J. Z., et al. (2020). Ganoderic acid hinders renal fibrosis via suppressing the TGF-β/Smad and MAPK signaling pathways. Acta Pharmacologica Sinica, 41(5), 670–677.
He, P., Lim, K., Sun, D., et al. (2022). A human fetal lung cell atlas uncovers proximal-distal gradients of differentiation and key regulators of epithelial fates. Cell, 185(25), 4841–4860e4825.
Lim, K., Donovan, A. P. A., Tang, W., et al. (2023). Organoid modeling of human fetal lung alveolar development reveals mechanisms of cell fate patterning and neonatal respiratory disease. Cell Stem Cell, 30(1), 20–37e29.
Sengupta, S., Jana, S., Biswas, S., Mandal, P. K., & Bhattacharyya, A. (2013). Cooperative involvement of NFAT and SnoN mediates transforming growth factor-β (TGF-β) induced EMT in metastatic breast cancer (MDA-MB 231) cells. Clinical & Experimental Metastasis,30(8), 1019–1031.
Gallardo, F. S., Cruz-Soca, M., Bock-Pereda, A., et al. (2025). Role of TGF-β/SMAD/YAP/TAZ signaling in skeletal muscle fibrosis. American Journal of Physiology-Cell Physiology,328(3), C1015–C1028.
Wu, C., Chen, W., Fang, M., et al. (2019). Compound Astragalus and salvia miltiorrhiza extract inhibits hepatocellular carcinoma progression via miR-145/miR-21 mediated Smad3 phosphorylation. Journal of Ethnopharmacology, 231, 98–112.
Huang, C., Xiao, X., Yang, Y., et al. (2017). MicroRNA-101 attenuates pulmonary fibrosis by inhibiting fibroblast proliferation and activation. Journal of Biological Chemistry, 292(40), 16420–16439.
Davidson, L. M., & Berkelhamer, S. K. (2017). Bronchopulmonary dysplasia: Chronic lung disease of infancy and Long-Term pulmonary outcomes. Journal of Clinical Medicine, 6(1), 4.
Jensen, E. A., Wiener, L. E., Rysavy, M. A., et al. (2023). Assessment of corticosteroid therapy and death or disability according to pretreatment risk of death or bronchopulmonary dysplasia in extremely preterm infants. JAMA Network Open,6(5), e2312277.
Jaumotte, J. D., El Khoury, N., Min, C. K., et al. (2025). Physiologic and structural characterization of desisobutyryl-ciclesonide, a selective glucocorticoid receptor modulator in newborn rats. PNAS Nexus, 4(1), pgae573.
Rydell-Törmänen, K., Zhou, X. H., Hallgren, O. (2016). Aberrant nonfibrotic parenchyma in idiopathic pulmonary fibrosis is correlated with decreased β-catenin Inhibition and increased Wnt5a/b interaction. Physiological Reports, 4(5), e12727.
Enomoto, Y., Katsura, H., Fujimura, T., et al. (2023). Autocrine TGF-β-positive feedback in profibrotic AT2-lineage cells plays a crucial role in non-inflammatory lung fibrogenesis. Nature Communications,14(1), Article 4956.
Zhang, X., Chang, M., Wang, B., Liu, X., Zhang, Z., & Han, G. (2023). YAP/WNT5A/FZD4 axis regulates osteogenic differentiation of human periodontal ligament cells under cyclic stretch. Journal of Periodontal Research,58(5), 907–918.
Burgess, C. L., Huang, J., Bawa, P. S., et al. (2024). Generation of human alveolar epithelial type I cells from pluripotent stem cells. Cell Stem Cell, 31(5), 657–675e658.
Patel, J. R., Joel, M. Z., Lee, K. K., et al. (2024). Single-Cell RNA sequencing reveals dysregulated POSTN + WNT5A + Fibroblast subclusters in prurigo nodularis. The Journal of Investigative Dermatology, 144(7), 1568–1578e1565.
Xiang, Q., Zhao, Y., Lin, J., Jiang, S., & Li, W. (2022). Epigenetic modifications in spinal ligament aging. Ageing Research Reviews,77, Article 101598.
Wu, X., van Dijk, E. M., Ng-Blichfeldt, J. P. (2019). Mesenchymal WNT-5A/5B signaling represses lung alveolar epithelial progenitors. Cells, 8(10), 1147.
Chen, Y., Feng, J., Zhao, S., et al. (2018). Long-term engraftment promotes differentiation of alveolar epithelial cells from human embryonic stem cell derived lung organoids. Stem Cells and Development,27(19), 1339–1349.
Hatırnaz Ng, Ö., Fırtına, S., Can, İ, et al. (2015). A possible role for WNT5A hypermethylation in pediatric acute lymphoblastic leukemia. Turkish Journal of Hematology,32(2), 127–135.
Wright, C. J., Zhuang, T., La, P., Yang, G., & Dennery, P. A. (2009). Hyperoxia-induced NF-kappaB activation occurs via a maturationally sensitive atypical pathway. American Journal of Physiology-Lung Cellular and Molecular Physiology,296(3), L296-306.
Bertero, T., Cottrill, K. A., Lu, Y., et al. (2015). Matrix remodeling promotes pulmonary hypertension through feedback mechanoactivation of the YAP/TAZ-miR-130/301 circuit. Cell Reports, 13(5), 1016–1032.
Choi, E. Y., Park, H. H., & Kim, H. (2020). Wnt5a and Wnt11 as acute respiratory distress syndrome biomarkers for severe acute respiratory syndrome coronavirus 2 patients. European Respiratory Journal, 56(5), 2001531.
