Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Mitochondrial Oxidative Phosphorylation Transcriptome Alterations in Human Amyotrophic Lateral Sclerosis Spinal Cord and Blood

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Origins of onset and progression of motor neurodegeneration in amyotrophic lateral sclerosis (ALS) are not clearly known, but may include impairment of mitochondrial bioenergetics. We used quantitative PCR approaches to analyze the mitochondrial oxidative phosphorylation (OXPHOS) transcriptomes of spinal cord tissue and peripheral blood mononuclear cells (PBMC) from persons with sporadic ALS compared with those without neurological disease. Expression measurements of 88 different nuclear (n) and mitochondrial (mt) DNA-encoded OXPHOS genes showed mtDNA-encoded respiratory gene expression was significantly decreased in ALS spinal cord by 78–84 % (ANOVA p < 0.002). We observed the same phenomenon in freshly isolated PBMC from ALS patients (reduced 24–35 %, ANOVA p < 0.001) and reproduced it in a human neural stem cell model treated with 2′,3′-dideoxycytidine (ddC) (reduced 52–78 %, ANOVA p < 0.001). nDNA-encoded OXPHOS genes showed heterogeneously and mostly decreased expression in ALS spinal cord tissue. In contrast, ALS PBMC and ddC-treated stem cells showed no significant change in expression of nDNA OXPHOS genes compared with controls. Genes related to mitochondrial biogenesis (PGC-1α, TFAM, ERRα, NRF1, NRF2 and POLG) were queried with inconclusive results. Here, we demonstrate there is a systemic decrease in mtDNA gene expression in ALS central and peripheral tissues that support pursuit of bioenergetic-enhancing therapies. We also identified a combined nDNA and mtDNA gene set (n = 26), downregulated in spinal cord tissue that may be useful as a biomarker in the development of cell-based ALS models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ALS:

Amyotrophic lateral sclerosis

CTL:

Control

ddC:

2′,3′-Dideoxycytidine

fbRNA:

Commercially available fetal brain RNA

hSC:

Human spinal cord

mtDNA:

Mitochondrial DNA

nDNA:

Nuclear DNA

NSC:

Neural stem cells

OXPHOS:

Oxidative phosphorylation

PBMC:

Peripheral blood mononuclear cells

qPCR:

Quantitative PCR

References

  • Bernardini, C., Censi, F., Lattanzi, W., Barba, M., Calcagnini, G., Giuliani, A., et al. (2013). Mitochondrial network genes in the skeletal muscle of amyotrophic lateral sclerosis patients. PLoS ONE, 8(2), e57739. doi:10.1371/journal.pone.0057739.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bindoff, L. A., Birch-Machin, M. A., Cartlidge, N. E., Parker, W. D., Jr, & Turnbull, D. M. (1991). Respiratory chain abnormalities in skeletal muscle from patients with Parkinson’s disease. Journal of the Neurological Sciences, 104(2), 203–208.

    Article  CAS  PubMed  Google Scholar 

  • Boillee, S., Vande Velde, C., & Cleveland, D. W. (2006). ALS: A disease of motor neurons and their nonneuronal neighbors. Neuron, 52(1), 39–59. doi:10.1016/j.neuron.2006.09.018.

    Article  CAS  PubMed  Google Scholar 

  • Brockington, A., Ning, K., Heath, P. R., Wood, E., Kirby, J., Fusi, N., et al. (2013). Unravelling the enigma of selective vulnerability in neurodegeneration: Motor neurons resistant to degeneration in ALS show distinct gene expression characteristics and decreased susceptibility to excitotoxicity. Acta Neuropathologica, 125(1), 95–109. doi:10.1007/s00401-012-1058-5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., et al. (2009). The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55(4), 611–622. doi:10.1373/clinchem.2008.112797.