Lignelli, E., Palumbo, F., Myti, D., & Morty, R. E. (2019). Recent advances in our Understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. American Journal of Physiology. Lung Cellular and Molecular Physiology, 317(6), L832–l887.
Lingappan, K., & Savani, R. C. (2020). The Wnt signaling pathway and the development of bronchopulmonary dysplasia. American Journal of Respiratory and Critical Care Medicine,201(10), 1174–1176.
Liu, Q., Zhu, H., Tiruthani, K., et al. (2018). Nanoparticle-mediated trapping of Wnt family member 5A in tumor microenvironments enhances immunotherapy for B-Raf proto-oncogene mutant melanoma. ACS Nano,12(2), 1250–1261.
Boucherat, O., Franco-Montoya, M. L., Thibault, C., et al. (2007). Gene expression profiling in lung fibroblasts reveals new players in alveolarization. Physiological Genomics,32(1), 128–141.
Baarsma, H. A., Skronska-Wasek, W., Mutze, K., et al. (2017). Noncanonical WNT-5A signaling impairs endogenous lung repair in COPD. Journal of Experimental Medicine,214(1), 143–163.
Nelson, A. L., Mancino, C., Gao, X., et al. (2024). Β-catenin mRNA encapsulated in SM-102 lipid nanoparticles enhances bone formation in a murine tibia fracture repair model. Bioactive Materials,39, 273–286.
Wei, P. S., Thota, N., John, G., et al. (2024). Enhancing RNA-lipid nanoparticle delivery: Organ- and cell-specificity and barcoding strategies. Journal of Controlled Release,375, 366–388.
Canesin, G., Evans-Axelsson, S., Hellsten, R., et al. (2017). Treatment with the WNT5A-mimicking peptide Foxy-5 effectively reduces the metastatic spread of WNT5A-low prostate cancer cells in an orthotopic mouse model. PLoS One,12(9), Article e0184418.
Syed Khaja, A. S., Helczynski, L., Edsjö, A., et al. (2011). Elevated level of Wnt5a protein in localized prostate cancer tissue is associated with better outcome. PLoS One,6(10), Article e26539.
Carmo-Fernandes, A., Puschkarow, M., Peters, K., Gnipp, S., & Peters, M. (2021). The pathogenic role of smooth muscle Cell-Derived Wnt5a in a murine model of lung fibrosis. Pharmaceuticals (Basel), 14(8), 755.
Zhao, H., Dennery, P. A., & Yao, H. (2018). Metabolic reprogramming in the pathogenesis of chronic lung diseases, including BPD, COPD, and pulmonary fibrosis. American Journal of Physiology-Lung Cellular and Molecular Physiology,314(4), L544–L554.
Haynes, B. F., Wiehe, K., Borrow, P., et al. (2023). Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies. Nature Reviews Immunology,23(3), 142–158.
Cao, Y., Su, B., Guo, X., et al. (2020). Potent neutralizing antibodies against SARS-CoV-2 identified by High-Throughput Single-Cell sequencing of convalescent patients’ B cells. Cell, 182(1), 73–84e16.
Melero, I., de Miguel Luken, M., de Velasco, G., et al. (2025). Neutralizing GDF-15 can overcome anti-PD-1 and anti-PD-L1 resistance in solid tumours. Nature, 637(8048), 1218–1227.
Liu, F., Lagares, D., Choi, K. M., et al. (2015). Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. American Journal of Physiology. Lung Cellular and Molecular Physiology, 308(4), L344–357.
Sucre, J. M., Wilkinson, D., Vijayaraj, P., et al. (2016). A three-dimensional human model of the fibroblast activation that accompanies bronchopulmonary dysplasia identifies Notch-mediated pathophysiology. American Journal of Physiology. Lung Cellular and Molecular Physiology, 310(10), L889–898.
Ishikawa, T., Ogura, Y., Tanaka, K., et al. (2023). Ror1 is expressed inducibly by Notch and hypoxia signaling and regulates stem cell-like property of glioblastoma cells. Cancer Science,114(2), 561–573.
Farrera-Hernández, A., Marín-Llera, J. C., & Chimal-Monroy, J. (2021). WNT5A-Ca(2+)-CaN-NFAT signalling plays a permissive role during cartilage differentiation in embryonic chick digit development. Developmental Biology,469, 86–95.
Szema, A. M., Forsyth, E., Ying, B., et al. (2017). NFATc3 and VIP in idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease. PLoS One,12(1), Article e0170606.
Acknowledgements
All the firures in this article were created by ‘Figdraw’.
Funding
This study was supported by the National Natural Science Foundation of China, Grant/Award Numbers: 82171710 and 82371716, Sichuan Provincial Natural Science Foundation Project (General Project, NO. 2025ZNSFSC0639).
Author information
Authors and Affiliations
Contributions
Jinglan Huang: Writing. Xin Li: Writing, review and editing, Project administration and Funding acquisition. Lan Huang: Visualization. Haiting Liu: Supervision. Jun Tang: Conceptualization and Funding acquisition.
Corresponding author
Ethics declarations
Ethics Approval and Consent to Participate
Not applicable.
Consent for Publication
All authors consent to publication.
Competing interest
The other authors have no conflicts of interest to declare.
Clinical Trial Number
Not applicable.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Huang, J., Li, X., Huang, L. et al. Mechanistic Insights and Therapeutic Potential of Wnt5a Signaling in Alveolar Epithelial Cell Development and Bronchopulmonary Dysplasia. Stem Cell Rev and Rep 21, 2372–2385 (2025). https://doi.org/10.1007/s12015-025-10951-3
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s12015-025-10951-3