    Article  CAS  PubMed  Google Scholar 

  • Cassina, P., Cassina, A., Pehar, M., Castellanos, R., Gandelman, M., de Leon, A., et al. (2008). Mitochondrial dysfunction in SOD1G93A-bearing astrocytes promotes motor neuron degeneration: Prevention by mitochondrial-targeted antioxidants. Journal of Neuroscience, 28(16), 4115–4122. doi:10.1523/JNEUROSCI.5308-07.2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chandrasekaran, K., Giordano, T., Brady, D. R., Stoll, J., Martin, L. J., & Rapoport, S. I. (1994). Impairment in mitochondrial cytochrome oxidase gene expression in Alzheimer disease. Brain Research. Molecular Brain Research, 24(1–4), 336–340.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C. H., & Cheng, Y. C. (1989). Delayed cytotoxicity and selective loss of mitochondrial DNA in cells treated with the anti-human immunodeficiency virus compound 2′,3′-dideoxycytidine. Journal of Biological Chemistry, 264(20), 11934–11937.

    CAS  PubMed  Google Scholar 

  • Clement-Ziza, M., Gentien, D., Lyonnet, S., Thiery, J. P., Besmond, C., & Decraene, C. (2009). Evaluation of methods for amplification of picogram amounts of total RNA for whole genome expression profiling. BMC Genomics, 10, 246. doi:10.1186/1471-2164-10-246.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cozzolino, M., & Carri, M. T. (2012). Mitochondrial dysfunction in ALS. Progress in Neurobiology, 97(2), 54–66. doi:10.1016/j.pneurobio.2011.06.003.

    Article  CAS  PubMed  Google Scholar 

  • Dangond, F., Hwang, D., Camelo, S., Pasinelli, P., Frosch, M. P., Stephanopoulos, G., et al. (2004). Molecular signature of late-stage human ALS revealed by expression profiling of postmortem spinal cord gray matter. Physiological Genomics, 16(2), 229–239. doi:10.1152/physiolgenomics.00087.2001.

    Article  CAS  PubMed  Google Scholar 

  • DeJesus-Hernandez, M., Mackenzie, I. R., Boeve, B. F., Boxer, A. L., Baker, M., Rutherford, N. J., et al. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron, 72(2), 245–256. doi:10.1016/j.neuron.2011.09.011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Denisov, V., Strong, W., Walder, M., Gingrich, J., & Wintz, H. (2008). In I. Bio-Rad Laboratories (Ed.), Development and validation of RQI: An RNA quality indicator for the experionTM automated electrophoresis system (Vol. Bulletin 5761 Rev B). BioRad. http://www.gene-quantification.com/Bio-Rad-bulletin-5761.pdf.

  • Dupuis, L., Pradat, P. F., Ludolph, A. C., & Loeffler, J. P. (2011). Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurology, 10(1), 75–82. doi:10.1016/S1474-4422(10)70224-6.

    Article  CAS  Google Scholar 

  • Fujita, K., Yamauchi, M., Shibayama, K., Ando, M., Honda, M., & Nagata, Y. (1996). Decreased cytochrome c oxidase activity but unchanged superoxide dismutase and glutathione peroxidase activities in the spinal cords of patients with amyotrophic lateral sclerosis. Journal of Neuroscience Research, 45(3), 276–281. doi:10.1002/(SICI)1097-4547(19960801)45:3<276:AID-JNR9>3.0.CO;2-A.

    Article  CAS  PubMed  Google Scholar 

  • Hall, E. D., Oostveen, J. A., & Gurney, M. E. (1998). Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS. Glia, 23(3), 249–256.

    Article  CAS  PubMed  Google Scholar 

  • Heath, P. R., Kirby, J., & Shaw, P. J. (2013). Investigating cell death mechanisms in amyotrophic lateral sclerosis using transcriptomics. Frontiers in Cellular Neuroscience, 7, 259. doi:10.3389/fncel.2013.00259.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hedlund, E., Karlsson, M., Osborn, T., Ludwig, W., & Isacson, O. (2010). Global gene expression profiling of somatic motor neuron populations with different vulnerability identify molecules and pathways of degeneration and protection. Brain, 133(Pt 8), 2313–2330. doi:10.1093/brain/awq167.

    Article  PubMed Central  PubMed  Google Scholar 

  • Henriques, A., & Gonzalez De Aguilar, J. L. (2011). Can transcriptomics cut the gordian knot of amyotrophic lateral sclerosis? Current Genomics, 12(7), 506–515. doi:10.2174/138920211797904043.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang, Y. M., Yamamoto, M., Kobayashi, Y., Yoshihara, T., Liang, Y., Terao, S., et al. (2005). Gene expression profile of spinal motor neurons in sporadic amyotrophic lateral sclerosis. Annals of Neurology, 57(2), 236–251. doi:10.1002/ana.20379.

    Article  CAS  PubMed  Google Scholar 

  • Keeney, P. M., & Bennett, J. P., Jr. (2010). ALS spinal neurons show varied and reduced mtDNA gene copy numbers and increased mtDNA gene deletions. Molecular Neurodegenerative, 5, 21. doi:10.1186/1750-1326-5-21.

    Article  Google Scholar 

  • Kish, S. J., Bergeron, C., Rajput, A., Dozic, S., Mastrogiacomo, F., Chang, L. J., et al. (1992). Brain cytochrome oxidase in Alzheimer’s disease. Journal of Neurochemistry, 59(2), 776–779.

    Article  CAS  PubMed  Google Scholar 

  • Kwiatkowski, T. J., Jr, Bosco, D. A., Leclerc, A. L., Tamrazian, E., Vanderburg, C. R., Russ, C., et al. (2009). Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science, 323(5918), 1205–1208. doi:10.1126/science.1166066.

    Article  CAS  PubMed  Google Scholar 

  • Malaspina, A., & de Belleroche, J. (2004). Spinal cord molecular profiling provides a better understanding of amyotrophic lateral sclerosis pathogenesis. Brain Research. Brain Research Reviews, 45(3), 213–229. doi:10.1016/j.brainresrev.2004.04.002.

    Article  CAS  PubMed  Google Scholar 

  • Malaspina, A., Kaushik, N., & de Belleroche, J. (2001). Differential expression of 14 genes in amyotrophic lateral sclerosis spinal cord detected using gridded cDNA arrays. Journal of Neurochemistry, 77(1), 132–145.

    Article  CAS  PubMed  Google Scholar 

  • Mytilineou, C., Werner, P., Molinari, S., Di Rocco, A., Cohen, G., & Yahr, M. D. (1994). Impaired oxidative decarboxylation of pyruvate in fibroblasts from patients with Parkinson’s disease. Journal of Neural Transmission. Parkinson’s Disease and Dementia Section, 8(3), 223–228.

    Article  CAS  PubMed  Google Scholar 

  • Parker, W. D., Jr, Boyson, S. J., & Parks, J. K. (1989). Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Annals of Neurology, 26(6), 719–723. doi:10.1002/ana.410260606.

    Article  PubMed  Google Scholar 

  • Penna, I., Vella, S., Gigoni, A., Russo, C., Cancedda, R., & Pagano, A. (2011). Selection of candidate housekeeping genes for normalization in human postmortem brain samples. International Journal of Molecular Sciences, 12(9), 5461–5470. doi:10.3390/ijms12095461.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Philips, T., Bento-Abreu, A., Nonneman, A., Haeck, W., Staats, K., Geelen, V., et al. (2013). Oligodendrocyte dysfunction in the pathogenesis of amyotrophic lateral sclerosis. Brain, 136(Pt 2), 471–482. doi:10.1093/brain/aws339.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rabin, S. J., Kim, J. M., Baughn, M., Libby, R. T., Kim, Y. J., Fan, Y., et al. (2010). Sporadic ALS has compartment-specific aberrant exon splicing and altered cell-matrix adhesion biology. Human Molecular Genetics, 19(2), 313–328. doi:10.1093/hmg/ddp498.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reddy, P. H., & Reddy, T. P. (2011). Mitochondria as a therapeutic target for aging and neurodegenerative diseases. Current Alzheimer Research, 8(4), 393–409.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Renton, A. E., Majounie, E., Waite, A., Simon-Sanchez, J., Rollinson, S., Gibbs, J. R., et al. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron, 72(2), 257–268. doi:10.1016/j.neuron.2011.09.010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., et al. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362(6415), 59–62. doi:10.1038/362059a0.

    Article  CAS  PubMed  Google Scholar 

  • Saris, C. G., Horvath, S., van Vught, P. W., van Es, M. A., Blauw, H. M., Fuller, T. F., et al. (2009). Weighted gene co-expression network analysis of the peripheral blood from Amyotrophic Lateral Sclerosis patients. BMC Genomics, 10, 405. doi:10.1186/1471-2164-10-405.

    Article  PubMed Central  PubMed  Google Scholar 

  • Scarpulla, R. C. (2012). Nucleus-encoded regulators of mitochondrial function: Integration of respiratory chain expression, nutrient sensing and metabolic stress. Biochimica et Biophysica Acta, 1819(9–10), 1088–1097. doi:10.1016/j.bbagrm.2011.10.011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scarpulla, R. C., Vega, R. B., & Kelly, D. P. (2012). Transcriptional integration of mitochondrial biogenesis. Trends in Endocrinology and Metabolism, 23(9), 459–466. doi:10.1016/j.tem.2012.06.006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schapira, A. H., Cooper, J. M., Dexter, D., Jenner, P., Clark, J. B., & Marsden, C. D. (1989). Mitochondrial complex I deficiency in Parkinson’s disease. Lancet, 1(8649), 1269.

    Article  CAS  PubMed  Google Scholar 

  • Shaw, P. J., & Eggett, C. J. (2000). Molecular factors underlying selective vulnerability of motor neurons to neurodegeneration in amyotrophic lateral sclerosis. Journal of Neurology, 247(Suppl 1), I17–I27.

    Article  PubMed  Google Scholar 

  • Sreedharan, J., Blair, I. P., Tripathi, V. B., Hu, X., Vance, C., Rogelj, B., et al. (2008). TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science, 319(5870), 1668–1672. doi:10.1126/science.1154584.

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow, R. H., Parks, J. K., Cassarino, D. S., Trimmer, P. A., Miller, S. W., Maguire, D. J., et al. (1998). Mitochondria in sporadic amyotrophic lateral sclerosis. Experimental Neurology, 153(1), 135–142. doi:10.1006/exnr.1998.6866.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, R. R., Keeney, P. M., & Bennett, J. P. (2012). Impaired complex-I mitochondrial biogenesis in Parkinson disease frontal cortex. Journal of Parkinson’s Disease, 2(1), 67–76. doi:10.3233/JPD-2012-11074.

    CAS  PubMed  Google Scholar 

  • Vermeulen, J., Derveaux, S., Lefever, S., De Smet, E., De Preter, K., Yigit, N., et al. (2009). RNA pre-amplification enables large-scale RT-qPCR gene-expression studies on limiting sample amounts. BMC Research Notes, 2, 235. doi:10.1186/1756-0500-2-235.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wallace, D. C. (1999). Mitochondrial diseases in man and mouse. Science, 283(5407), 1482–1488.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X. S., Simmons, Z., Liu, W., Boyer, P. J., & Connor, J. R. (2006). Differential expression of genes in amyotrophic lateral sclerosis revealed by profiling the post mortem cortex. Amyotrophic Lateral Sclerosis, 7(4), 201–210. doi:10.1080/17482960600947689.

    Article  CAS  PubMed  Google Scholar 

  • Young-Collier, K. J., McArdle, M., & Bennett, J. P. (2012). The dying of the light: Mitochondrial failure in Alzheimer’s disease. Journal of Alzheimer’s Disease, 28(4), 771–781. doi:10.3233/JAD-2011-111487.

    CAS  PubMed  Google Scholar 

  • Zhang, R., Hadlock, K. G., Do, H., Yu, S., Honrada, R., Champion, S., et al. (2011). Gene expression profiling in peripheral blood mononuclear cells from patients with sporadic amyotrophic lateral sclerosis (sALS). Journal of Neuroimmunology, 230(1–2), 114–123. doi:10.1016/j.jneuroim.2010.08.012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Parkinson’s and Movement Disorders Center at Virginia Commonwealth University through the Medical College of Virginia Foundation.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

Anonymous, frozen cervical hSC specimens (n = 16) were acquired from the National Disease Research Interchange, Philadelphia, PA http://www.ndri-resource.org. Peripheral blood (n = 20) from nine ALS and eleven non-ALS healthy control patients was collected in accordance with a VCU IRB-approved protocol at the Parkinson’s and Movement Disorder’s Center at our institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy C. Ladd.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ladd, A.C., Keeney, P.M., Govind, M.M. et al. Mitochondrial Oxidative Phosphorylation Transcriptome Alterations in Human Amyotrophic Lateral Sclerosis Spinal Cord and Blood. Neuromol Med 16, 714–726 (2014). https://doi.org/10.1007/s12017-014-8321-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12017-014-8321-y

Keywords